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Notes on topological games
by

Yukinobu Yajima (Yokohama)

Abstract. The topological game G(K, X) is in the sense of R. Telgdrsky. Let K and K' be
classes of spaces with K < K'. It is studied in this paper when Player I has a winning strategy in
G(K, X) if he has one in G(K', X). We will discuss three questions of this kind.

§ 1. Each space considered here means a topological space and no
separation axioms are assumed unless otherwise stated. Throughout this
paper, K denotes a class of spaces which are hereditary with respect to closed
subspaces. We need no other assumptions of K. When we consider such two
classes of spaces, they are denoted by K; and K.

The topological game G(K, X) is introduced and studied by R.
Telgarsky [4]. The detail is seen in it. For a class K, I(K) denotes the class
of all spaces X for which Player I has a winning strategy in G(K, X), and
the class I(I(K)) is abbreviated to I?(K). Moreover, DK, LK and SK denote
the classes of all spaces being discrete unions of spaces from K, locally K and
K-scattered, respectively.

The purpose of this paper is to study the following three questions:

(A) What kind of a space X, does Xel*(K) imply X eI(K) for?

(B) What kind of a space X, does Xel (SK) imply X el(DK) for?

(C) What kind of a space X, does Xel(K,)n1(K;) imply
Xel(K, nK,) for?

In §2, §3 and §4, the questions (A), (B) and (C) are answered,
respectively. Though the question (B) has been already studied by R.
Telgdrsky [6], we give here another result and the improvement of his ones.

Concerning the topological game G (K, X), we use the notations in [7]
rather than in [4]. Here, we do not restate them except the following. Let s
be a strategy of Player I in G(K, X). A finite sequence {Fo, Fy,.... F,»> of
closed sets in X is said to be an admissible choice of Player Il for s
in G(K, X) (ad. ch. for II (s, K, X)) if Fo, =X and the sequence
(E,. F\, ..., E,, Fp», such that E; = s(Fo, Fy, ..., F,_p) for 1 €i<n, is ad-
missible for G(K, X). If s is a winning strategy of Player Iin G(K, X), then
it should be noted that each infinite sequence {(Fq, Fy, ... of closed sets in
X, such that ¢Fq, Fy, ..., F,» is an ad. ch. for II(s, K, X) for each n> 1, has
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the empty intersection. Since K, = K, implies I(K,) < I(K;), note
I(K) = I*(K), 1(DK) < I(LK) < I(SK) and I(K; nK,) = I{K,) " I(K,). For
a class K, K denotes the class of the empty set ¢ and all finite closed unions
9f members of K (ie, Y={J{Y;: 1 <i<n}, where each ¥ is a closed set
in X with Y;eK). Then one can check I(K)=I(K) (cf. [4, Theorem 4.17.
Thus, when discussing a class I(K), we shall use I (K) without special mention.

Non-negative integers are denoted by n, m, i, j and k. We denote by N*
the set of the empty set @ and all finite sequences of positive integers. For
each e = {ny, ..., m>eN* let Te=n,+ ... +n and e_; = {ny, ..., (.
Moreover, for each n> 1, let e®n=(ny, ...,n,nd and nd_ =@. If e
= Q, then let Ze =0 and e@®n = (n) for each n> 1.

For a space X, 2* denotes the collection of all closed sets in X. Note
that X eK implies 2% < K. :

§2. The concept of P-spaces was introduced by K. Morita [3].
However, we use here a certain characterization of P-spaces by R. Telgarsky [5].

DerFivITION. A space X is said to be a P-space if there exists a function
p: U{2%™ n> 1} > 2¥ such that

(i) for each (Fy, ..., F,} € 2¥)"*! and n > 0,

P(Fo s F) () Fp i<n) =0,
(ii) for each (Fo, Fy,...)e(2%® with N{F,: n> 0} =0,

U{p(Fo, ..., F): 120} = X.
We call such a function p P-function.

.The following result is an answer to the question (A) in § 1. It is also a
partial answer to [4, Question 4.10]. ‘
THeOREM 2.1. Let X be a P-space. Then X eI*(K) iff X eI(K).

. Proof. Let p be a P-function of X. Assume XcI*(K). Let s be a
winning strz;tegy of Player I in G(I(K), X) and s; one in G(K, E) for each
Ecl(K)n2*. We use below the following notation; for each e
=y, ..., mOEN*, let A(e) =<, dy, ..., d,>, where d; =<ny, ..., n> for
1<i<k, and 4(Q) = (D). T

Now, assume that we have already constructed an admissi
8 . issible sequence
<E1,.F1, s Ewy Fup in G(K, X) such that E;,, =t(F,, F,, ..., 1(71,) for
0<i<m—1, where Fy = X, and such that there exist two collections
{E(e): eeN* with Ze<m} and {F(e): ec N* with Se < m}
of closed sets in X, satisfying the followin iti
s g conditions (1)~(4):
(1) For each eeN* with Ze<m, (F(d): ded(e)> i
5 : is an ad. ch.
II(s, I(K), X) such that E(e) = s((F (d): ded(e))) © ad. oh for
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(2) For each eeN* and n> 0 with Ze+n< m,
F(e,n)=(E(@NFs4: 0Si<n)

is an ad. ch. for II (se» K, E(e)), where s, denotes sg,.
(3) For 1<k<m,

E, =U{5.(F e, n): eeN* and n> 0 with Ze+n =k=-1}.
(4) For each eeN* with Te<m,
F(e)=F(e_) N Fy np(Fle-y, no)),

For each ee N* and n = 0 with Ze+n = m, it follows from the assump-
tion (2) that Player I can choose s,(# (e, m) in G(K, E(¢)). So, we can
define t(Fq, ..., F,) = E,+; €K according to the condition (3). Next, Player
II chooses an arbitrary closed set F,,; in X such that F,., = F, and
Epet M Fpey =@. Pick any ee N* with Ze=m+1. Let e =e_, @ n,. Put

Fle_y,n)=<E(e-)nF;: Ze_; <i<m+1)}.

It is a finite decreasing sequence of closed sets in X. We can define F(e) as
the condition (4). Moreover, by the definition of p and this condition, we
have

where e=e_; ®n,.

E(e-)NnF(e)=E(e-1)NFps1 ’“P(g(e-h "e)) =0.

Hence it follows from the inductive assumption (1) and from E(e-,)n F(e)
= @ that (F(d): ded(e)) is an ad. ch. for I (s, I(K), X). The condition (1)
is satisfied. Put E(e) = s(¢F(d): ded(e))). By E(¢) = F(e) = Fy,, we have
Fle, 0) = (E(e)). Pick any e N* and n>1 with Ze+n=m-+1. In order
to show that & (e, n) is an ad. ch. for II(s,, K, E(e)), it suffices to verify from
the inductive assumption (2) that s,(Z (e, n—1)) and E(e)nF,,, are dis-
joint. This is checked by the condition (3) and by Epiy N Fpey = @. Hence
the condition (2) is satisfied. By induction, we can construct the above for
each m> 1.

An infinite sequence (E,, Fy, E,, F,,...> of closed sets in X, which is
obtained above, is a play in G(K, X). In order to show that ¢ is a winning
strategy of Player I in G(K, X), it suffices to show from the choice of each
F,, that {F,: m > 1} has the empty intersection. Assume xo €[} {Fn: m > 1}.
Moreover, assume xo & F(e). By (2), for each m > Ze, F (e, m—Ze) is an ad.
ch. for TI(s., K, E(e)). Tt follows from the definition of s, that
(E(e) N Fg4y: k> 1) is a decreasing sequence with the empty intersection.
Hence {p(Z (e, k)): k =1} is a cover of X. Choose some ko =1 such that
xo€p(F (e, ko). By (4), we have xo€F (e, ko). Note xo€F (D) =X. We can
inductively choose an infinite sequence o = {ny, nz, ...» of natural numbers
such that x, € {F(0): k > 1}, where o, = <ny, ..., > for each k > 1. On
the other hand, it follows from (1) that (F(®), F(cy); .., F (6)> is an ad. ch.

3 Fundamenta Mathematicae 121
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for 1L{s, I(K), X) for each k > 1. By the definition of s, we have () {F(g,): k
> 1) = @. This contradicts to the above. So we have shown X eI (K). The
converse is obvious. The proof is complete.

Remark. Without any assumptions of X, Theorem 2.1 is not true.
Indeed, assuming CH there exists a regular Lindeldf space which is in I2(l)
but not in I(l), where I denotes the class of all one-point spaces. Such a
space is seen in [7, Example 5.11, which was pointed out by R. Telgarsky.

§ 3. Concerning the question (B) in § 1, R. Telgarsky [6] has proved the
following results:

(a) For a paracompact space X, X I(SK) iff Xel (LK), where K is a
class of spaces which are invariant with respect to finite closed unions.

(b) For a paracompact space X, X eI(SC) iff XeI(DC), where C is the
class of all compact spaces.

In this seétion, we consider this question for the generalizations of
paracompact spaces; submetacompact (= f-refinable) spaces and subpara-
compact spaces.

Lemma 3.1. D(I(DK)) = I(DK).

LemMa 3.2. Let X be a regular submetacompact space. If X is locally K,
then X e I(DK).

Lemma 3.1 is easily checked. The proof of Lemma 3.2 is quite standard
and the content of it is a special case of Theorem 3.3 below. So, their proofs
are omitted.

LemMMA 33. Let X be a regular submetacompact P-space. If X is K-
scattered, then X eI(DK).

Proof Let a be the least ordinal such that X® = ¢. We prove by
transfinite induction over o. Case 1: « = $+1. Then X% is locally K and
XWe2X. By Lemma 3.2, X®eI(DK). It follows from the inductive assump-
tion that each closed set F in X disjoint from X® is in I(DK). Hence X
is in I?(DK). By Theorem 2.1, we have X ecI(DK). Case 2: o is a limit
ordinal. Since {X\X®: y <a} is an open cover of X, it follows from the
inductive assumption and the regularity of X that X is locally I(DK). By
Lemmas 3.1 and 32, we have Xel(D(I(DK))=I*(DK). Hence, by
Theorem 2.1 X eI(DK). The proof is complete.

From Theorem 2.1 and Lemma 3.3, we get

TueoreMm 3.1. Let X be a regular submetacompact P-space. Then
X el(SK) iff XelI(DK).

The game G* (K, X) has been introduced in [6] to prove the above (a).
We consider another game which is a modification of it. Let G4 (K, X) be
the game which is obtained by replacing “locally finite” in the definition of
G*(K, X) with “g-discrete”. That is, it is as follows: Player I chooses a
closed cover {X(f): teT} of X such that {X(f): te T} is discrete in X for
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each k > 1, where T= | {T;: k= 1} and T,n T, = O if k # k'. Next, Player
11 chooses a t, in T. After that, Player I chooses a closed subset Y(t;) of
X (r,) with Y(r;)eK. Next, Player II chooses a closed subset Z(t;) of X (r;)
disjoint from Y(r,). Again, Player I chooses a closed cover {X(f;, 1): r€T)
of Z(r,) such that {X(t,, 1): teT,} is discrete in it for each k > 1. Hereafter,
repeat the above. Player I wins the play if {X(ty,...,t,): n =1} has the
empty intersection and otherwise Player II wins.

LemMA 34. Ler X be a subparacompact space. If X eI1(SK), then Player
I has a winning strategy in G4 (K, X).

The proof is quite parallel to that of [6, Proposition 2.2]. The detail of
it is left to the reader.

LeEmMMA 3.5. If Player 1 has ‘a winning strategy in G4 (K, X), then
X eI(DK).

Proof. Let sy be a winning strategy of Player I in G4 (K, X). For each
e={ny,....,nmyeN* let T(e)=T, x ... xT,.

Now, assume that we have already constructed an admissible sequence
(E, Fy, ..., Ey, F> in G(DK, X) such that E;4; =s(Fo, Fy,...., F) for
0<i<m—1, where Fy = X, and such that there exist two collections

(X, 0: (w,)eT(@xT} and {Y(u, t): (u, )eT(xT}

of closed sets in X for each eeN* with Ze<<m—1 and a collection
{Z(u): ueT(e)} of closed sets in X for each ee N* with Ze < m, satisfying
the following conditions (1)}~3): ' ‘

(1) For each ee N* with Ze<m—1,u=(ty, ..., t,)eT(e) and 1,4, €T,

(X(ty,...t): 1<i<k+1} and {Y(t, ..., 1) 1 <i<k+1}

are the choices of Player I, according to sy, in G4 (K, X).

(2) For each eeN* with Xe<m and wu=(t, ..., {)eT(e),
{Z(1), .oy 1) 1 <<k} is the choice of Player IT in G4 (K, X).

(3) For each ee N* with e <m and ueT(e), Z(u) = X (u) " Fy,.

For each ec N* with Ze = m and ue T{e), it follows from the inductive
assumptions that Player 1 can choose {X (u, 1): te T} and {Y(u, 1): teT} in
G4 (K, X), according to ss. Here, we can put

Epi1=58Fg, ..., F) = U {YW) A F,: ueT(d) and Zd = m+1}.

Then E,,, € DK. Next, Player IT chooses an arbitrary closed set F,,.; in X
such that F,,, = F,, and E,.., N F,., = @. Moreover, for each d e N* with
5d =m-+1 and ue T(d) we define Z (u) as the condition (3) is satisfied. Then
it is easily verified that Y(u) and Z(u) are disjoint. Hence the condition (2) is
satisfied. By induction, we can construct the above for each m > 1.

In order to show that s is a winning strategy of Player I in G(DK, X), it
suffices to show () {F,: m>1} = @. Assume xo&() {F,: m> 1}. It is seen
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by (3) that we can inductively choose an infinite sequence <ny, ny, ...»
of natural numbers and some (t;, 1y, ...)€T, x Ty x ... such that
xo€X(fy,...,t;) for each i=1. On the other hand, we have
N{X(ty, ..., ): i1} = @ by the definition of s4. This is a contradiction.
The proof is complete.

_ As an immediate consequence of Lemmas 3.4 and 3.5, we have the
following result which is an improvement of [6, Theorem 2.5]. However, the
ideas of its proof have been greatly dependent on R. Telgdrsky’s ones.

TueoreM 3.2. Let X be a subparacompact space. Then X el (SK) iff
X eI(DK).

Remark. According to Theorems 3.1 and 3.2, all I(DC, X) in [7,
Theorem 2.1, 3.1 and 4.1] can be replaced by I(SC, X).

Moreover, we consider the following analogous question to (B):

(B") What kind of a space X, does X el(LK) imply XeI(DK) for?

LemMa 3.6. Let X be a regular submetacompact space. If E is a locally K,
closed set in X, then there exist two sequences {U,: n2 1} and {D,: n = 1} of
subsets of X, satisfying the following conditions:

(i) each U, is open in X and contains E,

(ii) each D, is closed in U,,

i) N{UND,: n21} =0,

(iv) D, nEe2* n DK, and D,~E~ He2* n DK whenever n> 2 and H
is a closed set in X disjoint from D, NE.

Proof. By the assumptions of X and E, there exists a sequence {#",: n
> 1} of open covers of X such that for each n > 1 and We#",, WnEisin K
and for each xeX we can take some n > 1 so that #°, is point-finite at x.
Let ¥, = {Ve#,: VNE # @} and V,={J{V: Ve?",} for each n > 1. Here,
we put U, = N {V;: i< n} for each n> 1. For each i, j> 1, let

F={xe¥: x is in at most j members of ¥7;}.

Then each Fy; is closed in V. We arrange the sets Fy; in the following order:

Fl!.a F21: FlZa F311 F22’ F13aF411 F322 v

We represent this sequence by (F,: n>1). For each n>1, we put D,
= {F;: i<n}~U, Then it is a routine to check that these sequences
{U,: n=1} and {D,: n> 1} satisfy the conditions (i}(iv).

TueoreM 3.3. Let X be a regular submetacompact spdce. Then X eI (LK)
iff Xel(DK).

Proof. Assume X el(LK). Let s be a winning strategy of Player I in
G(LK, X). For each esN*, A(e) is defined as in the proof of Theorem 2.1.

Now, assume that we have already constructed an admissible sequence
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(E{, Fy, ..., En, F,,> in G(DK, X) such that E;, = t(Fo, Fy, ..., Fy) for
0<i<m—1, where F, =X, and such that there exist four collections

{E(e): eeN* with Ze<m}, {F(e): eeN* with Je< m},

{Ue®n): eeN* with Te<m and n > 1}
and
{D(e®n): eeN* with Ze<m and n>1}

of subsets of X, satisfying the follawing conditions; for each ee N* with
Je<mand n>1,

(1) F(d): ded(e)y is an ad. ch. for Ii(s, LK, X) such that E(e)
= s(CF(d): ded(e)),

(2) U(e®n) is open in X and contains E(e),

(3) D(e®n) is closed in U(e@®n),

@ N{UEe@n\D(e@n): n=1}=0, )

(5) E(e nD(e® 1)e2*n DK, and E(e)nD(e ®n) n He2* n DK when-
ever n>2 and H is a closed set in X disjoint from E@nD(e®n—1),

(6) F(e) = Fz, nF(e_y) n(U@\D(e),

(N E, =U{E(e-)nD(@NFyy: Ze= k} for each k < m.

First, we can define t(Fg, ..., Fm) = Ens1 according to the condition (7).
Then it is easily seen by the assumptions (2), (3), (5) and (7) that E,; is in
9% ~ DK. Next, Player II chooses an arbitrary closed set Fon+y in X such
that F,,, < F, and E,y; NFpyy =@, Pick any eeN* with Ze =m+1.
We can define F(e) as the condition (6) is satisfied. Then F(e) is a closed set
in X such that F(e) c F(e—,). Moreover, it is verified from the assumptions
(2) and (7) that F(e) and E(e-,) are disjoint. Hence it follows from the
inductive assumption that (F(d): de4(e)) is an ad. ch. for TI(s, LK, X). The
condition (1) is satisfied. Player I can choose E(e) = s(¢F(d): ded(e))eLK.
For the E(e), it follows from Lemma 3.6 that there exist two sequences
{Ue®n): n=1} and {D(e@n): n> 1} of subsets of X, satisfying the
conditions (2(5). By induction, we can construct the above for each m > 1.

In order to show that r is a winning strategy of Player 1in G(DK, X), it
suffices to show () {Fp: m> 1} = @. Assume xo& () {Fp: m > 1}. Moreover,
assume xoeF(¢). By (4), we can take some ng>1 such that
xo¢ U (e ® no)\D(e @ no). By (6), we have xo€F (e @ ng). We can inductively
choose an infinite sequence o = {ny, ny, ...» of natural numbers such that
xo€N{F (o k = 1}, where o = {ny, ..., my for each k = 1. On the other
hand, we obtain N {F(ay): k =1} =@ from (1). This is a contradiction.
Hence X is in I(DK). The converse is obvious. The proof is complete.

In connection with Theorems 3.1, 3.2 and 3.3, we raise the following natural
question which remains open.
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QuEsTioN. Let X be a regular submetacompact space, Does X
imply X el(DK)? ’ =G0
In the epd of this section, we shall notice that the hereditary para-
compactness in [4, Theorems 11.1-11.4] can be generalized to the hereditary
subparacompactness. These proofs are quite parallel to the original ones.

§ 4. The concept of subnormality was first introduced by T. R. Kramer
[2]. Here, we use a certain characterization of it given by J. Chaber [1].

DerFINITION. A space X is said to be subnormal if for each disjoint closed

;f:ts g, B in X there exist disjoint Gy-sets C, D in X such that 4 = C and
e D.

Note that normal spaces, (countably) sub
» (cou paracompact spaces and perfect
spaces a‘re subnorp]al. Moreover, it is easily verified that the Tychonoffpplank
@ X \{(wy, @)} is a subnormal space which is neither normal, subpara-
compact nor perfect. Now, we give two answers to the question (C) in § 1
THeoreM 4.1. Let X be a subnormal i
Xellh npy, al space. Then Xel(K\)nI(K,) iff
Proof('). Assume XeI(K,)nI(K inni
' : 1 2). Let s; and s, be winning strate-
gxizf; of Player I *m G(K,, X) and G(K,, X), respectively. For each
e —r.<n,, -+ M) ENY, we use below the following notations; let {i i}
={i<k: nis odd} and {j,,....j}={<k: n i . ¥ psoum
- _ 1] Uts o i U < k: ny is even}, where assume
Al .:<®zq and j; < ... <j,. Here we put 4,(e) = <, dyjs oo, di > and
nzt(e()i ?h< vy, s dy), Where di= (g, ) for 1 <i<k. It should be
oted that 4, (e) = (@) or 4,(e) = {@> may be occured even if e % ¢, Of
course, 4 (Q) = 4,(Q) = LD>.
. I;Irow, assume that. we have already constructed an admissible sequence
f(orl,l <1,n<, E,., F},,l,) mFG(K1 N Ky, X) such that E, =s(F,, Fy, ..., F,_y)
sn<m, where F, =X, and such that there exist " collectic
{F(e): ee N* with Ze_; < m—1} of closed sets in X, e the ol
conditions (1)~(3):

(1) For each ec N* wi _ . .
for 11 (s,, K, X). eeN* with Ze-, <m—1, (F(d): ded, (o)) is an ad. ch.

(2) For each eeN* wi _ . .
for (e, Ky, 1. eeN* with Ze_; <m—1, (F(d): ded,(e)) is an ad. ch.

(3) For each eeN* wi - i i
Feamn sl e with Ze<m—1, F(e)nFy,,q is the union of
Pick any eeN* with Je=m, B i
. : ‘ =m. By Ze_, <m-—1, it foll
inductive assumptions that Player I in G(K:, 3() and G(K(; g(v;lscafxrloﬁlotohsi

Afe) =5, (C(F(d): ded,(e)d) and B(e) = 5,(CF(d): ded,(e)))

() The author thanks T. Terada for his suggestion which was ve

original proof of Theorem 4.1. Ty useful to simplify the

, satisfying the following -
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respectively. Here, running such e, we set
Epiy =5(Fo, F1, ooy F) =U{A(e)n Ble): eeN* with e =m} NF,.

Then Epyq €K, nK, and E,,; = F,,. Next, Player 1I chooses an arbitrary

closed set F,., in X such that F.y © Fp and Epiy OFpey = ®. Again,

pick any eeN* with Ze=m. Since A(e) N F(€) N Fp4y and B(e)nF(e)

AF, ., are disjoint closed sets in F(e) N Fp11 which is subnormal, there

exists a countable collection {F(e @ n): n > 1} of closed sets in X such that
() UiF(e@n): nis odd} nA(e) = 0,

(i) U{Fe®n): n is even} " B(e) = 0,

(i) U{Fe®n): n=1} =F(@NFpur1

Here, we have constructed Eniy, Fper and {F(e)}: esN* with Xe_,
=m}. It is easily verified from the inductive assumptions and the above (i
(iii) that the conditions (1)~3) are satisfied. By induction, we can obtain the
above for each m > 1.

In order to show that s is a winning strategy of Player I in
G(K, nK;, X), it suffices to show N {Fp: m>1} =@. Assume
%0 €V {Fpm: m21}. Note x,eF(Q)) = X. By (3), we can inductively choose an
infinite  sequence o = {ny, Ny, ... of natural numbers such that
xo€F (ny, ..., ) for each k > 1. Let

N, ={k>1: n is odd} and N, = {k>1: n, is even}.

Then N, or N, is infinite. Assume N, = {ky, k, ...} and k, {kl < ... Let
o =<ny, ..., m» for each iz 1. Since 4,(¢") = (@, o', ..., 6%, it follows
from (1) that (F(O), F(aY), ..., (o) is an ad. ch. for 11 (s;, Ky, X) for each
i> 1. By the definition of s;, we have N{F(6"): i=1}=0. On the other
hand, xoe(){F(o"): i>1}. This is 2 contradiction. In case of N, being
infinite, the similar argument also yields a contradiction from (2). Hence we
have shown X eI (K, n K;). The converse is obvious. The proof is complete.

TueoreM 4.2. Let X be a P-space. Then Xel(K)nI(Ky) iff
Xel(K,nK,).

Proof Assume X eI (K;)nI(Ky). Let s bea winning strategy of Player
1 in G(K;, X). Since 2¥ = I(K,), s is also a winning strategy of Player [ %n
G(K; n1(Ky), X). Note K nI(K,y) = I(K1. ~K,). Hence s is one in
G(I(Ky nKy), X). We have Xel?(K, nK;). By Theorem 21, X is in
(K, nK3).
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Fixed point index for open sets in euclidean spaces*
by

G.S. Skordev (Sofia)

Abstract. Using chain approximations of multi-valued mappings a fixed point index for a
large class of such mappings of open sets in euclidean spaces is constructed. This fixed point
index satisfies all usual properties of fixed point index for single valued maps including
commutativity and mod-p property.

Introduction. The aim of the present note is to give an unified approach
to fixed point theory for single-valued as well as for certain classes of multi-
valued mappings on locally compact polyhedra and in particular on open
sets in euclidean spaces. A fixed point index with all usual properties
(additivity, homotopy invariance, normalization, commutativity and mod-p
property) is constructed. In particular for single-valued maps on open sets in
euclidean spaces we obtain the classical theory [5, 9. The main idea is to
use certain chain approximations of a given map and to localize the
Lefschetz number of these chain approximations. In the global Lefschetz
fixed point theory of multi-valued maps the chain approximations are used
in [2, 8, 23, 28-32]. In the case of single-valued maps the fixed point index is
defined as local Lefschetz number of chain approximation in [4, 10, 18, 22].
In the case of multi-valued maps on compact polyhedra these two appro-
aches were used in [27] to define a fixed point index with all properties. For
a review of results, applications and problems of the fixed point index theory
see [12, 13, 15, 25].
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able remarks and suggestions, Prof. L. Gorniewicz and Dr. H. W. Siegberg for
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§ 0. Notations. We consider maps #: X — Y for which the sets @ (x) are
not empty and compact for every xeX. The map & is called upper-semi-
continuous (us.c) if for every open set U in Y the set

$~1(U) = {xeX: ®(x) = U}
is open, [16], ch. 4, p. 32.

* This paper was written while the author was a research fellow sponsored by the
Alexander von Humboldt foundation at the University of Bremen.
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