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On Borel-measurable collections
of countable-dimensional sets

by

Roman Pol (Warszawa)

Abstract. Let B be a Borel set in the product S x T of compact metrizable spaces, whose
vertical sections B(s) are countable-dimensional (i.e. unions of countably many zero-dimensional
sets) Gy-sets in T It is an open guestion whether the small transfinite dimension ind of the
vertical sections of B is bounded, ie. if sup {indB(s): seS) < w,. We show that a certain
additional assumption about B (an existence of a Borel-measurable, poini-finite, sectionwise
separation for B, see Definition 3.2) guarantees that this is true.

§ 1. Preliminaries. In this paper we consider only separable metrizable
spaces and “compactum” means “compact space”. Our terminology concern-
ing analytic sets follows [K] and the terminology related to dimension
theory follows [A-P], [El] and [Na].

1.1. Terminology and notation. A closed set L in a space X separates two
disjoint sets 4 and B in X if X\L = UUV, U and Vbeing disjoint open sets with
A < U and B < V. We denote by w the set of natural numbers, I is the real unit
interval and Fin o is the set of all non-empty finite subsets of w. We identify the
power set 2" with the Cantor cube {0, 1}7"¢, i.e. we identify each subset of
Fin @ with its characteristic function and we consider the characteristic
functions with pointwise topology. The symbol |A| stands for the cardinality of
the set A. A sequence {4;: i€w) of subsets of X is point-finite if for each xe X
the set {iew: x4} is finite (thus we exclude the possibility that one set ocours
in the sequence infinitely many times). Given a set E in the product § x T we
denote by E (s) the vertical section {te T (s, t)e E} of the set E at the point s€S.

1.2. Countable-dimensional sets and the small transfinite dimension. A
space X is countable-dimensional if X = \J X;, X, being zero-dimensional.
=1

i

The small transfinite dimension ind is the ordinal-valued function ob-
tained through the extension of the classical Menger—Urysohn inductive
dimension by transfinite induction. If the transfinite dimension is not defined
for X, we write ind X = oo; since our spaces have always a countable base, if
ind X # oo, then ind X < wy.
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By a theorem of Hurewicz, for a completely metrizable space X,
ind X # oo if and only if X is countable-dimensional. We refer the reader for
the information about the topic to [A~P; Ch. 10], [Na; Ch. VI], [E2] and [E~-
EP].

1.3. Nacata's TueorEM. 4 subspace E of a compactum T is countable-
dimensional if and only if there exists a point-finite sequence {L;: icw) of
closed subsets of the space E separating in E the pairs of sets with disjoint
closures in T (i.e. for each pair of sets A, B in E whose closures in T are
disjoint there exists an i such that L; separates the sets A and B in E).

More precisely, this is a particular case of Nagata’s Theorem [Na;
Theorem VI.2] stated in the form convenient for our purposes.

1.4. Brouwer-Kleene order. We shall consider in the set Finw of all non-
empty finite subsets of w the order < inverse to the lexicographic order, i.e.
o<1t means that there exists an new such that on{l,...,n-1}
=10{l, ..., n—1} and neo\r. .

It is a well-known property of the order < that (see [K-M 1; Ch.X, § 7,
Corollary 4]): given a decreasing sequence oy > o, > ... of elements of Finw,
there exists an increasing sequence j (1) <j(2) < ... of natural numbers such

that for every k there is an n with {j(1),...,j(k)} = 0o,.
Let us put:
1) - WO(Finw) =,{I' = Finw: I' is well-ordered by <}.

The property of order < stated above can be reformulated easily in the
following way.. I'e WO (Finw) iff for each infinite © < w there exists a finite
vy =1 such that no element of I' contains v.

For each I'e2™* we put

the order type of I, if 'e WO (Finw),

2 type I’ =
@ pe {oo, if I'¢ WO (Finw),

and let us agree that o <-co for each ordinal o

15, Lusivs Covering TrEorem [K; § 39, VIII]. If A is ar analytic set in
- 2" and A= WO(Finw), then sup {type I': I'e A} < ;.

§ 2. The problem. The results of this paper are related to the following
open problem:’

2.1. Prosiem. If B is a Borel set in the product 8'x T of compact spaces
and, each vertical section B(s) of B is a countable-dimensional Gy-set in T, is it
true that sup {ind B(s): s S} < w,?

We shall prove in Section 6 that this problem can be also stated
equivalently as follows:

22. PrOBLEM. If is an upper-semicontinuous decomposition of a com-
pactum T into countable-dimensional compacta, is it true that there exists a

e ©

icm
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countable-dimensional compactum K which contains topologically each member
of the collection A

We conjecture that the answer to this question is negative (in [P3; § 2]
we indicated some difficulties in searching for a counterexample; some other
comments about the problem are given in [P2; § 1, sec. 6]).

§ 3. The result. Our main result concerns a certain class of sets in the
product S x T of compact spaces which we describe below.

3.1. DerFinimioN. Let B be a set in the product S x T of compact spaces
such that each vertical section B(s) of B is countable-dimensional. Then, by
Nagata’s Theorem 1.3, for each seS, there exists. a point-finite sequence
(Li(s): iew) of closed subsets of the space B(s) separating in B(s) the pairs
of sets with disjoint closures in T We shall say that the set B admits a Borel-
measurable, point-finite, sectionwise separation if the sequences (L;(s): iew)
can be chosen in a Borel-measurable way, i.e. for each ieow, if U = Tis open
then the set {seS: L/ (s)nU # Q} is Borel, cf. [K-M 2, p. 405].

3.2. TueoreM. Let B be a Borel set in the product S x Tof compact spaces
such that each vertical section B(s) of B is a countable-dimensional Gy-set in T.
If, moreover, the set B admits a Borel-measurable, pointfinite, sectionwise
separation (see Definition 3.1), then sup {ind B(s): s€S} < o,.

The' proof of this result, given in Section 5, is based upon Lusin’s
Govering Theorem 1.5: we shall assign to éach s€S a set I'(s)e WO (Finw)
such that ind B(s) < type I'(s) (see sec. 1.4) and the set {€: @ < I'(s) for
some seS} = WO(Finw) is analytic. To carry out this task we use a
topological invariant, “the transfinite order of a space”, which we consider in
section 4. '

3.3. Remark. Let B be a Borel set in the product S x T of compact
spaces whose vertical sections B(s) are countable-dimensional G-sets in T.

() I do not know, whether the set B admits a Borel-measurable point-
finite, sectionwise separation (say, under the additional assumption that
sup {ind B(s): se€S} < w,).

(b) If the set B is countable-dimensional, then it satisfies the assump-
tions of Theorem 3.2 by Nagata’s Theorem 1.3. However, the assumptions
of Theorem 3.2 do not imply that B is countable-dimensional, even if B is
compact and the correspondences s— L;(s) in Definition 3.1 are upper-
semicontinuous, see Section 7.

(¢c) If we assume that the vertical sections of the set B are compact then
the assertion of Theorem 3.2 holds true under a weaker assumption that the
collections {L;(s): iew) defined in sec. 3.1 separate only points from
closed sets in B(s). The proof of this statement is similar to the proof given
in Section 5 (with some essential simplifications possible in this case), see
[P3; Remark 1.3]. I do not know, whether this weaker assumption is also
sufficient in the general case.
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§4. The transfinite order of a space. We shall define in this section a
topological invariant which will be used in the proof of Theorem 3.2 in § 5
(cf. also sec. 7.2 for some comments about this invariant),

4.1. The transfinite order of a sequence of sets. Given a sequence

{4;: iew) of subsets of a set X, let us define (see sec. 14, (2)):

o) Ord{4;: iew) =type{seFinw: () 4; # O}.

It follows, by the properties of Brouwer—Kleene order stated in sec. 1.4, that
Ord {4;: iew) # oo if and only if no infinite subsequence {4 i Jjew) has the
finite intersection property (cf. the notion of a strongly point-finite family of sets
considered by R. Engelking and the author in [E-~RP]J).

4.2. DeFiviioN. Given a separable metrizable space X we define the
transfinite order of the space X by the formula (see (1)):

(2) ord X = min {Ord (FrB;: iew): {B;: icw) is an open base in X},
where FrE is the boundary of the set E.

The remark in Section 4.1 and a result proved in [E-RP; Theorem 2]
show that, for an arbitrary space X, the conditions ind X 5% oo and
ord X # oo are equivalent. Moreover, we have the following fact (cf. also sec.
7.2): ‘

43. Lemma. For any space X, ind X < ord X.

Proof. We proceed. by transfinite induction. If ord X = 0 then there
exists a base (B;: iew) in X such that Ord <FrB;: iew) =0, so each Fr B,
is empty and ind X = 0. Assume that a > 0 is a countable ordinal and, for
each space Y,

3) indY<ordY, whenever ord Y<a,
and let X be a space such that
“@ ord X =q.

Let us consider a;p open base (B;: iew) in X such that
) Ord(FrB;: iew) =a.

We claim that for each mew

6) : indFrB,, <.

Since this is true when Fr B,,, is a discrete space, let us assume that the set ¥
of non-isolated points of the space Fr B,, is non-empty. Thus

7 : Y<FrB, and ' ind Y=ind Fr B,,

° ©
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and let

(8) G, =YNB,,;, ico.
Then {(G;: icw) is an open base in the space Y and
9 FryG; = Fr B,

Fry being the boundary operator in the space Y. For each seFinw we put
‘ o* = {mlu{m+i: ieqs}.

The correspondence ¢ —o* preserves the order < and, by (9) and
(M i (VFryG;# @, then FrB,nNFrB,.  O. Thus, if we set

leo ieo
I'={oeFinw: NFryG # @} and A= {seFinw: NFrB # 0}, we see
‘ lea i

that {o*: ¢el'} = A, Moreover, {m}eA and o* < {m) for each ceT, so
type I'+1 S type A. Now (see (1) and (2)), ord Y < type I' and type 4 =a,
by (5), so ord Y<u, hence by the inductive assumption (3) and by (7) we
obtain ind Fr B,, = ind Y< ord Y < a, just proving (6).

By (6) we have indX <« which completes the induction.

§ 5. Proof of Theorem 3.2. Let B — § x T satisfy the assumptions of
Theorem 3.2 and let {L;(s): iew) be sequences such as in Definition 3.1. By
a theorem of Saint-Raymond [S), B being a Borel set with G, vertical
sections. there exist Borel sets C;, c C, < ...in Sx T sucsh that each vertical
section C;(s) is compact (iew, s€8) and (SxT)\B= |J C,.

i=1

(I) Let, for each oeFinw, L,(s) = () Li(s), the closure being taken in T,
and for each seS, I'(s) = {ceFinw: Ilj:(s) # O and L(s)nCy,(s) =@ for
each © < o}. Then, for each se8, I'(s) = WO (Finw) (see sec. 1.4.).

Proof. Suppose on the contrary that for some seS there exists a
descending sequence oy >0, > ...of members of I'(s). Let j(1) <j(2)
< ...be an increasing sequence of mnatural numbers such that <,
={(1), ... J(p)} oy, for p=1,2, ... (see sec. 1.4). Then, for each p

L,n(s) # @ and L‘ﬂ(s)mC,,(s) = Q.
Now, L, (8) = Le,(8) > ..., (VLy(s) = B(s), and L, ()nB(s) = N{Lyy(s):
i € p}, so the compactness of T yields that (\{L;y(s): iew} # @, contrary
to the assumption that the sequence {L;(s): iew) was point-finite. -
(I1) Let I'(s) be as in (1). Then (see sec. 1.4 and 4.2): ind B(s) < type I'(s),

Jor each seS. . ’ .
Proof. Fix a point s€S, Let By, B,, ... be a collection of open sets in the
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space T such that

1) BNCi(s) = O, icw,

) {B,nB(s): iew} is a base in the space B(s).

Let V(i, j) be open sets in T such that

® Vi, k) < Vi, k+1) < Vi, k+1) = B, UV, k=B,
and let '

Ay =V, WOB(), By = BO\VG, k+1).

For each pair of indices (i, k) choose a set Ly from the collection
L,,L,, ... such that Ly,(s) separates in the space B(s) the sets 4, and B,
(note that A, and By have disjoint closures in T). By (3),

)] Ly()nLy(s) =@ for k=l

Let us choose a minimal set o’ < w with the property that for each pair (i, k)
there exists exactly one jew’ such that L, (s) = L;(s). Now, the sets L, were
chosen in such a way that the sets L;(s), jew', separate in B(s) the points
from closed sets, and therefore there is an open base {G;: jew’) in B(s) such
that Fr G; < L;(s) for jew'. Therefore (see sec. 4.2, 4.1 and Lemma 4.3)

ind B(s) < ord B(s) < Ord <L;(s): jew"),
and hence it is enough to show that (see sec. 4.1 and 14 (2)
) {oeFinw: ¢ co and N Li(s) # O} < I'(s).
Jea

Let 0 = ' be finite and let

©®  NL©#0.
- Jjea
For each jeo let (i, k) be such that Ly(s) = Liy, (). Thus L;(s)nC,(s) = ©
(see (1) and (3)) and since the numbers i; are dlstmct by (4), max {i;: jeo}
|a[ and therefore L,(s) = ﬂL,(s) cB(s)\CM (5). We have checked this
way that (6) lmphes L (s)mCM )= (D and thus (5 ) holds (cf. (1)) which
completes the prodf of (.
(1Y) The set. /1 {0g2M¢: @ = F(s) Jor some seS)} is analytic, I'(s)
being as in (I)

Proof b::t us observe that (cf. (I))
~L,, = {6, 1); te ﬂ Li(s)} is Borel,  oeFinw.

Indeed, each set Ly, is Borel (as, for an arbitrary open countable base ¥" in
T Ly =Sx T\ U (se$: L(s)nV= O} xV)and L, = ﬂ Ly,.
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Now, L, and L,nC|, are Borel sets whose vertical sections are compact,
and therefore, by Kunugui-Novikov Theorem [K~M 2; p. 471] the following
sets are Borel:
A, = [s€8: L,(s) # O} = projs L,
E, = {seS: Ly(s)nCy(s) = O} = S\prOJs(L nCa),
8, =A, "N {E;: 1 <0},

and so are the sets

2,=10: 0¢ O} xSU{O: 0@} xS, < 2™ x§,
It remains to observe that the set A is the projection onto 2® of the
intersection N{Z,: ceFinw}. ‘

(IV) We are ready now to complete the proof. Let us consider the
analytic set A defined in (IIN). By (I, A < WO(Finw) and hence Lusin’s
Covering Theorem 1.5 and (II) yield:

sup {ind B(s): s&S} < sup{typeI'(s): seS} =sup {type@: @A} <w,.

§ 6. Proof that Problems 2.1 and 2.2 are equivalent.

(I) Let " be an upper-semicontinuous decomposition of a compactum
T into countable-dimensional compacta. The collection A is an analytic set
in the hyperspace 27 (i.e. in the space of compact subsets of Tendowed with
the Hausdorff metric), and hence there exists a continuous map &: P — A" of
the irrationals P < [0, 1] =8 onto . Let B = {(s, ): te®(s)}. Then B is a
Gyset in the product S x Tand {B(s): seS}e o . Therefore, if the solution of
Problem 2.1 is positive, then so is the solution of Problem 2.2.

(II) Suppose that the solution of Problem 2.1 is negative, and let B be a
Borel set in the product S x T of compact spaces whose vertical sections are
countable-dimensional Gs-sets and sup {ind B(s): seS} = w,.

Since the complement S x T\B is a Borel set with g-compact. sections, a
theorem of Saint-Raymond [S] yields an existence of Borel sets with o-
comipact sections B; such that §x T\B =B, uUB,u ... Next, by Kunugui-
Novikov Theorem [K~M 2; p. 471], each map s— B,(s) from § to the
hyperspace 27 of the compactum T (cf. (I)) is Borcl—measurable, and therefore
the set

of = {{s, By (5), B;(s), LD seS e Sx2T %2 x

is analytic. Thus there exists a continuous mapping &: P— o of the
irrationals P < [0, 1]=1I onto &/, where

u) = f (), (W), @), ..>ed.
Let us consider the following sets in the product ’Lz IXSxT
H = {<u, f ), 1): ueP, te T}
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and .
Li = {(u,f(u), t>: UEP, IE,I:'(u) = B,(f(u))}

These sets are closed in the space PxSx T, as the functions f and 7, are
continuous. Let us put

E =H\(LyuL,u ..)).
Then E is a Gyset in Land, since E(u, () = T\ B;(f®) = B(f w), one
gets also ‘ =1
M sup {indE(w): ueP}=ow;,.

By a theorem of Kuratowski [K2; Théoréme 2], E being a G,-set in L, there
exists a continuous mapping g: L — M onto a compactum M such that the
restriction g|E: E —g(E) is a homeomorphism and g(L\E) = M\g(E) is a
union of countably many polytopes (and hence — countable-dimensional).
Let p: IxSxT—1I be the projection and let h =(p, g): L—IxM be the
diagonal mapping. Then the projection IxM —1I restricted to the com-
pactum K =h(L) is a mapping g: K—L such that qoh=p. Let us
consider the upper-semicontinuous decomposition " = {g~!(u): uel} of the
compactum K. Since g™ !(u) = h(p~*(u)), it follows that g~ ' () is the union
of a set homeomorphic to E(u) and the countable-dimensional set
g~ '(u\h(E), hence g~ '(u) is countable dimensional, but also indg™*(u)
> ind E (u), and therefore by (1) there exists no countable-dimensional com-
pactum containing topologically all members of the collection . Thus %
provides a negative solution of Problem 2.2

§ 7. Comments.

7.1. ExampLE, There exists a compact set B in the producr Sx T, S being
the Cantor set and T the Hilbert cube, such that: each vertical section B(s) is
countable-dimensional, there exist upper-semicontinuous ' correspondences s
— Li(s) (i.e. {s: Li(s)nF # O} is closed for any closed F = T) such that the
collections (L;(s): iew) satisfy the assumptions of Theorem 3.2, but the
compactum B is not countable-dimensional (¢f. [P3; § 5]).

Proof. In [P1] a compactum B in the product S x T of compact spaces
was constructed, such that B is not countable-dimensional, but there exists
a function f: S — T of the first Baire class such that f(s)e B(s) and B\G(f)
is countable-dimensional, G(f) being the graph of f (thus B(s)
= {f(s)}U(B\G(f)) is countable-dimensional). The space B\G(f) being
countable-dimensional, there exists. a ‘point-finite sequence <E;: icw) of
closed subsets of B\G(f) separating in B\G(f) the pairs of sets with disjoint
closures in S x T (see Nagata’s Theorem 1.3). Let T;, T, ... be a countable
collection of closed subsets of T such that for each pair (C, D) of disjoint
closed sets in T there exists an i with CcIntT, « T, T\D. Now, f~(T)

] ©
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being a Gyset in the Cantor set S, there exist disjoint compact sets
Si1» Sizs .o such  that S\f7Y(T) =S, uS, U ... Put  Lyj(k) = E, (S x T)
and arrange the collection (Lj(k): i<k, j=1,2,...> into a sequence
(I iew). Then the sequence (L;: iew) is point-finite, the sets L; are
compact (notice that L,nG(f) = ) and therefore the correspondences s
- L;(s) are upper-semicontinuous. Let C and D be closed disjoint subsets of
B(s). Changing, if necessary, the notation and adding the point f(s) to one of
these sets, one can assume that the pair (C, D) is such that f(s)eD. Let i be
such that C «IntT, < T; < T\D. There are infinitely many indices k for
which E,(s) separates in B\G(f) the sets C and T\Int T; (recall that T is the
Hilbert cube), so one can choose such an index k > i. Now, E(s) = T; and
since /' (s)¢ T}, there exists a j with se8;;, so Ly;(k)(s) = E,(s) and, for some
m, Ly, = Ly(k). Therefore the sequence (L;(s): icw) separates in B(s) the
pairs of disjoint closed sets.

Remark. In particular, Theorem 3.2 shows that, for the compactum B
considered in the above proof, sup {ind B(s): seS} < w;. A direct proof of

" this fact is given in [P3; sec. 5.3 (I)].

7.2. A connection with the “minimal index” of P. S. Novikov. We shall
show that, in the realm of the class of compacta, the small transfinite
dimension provides essentialy the same classification as a certain topological
invariant (similar to ord X, see § 4) which can be interpreted as a “minimal
index” of P. S. Novikov [No].

Given a compactum X let (see sec. 4.1 and 4.2)

(1) OrdX = min{Ord (FrB;: icoy: (B;: i€w)
is an open base for closed sets in X},

where a collection of open sets ¢B;: iew) is a base for closed sets in X if for
each closed set F and an open set U containing F there exists an i with
FaB cU.

Obviously, ordX <OrdX, so Lemma 43 yields the inequality
ind X < Ord X. Actually, there exists a monotone function ¢ which maps
countable ordinals to countable ordinals and co to co, such that for each
compactum X,

) ind X < Ord X < #(ind X).

To define the function @, let us consider for each « <w; a countable-
dimensional compactum X, containing topologically all compacta S with
ind§ < «, see [P 2; Corollary 1.3]. The arguments given in sec. 4.2 show
that, given a compactum X, Ord X # co if and only if X is countable
dimensional. Thus, for each o < @, ®(a) = sup{Ord X;: f < o} is a count-
able ordinal and it is easy to check that the function augumented by the
condition ®(c0) = co satisfies (2). :

6 ~ Fundamonta Mathomalicae . 121.3

et b
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Let H be the hyperspace of the Hilbert cube I°andlet C = {Xe H: Xis
countable-dimensional}. Let (4;, By), (4,, Bj), ... be a sequence of pairs of
disjoint closed sets in I® such that for each pair of disjoint closed sets in I
there exists an i such that 4 = 4; and B = B;. Let L, be the set of all partitions
in I between the sets 4; and B;. The space L; being an intersection of a closed
and an open set in H is topologically complete, and so is the product § = L, x
xLyx ...Let us define a closed Lusin sieve # = {W,: ceFinw} in the
product space H xS by letting ‘

W, =1{<X, L, Ly, ..> Xn _ﬂ L # Q).
Let, for <X, Ly, L,, ...>eH xS,
M{X, Ly, Ly,...>) ={oeFinw: (X, Li,L,,..>eW,}.

Let us recall that the set L(#") sifted by the sieve #  is given by the formula
(cf. sec. 1.4)

(X, Ly, Ly, ..5eL(#W)=M{X, L, L, ..> e WO (Finw),
and let us recall that
Index (X, L, L,, ...> =type M{X, Ly, L,, ...>
is the Lusin-Sierpinski index of the point <X, L,, L,, ...) with respect to
W . Now (see sec. 4.1)
Index (X, L, Ly, ...> = Ord {XnLi: iew)
and this easily yields the equality
(3) OrdX = min {Index (X, Ly, L,, ...>: <Ly, L,,...>€§].

Now, the formula on the right hand side is the definition of a “minimal index”
of P.S. Novikov [No; § 2] for the set C = proj g [(H xS\L(#")]. Thus (2) and
(3) show that ind behaves over C like a “minimal index” of P. S. Novikov. We
do not know, however, whether, actually, C is a coanalytic set (we have seen
that itis-a projection of a coanalytic set) and whether ind behaves like a Lusin-
Sierpifiski index over C (this last question is in fact yet another reformulation
of Problem 2.1). )

Remark. Formula (2) shows that for each compactum X, ind X < ord X
< &(ind X). We do not know whether a similar assertion is still valid in the
class of all topologically complete spaces, cf. [E1; Problem 5.10].
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