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Monotone decompositions of hereditarily unicoherent continua
via set functions and quasi-orders

by
G. R. Gordh, Jr. (Sacramento, Ca) and Eldon J. Vought (Chico, Ca.)

Abstract. The following theorem is obtained by applying the FitzGerald-Swingle theory
of core decompositions to a pointed version of the aposyndetic set function T. THEOREM. If X is
a hereditarily unicoherent continuum, then for each point p of X there exists a unique minimal
monotone upper semi-continuous decomposition @, = {D(x)} of X such that X/9, is a dendroid
which is smooth at D(p). It is also shown that the decomposition 2, may be viewed as the level
set decomposition of a quasi-order <} termed the generalized weak cutpoint order. An explicit
description of <} is provided for continua which satisfy a strong aposyndetic property.

1. Introduction. Let X denote a hereditarily unicoherent metric con-
tinuum. The theory of core decompositions due to FitzGerald and Swingle
using the aposyndetic set function T ([2], Theorem 2.7) together with the
observation that every semi-locally connected hereditarily unicoherent con-
tinuum is a dendrite (e.g., [5], Theorem 1) yields

TueoreM' A. There exists a unique minimal monotone upper semi-
continuous decomposition o of X such that X/of is a dendrite.

If X is smooth at p in the sense of [3], then the weak cutpoint order <,
is closed, and the level set decomposition %, is upper semi-continuous and
monotone. According to Corollary 4.1 of [4], we have.

TueoreM B. If X is smooth at p, then there exists a unique minimal
monotone upper semi-continuous decomposition @, = {D(x)} of X such that
X/%, is a dendroid which is smooth at D(p).

The main purpose of this paper is to establish the following result,
which is closely related to Theorems A and B.

TueoreM 1. If X is a hereditarily unicoherent metric continuum, then for
each point p of X there exists a unique minimal monotone upper semi-
continuous decomposition D, = {D(x)} of X such that X/@, is a dendroid
which is smooth at D(p). '

Observe that in Theorem A the quotient space X/« is a dendroid which
i$ smooth at each point (i.e, a dendrite), Thus Theorem 1 may be viewed as a
pointed version of Theorem A. In this spirit it is shown that Theorem 1 can
be obtained by applying the theory of core decompositions to a pointed
version of the aposyndetic set function T denoted by T,.
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On the other hand, Theorem 1 may be viewed as a generalization of
Theorem B. In this spirit it is shown that the decomposition £, in Theorem
1 can be obtained as the level set decomposition of a closed quasi-order <
termed the generalized weak cutpoint order. :

Theorem 1 fills a gap between Theorem A and the following result ([8],
Theorem 35).

THeoREM C. There exists a unique minimal monotone upper semi-
continuous decomposition 9 of X such that X/% is a semi-aposyndetic dendroid.

Since dendrites are smooth at each point ([1], Theorem 6), and smooth
dendroids are semi-aposyndetic ([1], Corollary 4), it follows that
%< 9, < o for each p in X where < denotes refinement.

Finally it is shown that the generalized weak cutpoint order <} can be
simply and explicitly described for continua on which the aposyndetic set
function K is sufficiently well-behaved.

For simplicity the results have been stated above for metric spaces;
however, all results are actually established in the setting of Hausdorff
spaces.

2. Preliminaries. By a continuum we mean a compact connected
Hausdorff space. The continuum X is said to be hereditarily unicoherent in
case each subcontinuum of X is umicoherent. If 4 and B are subsets (or
points) of such a continuum, then 4B will denote the unique subcontinuum
which is irreducible with respect to containing AUB. An arc (not necessarily
metrizable) - is a continuum with exactly two non-separating points. An
arboroid (or dendroid in the metric setting) is an arcwise connected hereditarily
unicoherent continuum, A tree (or dendrite in the metric setting) is a locally
connected hereditarily unicoherent continuum.

A pointed hereditarily unicoherent continuum (X, p) is said to be smooth
[3] if for each net of points x, convering to x in X, the net of subcontinua
px, converges to px. A smooth arboroid (X, p) is called a generalized tree
[9]. Metrizable generalized trees are termed smooth dendroids [1].

We shall make use of the notion of aposyndesis due to F. B. Jones (see
[7] for survey articles and an extensive bibliography). If 4 and B are subsets
{or points) of a continuum X, then X is said to be aposyndetic at A with
respect to B if there is a'continuum-neighborhood @ of A which misses B.
The continuum X is called semi-aposyndetic if for each pair of distinct points’
xand y of X either X is aposyndetic at x with respect to y or at y with respect to
X.

ProposiTioN 2.1 ([4], Theorem 2.3). If the continuum X is hereditarily
unicoherent and semi-aposyndetic, then X is an arboroid.

_ The cont1:nuum X is said to be gposyndetic toward the point p [6] pro-
vided thz}t X is aposyndetic at g with respect to r whenever r does not cut p
from ¢ (i.e, whenever p and g can be joined by a subcontinuum missing r).
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ProrposiTiON 2.2 ([6], Theorem 6). Let (X, p) be a hereditarily unicoherent
continuum. Then (X, p) is smooth if and only if X is aposyndetic toward p.

Let 4 be a subset of the continuum X. Then T{A4) denotes the set
{xeX: X is not aposyndetic at x with respect to 4}. Let T°(4) = 4, T*(A)
= T(A), and for each natural number n, let T*(4) = T(T""*(4)). If A is a
subcontinuum of X, then'T"(4) is also a subcontinuum of X (e.g., [2],
Lemma 1.3). Dually, K(4) = {xeX: X is not aposyndetic at 4 with respect
to x}. Let K°(4) =4, K*(4) = K(A), and K"(4) =K(K""*(4)). If A is a
subcontinuum of X, then K"(A4) need not be connected; however, when X is
hereditarily unicoherent it is easy to see that K"(A) is a subcontinuum of X.

ProrosiTION 2.3. Let X be a hereditarily unicoherent continuum, and let A
be a subcontinuum of an open set V such that K(A) = A. Then there is a nest
of subcontinua {Q;}2 o (e, Qo 21nt(Qy) 2 Q, =2 Int(Q,) 2 Q, 2 ...) such that
AcInt(Q) = Q; <V for each i.

Proof. For each point z in X\V there is a continuum-neighborhood
Q(z) of A which misses z. By compactness there are finitely many points
Zy,..., %, such that Q¢ = Q(z)N ... NQ(z,) < V. The set Q, is obtained in
the same way, using Int(Q,) in place of V. Clearly the process can be
continued for each natural number i. .

By a quasi-order < on a continuum X we mean a reflexive and
transitive relation. A zero is a point p such that p < x for each x in X. The
level set of the point x is the set E(x) = {yeX: x <y and y < x}. The lower
set of x is the set L(x)= {yeX: y<x}. The quasi-order < is closed
provided it is closed as a subset of X x X. A subset C of X is termed a chain
if whenever x and y belong to C, then either x<yory<x.Ifx<yin X,
then the interval [x, y] is the set {zeX: x <z <y}.

3. Decompositions via the set function T,. Let X denote a hereditarily
unicoherent continuum containing a fixed point p.

We define the set function T, by the equation T,(4) = pAnT(A4) for each
A< X If T,(A) = A, then 4 is said to be T,-closed.

Clearly X is a tree if and only if each point of X is T-closed. Restating
Corollary 3.6 of [4] we have

ProrosiTioN 3.1. (X, p) is a generalized tree if and only if each point of X
is T,-closed. B )

If AS B X, then 4 < T,(4) € T,(B). Consequently, T, is expansive in
the sense of [2]. According to Theorem 2.5 of [2] there exists a unique
minimal upper semi-continuous decomposition %, of X such that the el-
ements of 9, are T,-closed. Furthermore, the decomposition 2, is monotone.
To see this, let D be an element of 2, and let C be a component of D. Since
T,(C) = pCAT(C) and T(C) is a continuum (see Section 2), it follows that T,,(C)
is a continnum. But C< T(C)< T,(D)=D, and hence C=T,(C).
Consequently the decomposition 2% of X into components of elements of 2, is
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upper semi-continuous with T,closed elements. So 2, =3 and 2, is
monotone. We have established

ProPOSITION 3.2. Theré exists a unique minimal upper semi-continuous
decomposition %, of X such that the elements of 9, are T,-closed. Furthermore,
9, is monotone.”

Next it will be shown that the decomposition &, of Proposition 3.2 is
that required in Theorem 1. In the Hausdorff setting Theorem 1 can be
restated as follows.

Tueorem 1. If (X, p) is a hereditarily unicoherent Hausdorff continuum,
then there exists a unique minimal monotone upper semi-continuous decomposi-
tion 9, = {D(x)} of X such that (X/9,, D(p)) is a generalized tree.

Proof. Let 9, denote the decomposition of Proposition 3.2, and let
fi X X/%, be the natural quotient map.

CLamv 1. X/9, is an arboroid.

Since monotone maps preserve hereditary unicoherence, it suffices to
prove that X/9), is semi-aposyndetic (se¢ Proposition 2.1). Let A and B be
distinct elements of @,. Clearly it is enough to show that either T(4)nB = (1))
or T(B)nAe (. Suppose meither equality holds, and let C = (T(4)uB)n
N(4 U T(B)). By hereditary unicoherence, C is a continuum containing A and
B. Similarly, Cn(p4A'upB) is a continuum containing 4 and B. By elementary
set algebra Cn(pAupB) becomes

(AUB)U(pANT(4)n T(B))U(pB T (B) N T(4)).
Since A and B are T,closed, it follows that

Cn(pAUpB)= (AUB)U(ANT(B))u(BNT(A)) = AUB.

This contradiction establishes the claim.

CLamv 2. (X/9D,, D(p)) is a generalized tree.

According to Proposmon 2.2 it suffices to show that X, /9, is aposyndetic
toward f(p). Suppose that xéf (p)y. Let A =f"'(x) and B'=f"1(y). Note
that pB =f~*(f(p)y) € X\A4. To establish aposyndesis at y with respect to x
in X/, it suffices to demonstrate that BNT(4) = Q. Suppose BNT(4) # 0,
and observe that p4 and pBUT(4) are each continua containing p and 4. By

hereditary unicoherence pA4 n(pBu T(A)) must be a continuum containing p
and 4. However, since 4 is T,-closed,

PAN(PBUT(4)) = (pAnpB)u(pANT(4)) = (pANpB)UA < pBUA

where pB and A are disjoint closed sets. This is a contradiction.

Now suppose that #, = {F(x)} is any monotone upper semi-continuous
decomposition of X such that (X/ , F(p)) is a generalized tree.

Cram 3. 9, refines F,.
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Let g: X—X/%, be the natural quotient map. According to
Proposition 3.2 it is enough to show that each element F of &, is T,-closed.
Suppose that T,(F) # F. Choose xe T,(F)\F and note that xepF\F. From
the irreducibility of pF, the monotonicity of g and the hereditary unicoher-
ence of- X, it follows that g(x)eg(p)g(F). Since X/%, is arcwise connected
and aposyndetic toward g (p), there is a continuum-neighborhood H of g(x)
which misses g(F). So g~!(H) is a continnum-neighborhood of x which
misses F. Consequently x¢ T(F), so x¢ T,(F). This contradiction establishes
that F is T,-closed.

The conclusion of the theorem now follows immediately from Claims 1,
2 and 3.

4. Decompositions via the quasi-order <*. Let X be a hereditarily
unicoherent continuum containing a fixed point p. We say that a quasi-order
< on X is p-admissible in case (1) < is closed, (2) p is a zero of <, (3) each
level set E(x) is connected, and (4) each lower set L(x) is a connected chain.
It follows immediately that the level sets and the lower sets of < are
continua. Furthermore, if » <s, then the interval [r, s] is a continuum.

Recall that the quasi-order <, on X defined by setting x <,y whenever
xepy is called the weak cutpoint order with respect to p.

ProrosimioN 4.1. (X, p) is smooth if and only if the weak cutpoint order
with respect to p is p-admissible. )
Proof. If <, is p-admissible, hence closed, then (X, p) is smooth by
Theorem 3.1 of [4]. That <, is p-admissible when (X, p) is smooth can be
seen from the proof of Corollary 4.1 in [4].

ProrositioN 4.2. If {<,: aeA} is any collection of p-admissible quasi-
orders on X, then < = \{<,: aeA} is a p-admissible quasi-order on X.

Proof. Part (1) and (2) of the definition are clearly valid. Part (3)
follows from heréditary unicoherence and the observation that E(x)
~ﬂ{E (x): aed}. Similarly L(x) = ) {L,(x): oceA} is connected. It re-
mains only to show that L(x) is a chain for each x in X. Suppose that L(x) is
pot a chain for some x. Then there are points z and w in L(x) which are not
related by <. Note that p <z < x and p <w < x. Choose y and § in A4 such
that z £,w and w & z. Since L,(x) and L;(x) are chains, it follows that w
<,z zmd z <uw. Thus L, (w)m[z x1, = @ and Ly(z)n[w, x]; = @. Let Z be
the continuum L,,(z)u[z x], which contains p and x; and let W be the
continyum L, (w)u[w, x], which contains p and x. By hereditary unicoher-
ence ZNW is a continuum containing p and x. But

ZnW = (Ly(2)ulz, x1)N(L, (w)olw, x]p)
= (Ly (2)nL, (w)u([z, x],nlw, xJp) € Ly (z)u[w, x]p

where Ly (z) and [w, x], are disjoint closed sets containing p and x respecti-
vely. Thus L(x) is a chain and the proof is complete.

<
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DeriniTioN. We say that x <}y in X provided that x <,y in X for every
p-admissible quasi-order <, on X. According to Proposition 4.2, <¥ is a
well-defined p-admissible quasi-order on X. We call it the generalized weak
cutpoint order with respect to p.

The proof of the next result shows that Theorem 1 may be viewed as a
torollary of Proposition 4.2.

THEOREM 2. The decomposition &, = {E(x)} of X into level sets of the
generalized weak cutpoint order <} coincides with the decomposition %, of
Theorem 1.

Proof. We first show that &, refines &,. Let <(&,) denote the quotient
order on X/&,. It is easy to verify that <(&,) is a closed partial order with
zero E(p) and arcs for lower sets of elements distinct from E(p). Thus <(&,)
is a E(p)-admissible partial order; in fact, <(4)) is the weak cutpoint order
g on X/&, with respect to E(p). Thus, by Proposition 4.1, (X/&,, E(p)) is
a generalized tree. By Theorem 1, 9, refines &,.

Now let <pg, be the weak cutpoint order on X/%, with respect to D(p).
Define an order < on X by letting x < y if D(x) <pg D(y) in X/9,. Using
the fact that <p, is a D(p)-admissible partial order it is easy to verify that
< is a p-admissible quasi-order on X whose level set decomposition in D,.
By the definition of <} it follows that <} is contained in <. This means
. that &, refines 9, as required.

5. An explicit description of <} when K is finitely stable, As above, let
X denote a hereditarily unicoherent continuum containing a fixed point p.
We say that the aposyndetic set function K is n-stable on (X, p) if K"(P)
= K" !(P) for each subcontinuum P of X which contains p.

Theorem 3.1 of [3] implies that K is 1-stable on (X, p) whenever X, p)
is smooth. Observe that in this case x <*y if and only if xeK(py) (e,

4
xepy). Our final result generalizes this fact.

TreoreM 3. If K is n-stable on (X, p), then x<¥y if and only if xe K"(py).

Proof. Define x < y in case xe K" (py). We first establish that < is a p-
admissible quasi-order on X. To see that < is transitive, assume that x <y
and y <z Then yeK"(pz) and hence py = K"(pz). Thus K"(py) < K**(pz)
= K"(pz). Since x <y, it follows that xeK"(pz) and hence that x < z.

To see that < is closed, let (x;, yj) be a net in X xX converging to
(x, y) such that x;<y; but x £ y. Thus x¢K"(py), and since K"(py) is K-
closed there exists a nest of subcontinua {Q}22, containing K"(py) and
missing x (see Proposition 2.3). Choose j large enough so that x;¢Qo and
y;elnt(Q,). Thus py; <0, so K(py) <K(Q,) SQ,-; and, by induction,
K"(py;)) S Qo. Now x;¢K"(py) contrary to the assumption that X<y

Clearly p is a zero of <. '

Now suppose that some level set E (x) of < is not connected, and let C,
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and C, denote distinct components of E(x) with xeC,;. Observe that
C,C; S K"(px) and choose zeC,C,\E(x). Since z< x it follows that
K"(pz)nE(x) = . Let {Q;}72, be a nest of subcontinua containing K" (pz) but
missing E(x) (see Proposition 2.3). Observe that in the relative topology on
C,C, the continuum @,NC,C, has non-void interior and hence separates
C,C, into exactly two components B; and B, containing C, and C,,
respectively. Observe that px < Q,UB, and hence pxnC, = @. The existence
of the nest {Q;}/%, implies that T"(C,)nQ, = ©. Since T"(C,) is a continuum
(as noted in Section 2) and X is hereditarily unicoherent, it follows that
T"(Cy)nBy = 0. But px = Q,UB,, so K"(px)nC, = O, which contradicts
the fact that E(x) = K"(px). Thus each level set is connected.

Each lower set L(x) is of the form K"(px) and hence connected. It
remains to show that each lower set L(x) is a chain. Suppose not, and let y
and z be points of L(x) such that y¢ K" (pz) and z¢ K"(py). Let {Q; ()12, be
a nest of continua containing K"(py) and missing {x, z}, and let {Q;(z)}2
be a nest of continua containing K"(pz) and missing {x,y}. Let H
= px\(Q, (¥)uQ,(z)) and observe that H is connected since px is irreducible.
Without loss of generality we may assume that Cl(H)nQ,(y) # @ and thus
that px = Q,(y)UH. Since ze K"(px) it follows that T"(z)mpx # @ and, since
T"(z)nQ,(y) = O, it follows that T"(z)~px < H. Note that K"(pz)CIl(H)
= (. Thus K"(pz)u T"(z) meets px in a disconnected set which contradicts
hereditary unicoherence.

Since < is p-admissible and the generalized weak cutpoint order <} is
the smallest p-admissible quasi-order on X, it follows that <} is a subsets of
<. Suppose x <y, but x &}y. Let f: X —» X/, be the natural quotient
map where &, is the decomposition of Theorems 1 and 2. Since f (p) f (y) -is
K-closed in X/%, by Theorem 3.1 of [3], there is a nest of continua {Q;}2 o
containing f(p)f(y) and missing f(x). Using the nest of continua
{f 1 Q)20 in X, one sees that x¢ K"(py) and hence x £ y. This contradic-
tion shows that < and <} agree as required.
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On absolutely - A3 operations

by
Kenneth Schilling (Los Angeles, Ca.)

Abstract. Every absolutely A} Boolean operation preserves the Baire property in all
topological spaces, and, as a consequence, measurability in all o-finite complete measure spaces.

It is a classical theorem that the operation (A4) preserves the Baire
property in all topological spaces, and measurability in all o-finite complete
measure spaces.

R. Solovay (unpublished) introduced the class of absolutely A% sets (to be
defined in the next section) in Polish spaces, and proved that they have the
Baire property, and are Lebesgue measurable. Solovay’s results were re-
discovered and extended by Fenstad and Normann [3], who showed that an
absolutely 4} set in an analytic space is measurable with respect to any o-
finite, complete, regular Borel measure.

In order to extend these results further, R. Vaught (unpublished; an-
nounced at Wroctaw, 1977) considered the absolutely 4% Boolean operations,
and showed that these operations preserve the Baire property in any
topological space satisfying the countable chain condition, and measurability
with respect to any o-finite complete measure.

The main result here, in analogy with and extending the classical
theorem cited above, is

TueorEM 3.3. All absolutely A% Boolean operations preserve the Baire
property in all topological spaces.

From 3.3, using a theorem in [8], we directly infer the part of Vaught’s
result dealing with measure.

Now let 3 be an arbitrary o-field of sets on a set X, and let I be
a g-ideal on X such that I = 3. Vaught proved

TueoreM 4.1, If the Boolean algebra J/I satisfies the countable chain
condition, then 3 is invariant under all absolutely A% Boolean operations.

We cannot infer 4.1 directly from 3.3. However, we do show that, by
introducing a simple device, the pattern of our proof of 3.3 carries over into a
new proof of 4.1.

Most of the material herein appears in the author’s doctoral dissertation
[9]. I am grateful to my thesis advisor, Robert Vaught, for his hclp in all
aspects of its preparatxon


GUEST




