Monotone decompositions of hereditarily unicoherent continua
via set functions and quasi-orders

by

G. R. Gordh, Jr. (Sacramento, Ca.) and Eldon J. Vought (Chico, Ca.)

Abstract. The following theorem is obtained by applying the Fitzgerald-Swingle theory
of core decomposition to a pointed version of the aposyndetic set function T. THEOREM. If X is
a hereditarily unicoherent continuum, then for each point p of X there exists a unique minimal
monotone upper semi-continuous decomposition $\mathcal{D}_p = \{D(x)\}$ of X such that X/\mathcal{D}_p is a dendroid
which is smooth at $D(p)$. It is also shown that the decomposition \mathcal{D}_p may be viewed as the level
set decomposition of a quasi-order $<^*_p$ termed the generalized weak cutpoint order. An explicit
description of $<^*_p$ is provided for continua which satisfy a strong aposyndetic property.

1. Introduction. Let X denote a hereditarily unicoherent metric continuous.
The theory of core decompositions due to Fitzgerald and Swingle using the aposyndetic set function T ([2], Theorem 2.7) together with the
observation that every semi-locally connected hereditarily unicoherent continunim is a dendrite (e.g., [3], Theorem 1) yields

Theorem A. There exists a unique minimal monotone upper semi-
continuous decomposition \mathcal{A} of X such that X/\mathcal{A} is a dendrite.

If X is smooth at p in the sense of [3], then the weak cutpoint order $<_p$
is closed, and the level set decomposition \mathcal{D}_p is upper semi-continuous and
monotone. According to Corollary 4.1 of [4], we have,

Theorem B. If X is smooth at p, then there exists a unique minimal
monotone upper semi-continuous decomposition $\mathcal{D}_p = \{D(x)\}$ of X such that
X/\mathcal{D}_p is a dendroid which is smooth at $D(p)$.

The main purpose of this paper is to establish the following result,
which is closely related to Theorems A and B.

Theorem 1. If X is a hereditarily unicoherent metric continuum, then for
each point p of X there exists a unique minimal monotone upper semi-
continuous decomposition $\mathcal{D}_p = \{D(x)\}$ of X such that X/\mathcal{D}_p is a dendroid
which is smooth at $D(p)$.

Observe that in Theorem A the quotient space X/\mathcal{A} is a dendroid which
is smooth at each point (i.e., a dendrite). Thus Theorem 1 may be viewed as a
pointed version of Theorem A. In this spirit it is shown that Theorem 1 can
be obtained by applying the theory of core decompositions to a pointed
version of the aposyndetic set function T denoted by T_p.
On the other hand, Theorem 1 may be viewed as a generalization of Theorem B. In this spirit it is shown that the decomposition \mathcal{D}_p in Theorem 1 can be obtained as the level set decomposition of a closed quasi-order \preceq termed the generalized weak cutpoint order.

Theorem 1 fills a gap between Theorem A and the following result ([8], Theorem 5).

Theorem C. There exists a unique minimal monotone upper semi-continuous decomposition \mathcal{D} of X such that X/\mathcal{D} is a semi-aposyndetic dendroid.

Since dendrites are smooth at each point ([11], Theorem 6), and smooth dendroids are semi-aposyndetic ([1], Corollary 4), it follows that $\mathcal{D} \leq \mathcal{D}_p \leq \mathcal{D}$ for each p in X where \leq denotes refinement.

Finally it is shown that the generalized weak cutpoint order \leq can be simply and explicitly described for continua on which the aposyndetic set function K is sufficiently well-behaved.

For simplicity the results have been stated above for metric spaces; however, all results are actually established in the setting of Hausdorff spaces.

2. Preliminaries. By a continuum we mean a compact connected Hausdorff space. The continuum X is said to be hereditarily unicoherent in case each subcontinuum of X is unicoherent. If A and B are subsets (or points) of such a continuum, then $A \cup B$ will denote the unique subcontinuum which is irreducible with respect to containing $A \cup B$. An arc (not necessarily metrizable) is a continuum with exactly two non-separating points. An arcoid (or dendroid in the metric setting) is an arcwise connected hereditarily unicoherent continuum. A tree (or dendrite in the metric setting) is a locally connected hereditarily unicoherent continuum.

A pointed hereditarily unicoherent continuum (X, p) is said to be smooth ([3]) if for each net of points x_n converging to x in X, the net of subcontinua $p x_n$ converges to $p x$. A smooth arcoid (X, p) is called a generalized tree ([9]). Metrizable generalized trees are termed smooth dendroids ([1]).

We shall make use of the notion of aposyndesis due to F. B. Jones (see [7] for survey articles and an extensive bibliography). If A and B are subsets (or points) of a continuum X, then X is said to be aposyndetic in A with respect to B if there is a continuum-neighborhood Q of A which misses B. The continuum X is called semi-aposyndetic if for each pair of distinct points x and y of X either X is aposyndetic at x with respect to y or at y with respect to x.

Proposition 2.1 ([4], Theorem 2.3). If the continuum X is hereditarily unicoherent and semi-aposyndetic, then X is an arcoid.

The continuum X is said to be aposyndetic toward the point p ([6]) provided that X is aposyndetic at q with respect to r whenever r does not cut p from q (i.e., whenever p and q can be joined by a subcontinuum missing r).

Proposition 2.2 ([5], Theorem 6). Let (X, p) be a hereditarily unicoherent continuum. Then (X, p) is smooth if and only if X is aposyndetic toward p.

Let A be a subset of the continuum X. Then $T(A)$ denotes the set \{$x \in X: X$ is not aposyndetic at x with respect to A\}. Let $T^0(A) = A$, $T^1(A) = T(A)$, and for each natural number n, let $T^n(A) = T(T^{n-1}(A))$. If A is a subcontinuum of X, then $T^0(A)$ is also a subcontinuum of X (e.g., [2], Lemma 1.3). Dually, $K(A) = \{x \in X: X$ is not aposyndetic at A with respect to $x\}$. Let $K^0(A) = A$, $K^1(A) = K(A)$, and $K^n(A) = K(K^{n-1}(A))$. If A is a subcontinuum of X, then $K^0(A)$ need not be connected; however, when X is hereditarily unicoherent it is easy to see that $K^0(A)$ is a subcontinuum of X.

Proposition 2.3. Let X be a hereditarily unicoherent continuum, and let A be a subcontinuum of an open set V such that $K(A) = A$. Then there is a nest of subcontinua \{$Q_i\}_{i=1}^{\infty}$ (i.e., $Q_0 \supseteq \operatorname{Int}(Q_1) \supseteq Q_1 \supseteq \operatorname{Int}(Q_2) \supseteq \cdots \) such that $A \subseteq \operatorname{Int}(Q_i) \subseteq Q_i \subseteq V$ for each i.

Proof. For each point x in $X \setminus V$ there is a continuum-neighborhood $Q(x)$ of A which misses x. By compactness there are finitely many points x_1, \ldots, x_l such that $Q_0 = Q(x_1) \cap \cdots \cap Q(x_l) \subseteq V$. The set Q_1 is obtained in the same way, using $\operatorname{Int}(Q_0)$ in place of V. Clearly the process can be continued for each natural number i.

By a quasi-order \preceq on a continuum X we mean a reflexive and transitive relation. A zero is a point such that $p \preceq x$ for each x in X. The level set of the point x is the set $E(x) = \{y \in X: x \preceq y \}$.

Proposition 3.1. (X, p) is a generalized tree if and only if each point of X is T_p-closed.

Clearly X is a tree if and only if each point of X is T_p-closed. Restating Corollary 3.6 of [4] we have

Proposition 3.2. (X, p) is a generalized tree if and only if each point of X is T_p-closed.

If $A \subseteq \subseteq X$, then $A \subseteq \subseteq T_p(A) \subseteq T_p(B)$. Consequently, T_p is expansive in the sense of [2]. According to Theorem 2.5 of [2] there exists a unique minimal upper semi-continuous decomposition \mathcal{D}_p of X such that the elements of \mathcal{D}_p are T_p-closed. Furthermore, the decomposition \mathcal{D}_p is monotone. To see this, let D be an element of \mathcal{D}_p, and let C be a component of D. Since $T_p(C) = \operatorname{pc} \cap T(C)$ and $T(C)$ is a continuum (see Section 2), it follows that $T_p(C)$ is a continuum. But $C \subseteq \subseteq T_p(C) \subseteq T_p(D) = D$, and hence $C = T_p(C)$. Consequently the decomposition \mathcal{D}_p of X into components of \mathcal{D}_p is...
upper semi-continuous with T_{c}-closed elements. So $D_p = D^*_{p}$ and D_p is monotone. We have established

Proposition 3.2. There exists a unique minimal upper semi-continuous decomposition D_p of X such that the elements of D_p are T_{c}-closed. Furthermore, D_p is monotone.

Next it will be shown that the decomposition D_p of Proposition 3.2 is that required in Theorem 1. In the Hausdorff setting Theorem 1 can be restated as follows.

Theorem 1. If (X, p) is a hereditarily unicoherent Hausdorff continuum, then there exists a unique minimal monotone upper semi-continuous decomposition $D_p = (D(x))$ of X such that $(X/D_p, D(p))$ is a generalized tree.

Proof. Let D_p denote the decomposition of Proposition 3.2, and let $f: X \to X/D_p$ be the natural quotient map.

Claim 1. X/D_p is an arboroid.

Since monotone maps preserve hereditary unicoherence, it suffices to prove that X/D_p is semi-aposyndetic (see Proposition 2.1). Let A and B be distinct elements of D_p. Clearly it is enough to show that either $T(A) \cap B = \emptyset$ or $T(B) \cap A = \emptyset$. Suppose neither equality holds, and let $C = (T(A) \cap B) \cup (A \cap T(B))$. By hereditary unicoherence, C is a continuum containing A and B. Similarly, $C \cap (pA \cap pB)$ is a continuum containing A and B. By elementary set algebra $C \cap (pA \cap pB)$ becomes

$$(A \cup B) \cup (pA \cap T(A) \cap T(B)) \cup (pB \cap T(B) \cap T(A)).$$

Since A and B are T_{c}-closed, it follows that

$$C \cap (pA \cap pB) = (A \cup B) \cap (A \cap T(A)) \cap (B \cap T(A)) = A \cup B.$$

This contradiction establishes the claim.

Claim 2. $(X/D_p, D(p))$ is a generalized tree.

According to Proposition 2.2 it suffices to show that X/D_p is aposyndetic toward $f(p)$. Suppose that $x \notin f^{-1}(p(y))$. Let $A = f^{-1}(x)$ and $B = f^{-1}(y)$. Note that $pB \subseteq T^{-1}(f(p)) \subseteq X/4$. To establish aposyndesis at y with respect to x in X/D_p, it suffices to demonstrate that $B \cap T(A) = \emptyset$. Suppose $B \cap T(A) \neq \emptyset$, and observe that pA and $pB \cup T(A)$ are continua containing p and A. By hereditary unicoherence $pA \cap (pB \cup T(A))$ must be a continuum containing p and A. However, since A is T_{c}-closed,

$$pA \cap (pB \cup T(A)) = (pA \cap pB) \cup (pA \cap T(A)) = (pA \cap pB) \cup A \subseteq pB \cup A$$

where pB and A are disjoint closed sets. This is a contradiction.

Now suppose that $D_p = (F(x))$ is any monotone upper semi-continuous decomposition of X such that $(X/D_p, F(p))$ is a generalized tree.

Claim 3. D_p refines D_p.

Let $g: X \to X/D_p$ be the natural quotient map. According to Proposition 3.2 it is enough to show that each element F of D_p is T_{c}-closed. Suppose that $T_p(F) \neq F$. Choose $x \notin T_p(F)/F$ and note that $x \notin pF/F$. From the irreducibility of pF, the monotonicity of g and the hereditary unicoherence of X, it follows that $g(x) \notin g(p)/g(F)$. Since X/D_p is arccwise connected and aposyndetic toward $g(p)$, there is a continuum-neighborhood H of $g(x)$ which misses $g(F)$. So $g^{-1}(H)$ is a continuum-neighborhood of x which misses F. Consequently $x \notin T_p(F)$, so $x \notin T_p(F)$. This contradiction establishes that F is T_{c}-closed.

The conclusion of the theorem now follows immediately from Claims 1, 2 and 3.

4. Decompositions via the quasi-order \leq^*. Let X be a hereditarily unicoherent continuum containing a fixed point p. We say that a quasi-order \leq on X is p-admissible in case $(1) \leq$ is closed, $(2) p$ is a zero of \leq, (3) each level set $E(x)$ is connected, and (4) each lower set $L(x)$ is a connected chain. It follows immediately that the level sets and the lower sets of \leq are continua. Furthermore, if $r \leq s$, then the interval $[r, s]$ is a continuum.

Recall that the quasi-order \leq_p on X defined by setting $x \leq_p y$ whenever $x \in py$ is called the weak cutpoint order with respect to p.

Proposition 4.1. (X, p) is smooth if and only if the weak cutpoint order \leq_p with respect to p is p-admissible.

Proof. If \leq_p is p-admissible, hence closed, then (X, p) is smooth by Theorem 3.1 of [4]. That \leq_p is p-admissible when (X, p) is smooth can be seen from the proof of Corollary 4.1 in [4].

Proposition 4.2. If $\{e \in \alpha : x \subseteq A\}$ is any collection of p-admissible quasi-orders on X, then $\leq = \bigcap \{\leq_e : x \subseteq A\}$ is a p-admissible quasi-order on X.

Proof. Part (1) and (2) of the definition are clearly valid. Part (3) follows from hereditary unicoherence and the observation that $E(x) = \bigcap \{E_e(x) : x \subseteq A\}$. Similarly $L(x) = \bigcap \{L_e(x) : x \subseteq A\}$ is connected. It remains only to show that $L(x)$ is a chain for each x in X. Suppose that $L(x)$ is not a chain for some x. Then there are points z and w in $L(x)$ which are not related by \leq. Note that $p < z < x$ and $p < w < x$. Choose y and z in A such that $z \notin x$ and $w \notin x$. Since $L_e(x)$ and $L_e(x)$ are chains, it follows that $w < z$ and $w < y$. Thus $L_e(w) \supseteq \{z, x\} = \emptyset$ and $L_e(z) \cap \{w, x\} = \emptyset$. Let Z be the continuum $L_e(z) \cup \{w, x\}$, which contains p and x; and let W be the continuum $L_e(w) \cup \{w, x\}$, which contains p and x. By hereditary unicoherence $Z \cup W$ is a continuum containing p and x. But

$$Z \cup W = (L_e(z) \cup \{z, x\}) \cup (L_e(w) \cup \{w, x\}) = (L_e(z) \cup L_e(w)) \cup \{z, x\} \cup \{w, x\} \subseteq L_e(z) \cup \{w, x\} \subseteq L_e(x) \cup \{w, x\}$$

where $L_e(z)$ and $\{w, x\}$ are disjoint closed sets containing p and x respectively. Thus $L(x)$ is a chain and the proof is complete.
DEFINITION. We say that $x \leq y$ in X provided that $x \leq y$ in X for every p-admissible quasi-order \leq_p on X. According to Proposition 4.2, \leq_p is a well-defined p-admissible quasi-order on X. We call it the generalized weak cutpoint order with respect to p.

The proof of the next result shows that Theorem 1 may be viewed as a corollary of Proposition 4.2.

Theorem 2. \(D = \{E(x)\}\) of X into level sets of the generalized weak cutpoint order \leq_x coincides with the decomposition D of Theorem 1.

Proof. We first show that D refines D. Let $\leq_x \leq y$ denote the quotient order on X. It is easy to verify that \leq_x is a closed partial order with zero $E(p)$ and arcs for lower sets of elements distinct from $E(p)$. Thus \leq_x is $E(p)$-admissible partial order; in fact, \leq_x is the weak cutpoint order \leq_x with respect to $E(p)$. Thus, by Proposition 4.1, $(X/\not\leq_x, E(p))$ is a generalized tree. By Theorem 1, $\not\leq_x$ refines $\not\leq_x$.

Now let \leq_x be the weak cutpoint order on X by D with respect to D. Define an order \leq_x on X by letting $x \leq y$ if $D(x) \leq x \leq y$. Using the fact that \leq_x is a D-admissible partial order it is easy to verify that \leq_x is a p-admissible quasi-order on X whose level set decomposition is D. By the definition of \leq_x, it follows that \leq_x is contained in \leq_x. This means that \leq_x refines D as required.

5. An explicit description of \leq_x when K is finitely stable. As above, let X denote a hereditarily unicoherent continuum containing a fixed point p. We say that the aposyndetic set function K is n-stable on (X, p) if $K(n)$ is stable for each subcontinuum P of X that contains p.

Theorem 3. K is n-stable on (X, p) if and only if $K(n)$ is n-stable.

Proof. Define $x \leq y$ in $K(n)$ if and only if $x \leq y$.

Theorem 4. If n is n-stable on (X, p), then $x \leq n$ if and only if $x \leq p$.

Proof. Define $x \leq n$ in $K(n)$. We first establish that \leq is a p-admissible quasi-order on X. To see that \leq is transitive, assume that $x \leq y$ and $y \leq z$. Then $y \leq K(p)$ and hence $y \leq K(p)$. Thus $K(p) \subseteq K(p)$. Since $x \leq y$, it follows that $x \leq K(p)$ and hence $x \leq z$.

To see that \leq is closed, let (x, y) be a net in X converging to x such that $x \leq y$ but $x \not\leq y$. Thus $x \leq K(p)$, and since $K(p)$ is K-closed there exists a nest of subcontinua $\{Q_i\}$ containing $K(p)$ and missing x (see Proposition 2.3). Choose j large enough so that $x \not\leq Q_j$ and $y \in \text{int}(Q_j)$. Thus $x \leq Q_j$ so $K(p) \subseteq Q_j \subseteq Q_{j-1}$ and, by induction, $K(p) \subseteq Q_0$. Now $x \not\leq K(p)$ contrary to the assumption that $x \leq y$.

Now suppose that some level set $E(x)$ of \leq is not connected, and let C_1 and C_2 denote distinct components of $E(x)$ with $x \in C_1$. Observe that $C_1 \subseteq K(p)$ and choose $x \in C_1$. Since $x \leq x$ it follows that $K(p) \subseteq E(x) = 0$. Let $\{Q_i\}_{i=0}^\infty$ be a nest of subcontinua containing $K(p)$ but missing $E(x)$ (see Proposition 2.3). Observe that in the relative topology on $C_1 \cap C_2$ the continuum $Q \cap C_1 \cap C_2$ has non-void interior and hence separates C_1 and C_2. Since $\bigcap_{i=1}^\infty Q_i = \emptyset$. Since $K(p)$ is a continuum (as noted in Section 2) and X is hereditarily unicoherent, it follows that $E(x) \subseteq K(p)$. Thus each level set is connected.

Each lower set $L(x)$ is of the form $K(p)$ and hence connected. It remains to show that each lower set $L(x)$ is a chain. Suppose not, and let x be a point of $L(x)$ such that $y \not\leq K(p)$ and $z \not\leq K(p)$. Let $\{Q_i\}_{i=0}^\infty$ be a nest of continua containing $K(p)$ and missing x, y, and z, and let $\{Q_i\}_{i=0}^\infty$ be a nest of continua containing $K(p)$ and missing x, y, and z. Let $H = \bigcap_{i=0}^\infty Q_i$ and observe that H is connected since H is irreducible. Without loss of generality we may assume that $\text{Cl}(H) \not\subseteq \text{Cl}(Q_i)$, and since $\bigcap_{i=0}^\infty Q_i = \emptyset$, it follows that $\bigcap_{i=0}^\infty Q_i = H$. Note that $\{Q_i\}_{i=0}^\infty \subseteq \text{Cl}(H)$.

Thus $K(p) \cap Q_i$ meets H in a disconnected set which contradicts hereditary unicoherence.

Since \leq is p-admissible and the generalized weak cutpoint order \leq_x is the smallest p-admissible quasi-order on X, it follows that \leq_x is a subset of \leq. Suppose $x \leq y$, but $x \not\leq y$. Let $f : X \to X$ be the natural quotient map where f is the decomposition of Theorems 1 and 2. Since $f(p) \neq y$ is K-closed in X/\leq_x, by Theorem 3 of [3], there is a nest of continua $\{Q_i\}_{i=0}^\infty$ containing $f(p) \neq y$ and missing $\text{Cl}(x)$. Using the nest of continua $\{Q_i\}_{i=0}^\infty$ in X, we see that $x \not\leq K(p)$ and hence $x \not\leq y$. This contradiction shows that \leq and \leq_x agree as required.

References

On absolutely \mathcal{A}_1 operations

by

Kenneth Schilling (Los Angeles, Ca.)

Abstract. Every absolutely \mathcal{A}_1 Boolean operation preserves the Baire property in all topological spaces, and, as a consequence, measurability in all σ-finite complete measure spaces.

It is a classical theorem that the operation (A) preserves the Baire property in all topological spaces, and measurability in all σ-finite complete measure spaces.

R. Solovay (unpublished) introduced the class of absolutely \mathcal{A}_1 sets (to be defined in the next section) in Polish spaces, and proved that they have the Baire property, and are Lebesgue measurable. Solovay’s results were rediscovered and extended by Fenstad and Normann [3], who showed that an absolutely \mathcal{A}_1 set in an analytic space is measurable with respect to any σ-finite, complete, regular Borel measure.

In order to extend these results further, R. Vaught (unpublished; announced at Wroclaw, 1977) considered the absolutely \mathcal{A}_1 Boolean operations, and showed that these operations preserve the Baire property in any topological space satisfying the countable chain condition, and measurability with respect to any σ-finite complete measure.

The main result here, in analogy with and extending the classical theorem cited above, is

Theorem 3.3. All absolutely \mathcal{A}_1 Boolean operations preserve the Baire property in all topological spaces.

From 3.3, using a theorem in [8], we directly infer the part of Vaught’s result dealing with measure.

Now let \mathfrak{F} be an arbitrary σ-field of sets on a set X, and let I be a σ-ideal on X such that $I \subseteq \mathfrak{F}$; Vaught proved

Theorem 4.1. If the Boolean algebra \mathfrak{F}/I satisfies the countable chain condition, then \mathfrak{F} is invariant under all absolutely \mathcal{A}_1 Boolean operations.

We cannot infer 4.1 directly from 3.3. However, we do show that, by introducing a simple device, the pattern of our proof of 3.3 carries over into a new proof of 4.1.

Most of the material herein appears in the author’s doctoral dissertation [9]. I am grateful to my thesis advisor, Robert Vaught, for his help in all aspects of its preparation.