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Mutually generic classes and
incompatible expansions

by
Matt Kaufmann (West Lafayette, Ind.)

Abstract. A theorem of Mostowski states that every countable model of ZFC is the set-
theoretic universe of 2°! mutually incompatible models of Godel-Bernays class theory, and
conjectures that 2°) may be improved to 2*°, assuming Martin’s axiom. We settle this
conjecture in the affirmative, without set-theoretic hypotheses. :

Let M be a countable model of ZFC set theory, -or of its predicative
second-order version Godel-Bernays plus choice for sets (GBC). By a
C-extension of M, we mean an extension N of M, N[ GBC, with no new
sets: VN =VM™ (for M GBC; V¥ =M in the case M|=ZFC). Let us
restrict ourselves, without loss of generality, to models N of GB in which
eV (VN x {proper classes of N}) is just the membership relation.

The following theorem is proved in Mostowski [3]:

THEOREM (Mostowski). Let M be a countable model of ZFC or of GBC.
Then there is a family {(M,: a < 2”1y of C-extensions of M such thar for
a # B, M,UM, is not contained in a C-extension of M. In fact, we may take
each M, to be a maximal C-extension of -M.

On page 337 of [3], Mostowski conjectured that 2! may be replaced by
22%  assuming Martin’s axiom. In fact, Martin’s axiom is not needed. Our
purpose in this paper is to prove the following:

TheOREM. Mostowski's Theorem above holds with 2*° replacing 2°*.

Remarks. 1. Results of Keisler and Kunen in [2] and Shelah [6] show
that if ZF is consistent, then there exists a model of ZFC of power N; whose
only expansion to a model of GB is Def (M) (defined below). Hence the
hypothesis of countability is to a certain extent essential. In fact, it suffices
that the class of ordinals of M has cofinality w; see Remark 4 at the end of
this paper.

2. Mostowski noticed [3, § 5] that this theorem also applies to non-
standard models of Peano Arithmetic. That applies to our improvement as
well, for the same reasons.

3. Various notions of mutual genericity have proven useful, perhaps
originating with Solovay’s work on iterated forcing. Our use of mutually
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generic classes is very similar to work of Schmerl [4]. More precisely, our
use differs from Mostowski’s (and is similar to Schmerl’s) in the way it uses
infinitely many mutually generic classes at once.

Dermurion 1. Let K be a language containing € and any set of unary
relation symbols. We define ZFX 1o be the theory ZF formulated in K, so

that the axiom schemas apply to K-formulas (not just to {e}-formulas). For
M= ZFX, set
Def(M) = {X = M: X is definable in M by a
(first-order) K-formula with parameters in M};
Def (M) = (Def(M), |MI, E), where
M
xEy iff {"E y
Xey

for x, ye|M|,
for xe M, y eDef(M).

It is well-known that if M}=ZFX, then Def (M)=GB. Of course, if ReK then
{xe|M|: M R(x)}eDef(M). Every model of GR is naturally a K-structure,
where each class is the interpretation of a relation symbol 1n K. So we may
write Def (M) for M= GB and even Def (M, #) for & < Power (M), where
M=GB.

The idea of Mostowski’s proof is to build a complete binary tree
(M,: se("’l)Z) of height w, of expansions of M to models of GB (M a given
countable model of ZFC). If s, te'““Y2 and sc t, then M, = M,, and
distinct functions f, ge(m1)2 give incompatible expansions M, and M,, where
Mp= U Mgy, My= [ M,,. So, the key idea is to see how to branch to

1 z<w

a<a 1
get incompatible expansions. This is accomplished by taking M; and adjoin-
ing generic classes X and Y to get M., = Def (M, (X}) and M, ,
= Def (M, {Y}). The classes X and Y are constructed carefully so that XY
is contained and unbounded in the class of ordinals of M, and has order
type . That guarantees the incompatibility of M,., and Mgry. The
genericity of X guarantees that Def (M,, X)=GB; similarly for Def (M,, Y).

In the present paper, we construct “mutually generic” classes
{X;: fe®2) of M. Actually, that would be fine if we only wanted one
expansion of M. (In fact, Def (M) would suffice, and we would not need
generic classes!) So instead we actually construct classes (GL: fe®2, ie2d
such that for each h: ©2 -2, the family (G¥: fe®2) is “mutually generic”.
Set M" = Def (M, {G}: fe“2}); then M* = GB. To ensure that these expan-
sions are pairwise incompatible, we construct the classes G} so that for each
fe“2, GInG} is contained and unbounded in ORDM and has order type o.
We give further details in the proofs below.

DerFiniTion 2. Work in ZFC. We define a partial order P = (P, <)
(actually a proper class) as follows. P contains all functions f: a2, where a
may be any ordinal. We define f< giff fog.
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For any neow, set P" = (P", <,), where {fo,-.-, fa=1) <0 <G0>--s Gn-1
iff £, 2 ¢; for all i < n. For pe P", we may write p = {pg, --., Pu—y>. NOW fix
ME=ZFCX (cf. Definition 1). Our forcing language contains all sentences of
KU{Pgy, ..., P,_y}Ulc,: me M}, where the P; are new unary relation sym-
bols and the ¢, are new constant symbols. We define the relation p |, ¢, for
pe(P"™(P" in the sense of M) and ¢ in the forcing language, by induction
on complexity as follows:

pla@ iff o, if ¢ is atomic, no P; occurring in ¢,

pli-wPilcn) iff pi(m) =1,

Plw AY M (Pl ) APl )

plkn o iff (Vg < p) (g H40),

pl-axe iff xp|-,0(c.),

“Class forcing” such as this was used by Felgner [1], and independently
by P. Cohen, R. Jensen, S. Kripke and R. Solovay, to show that QB+
+[global choice] is a conservative extension of ZFC. We omit details f’f
the proofs of the following standard lemmas, as they may be observed in
[1] or [3].

LemMa 1 (Definability Lemma). Let M be a model of ZFCX. For fixed
new and first-order @(xg, ..., Xy 1) €KU{Pq, ..., Py_ 1}, the relation

{<P, Mo, - .2 mn—1>: P”“ (D(Cmov v

is definable in M.

Proof. Immediate by induction on complexity of ¢. w

DeriniioN 3. Fix new, and let M be a countable model of ZFX. A
subset D = (PYM is dense if (VpeP)(AqeP"(g<,pArqeD). A subset
G < (P"M is M-generic if:

() (VpeG)(VqeG)@AreG)(r <, p AT <,49);

(ii) (YpeG)(Vq =,p)(qeG); _

(iii) GND # O for all dense D < (P")™ which are definable in M.

We write M[G] for the structure (M, G, ..., G,-;) for the language
KU{Py, ..., P,_,}, where G; = {me|M|: @peG) p;(m) =1}. As usual, one
can prove that generic sets exist. But we shall prove something stronger in
Lemma 5. First, we have the usual Truth Lemma:

Lemma 2 (Truth Lemma). Fix new, and let M be a countable model of
ZFCX, Then for all M-generic G = P", all formulas @ of KU{Py, ..., Pr-1},
and all my, ..., meM,

MIGI@[ml il @reG)(pl-@(my s cm)).

Proof. Again, an easy induction on complexity of ¢. The genericity of
G gets us past the negation step. m
LemMa 3. Fix new, let M be a model of ZFCX, and let G < (P)™ be

M-generic. Then M[G]=2ZFC*VFo 1),

i cm,,.. 1)}
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Proof. This is well-known for n =1, and the general case is the
same. m

DEeFINITION 4. Let 4 = {G;: icI} be a family of subsets of P, M a model
of ZFCX. % is mutually M-generic if for all new and distinct ig,..., i, €l,

Gy % ... xG; _, is an M-generic subset of (P)™. Set

in-1

MTA =U MG x ... xGy _ T: Gy, Gy

[

(€% and new},
which is a structure for the language KU{P;: iel}.

Lalz(vmiA. 41 If ME=ZFCK, and % is mutually M-generic, then M[%]
EZFC* ¥ ') Hence Def (M [%]) = GBC.

Proof. The first part is immediate by Lemma 3, since sentences are
finite, It is well-known that the second part follows from the first. =

Our main lemma now appears.

LemMA 5. Let M be a countable model of ZFCX, K countable. Then there
exists a collection {G}: f€®2, ie2} with the following properties. For h: “2
=2, set G"={GI: fe2}.

(i) For all h: ®©2 -2, 9" is mutually M-generic.

(i) If g, h: “2—>2 and g # h, then there is no C-extension M™ of M such
that V9" < M™.

Before proving Lemma 5, we use it to prove the result we have been
working toward. Here is a precise restatement.

THEOREM. Let M be a countable model of GBC. Then there exists a
family {M™: [h: “2- 2]} of models of GBC with the following properties.

(@) M" is a C-extension of M. -

(b) There is no C-extension M* of M such that MPUM" < M* for
distinct g, h: ©2 - 2.

(c) M* has no proper C-extension, and g # h = M® # M".

Proof. Obviously (c) implies (b); however, we instead prove (b). Then
we may obtain-(c) if we replace each M* by a maximal expansion of M"
using Zorn’s Lemma. (This is Marek’s observation, Lemma 2.1 in [3])) So let
us see how to define M" to make (a) and (b) hold. Of course, Lemma 5 gives
us the answer. Choose {G}: fe€“2, ie2} satisfying properties (i) and (i) of
Lemma 5. For h: 22, set M* = Def (M, 9"); then (a) is clearly true. Also
M"=GB by property (i) together with Lemma 4. Finally, (b) follows from
property (ii). w '

Proof of Lemma 5. Let (D, new) be an enumeration of
U {D € P™: D is dense in P}, with infinite repetition. We will construct

elemen‘ts pieP for s€<®2 and ie2. This is done by induction on |si
according to the fol]owing inductive hypotheses for % > 1. (Set Py =ph = (Z).;
(0) dom(p)) = dom(p}) and p} # p} for all distinct (s, i3, <t, j> e("2) x 2.
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(1) Meeting dense sets: If D, S P", So,..., Sy—1 are members of "2
such that s;[(n—1) # s;{(n—1) for i #j, and fe™2, then {pf™: i <m)>nd
for some geD,_;.

(2) For all se™2, [{: () =1=p; (B} =n.

Suppose for a2 moment that such a construction can be carried out.
Then for fe®2 and i€2, set Gy = {peP: An)(p = Py}~ To check property
(i) (mutual genericity), suppose D is dense in P, he™2, and fo,.. ., fu~ ar€
distinct members of ©2. Choose n such that D = D, and filn # f;[n for all
distinct i, j < n. Then inductive hypothesis (1) at n+1 gives us what we need.
As for property (ii), if g, h: 22 and g 5 h, we may choose f €©2 such that
g(f) # h(f). Then G % and G} %" Hence no C-extension M tof M
can have @Pu%" = M*. For otherwise GI", G)” e M* and hence GG
is a cofinal class of ordinals having order type o, which violates replacement.

It remains to construct the conditions pi by induction on |s|. For fixed n
the construction of pi for |s| = n is internal within M. The idea is this: given
the conditions pi for |s| =n, then to get piao and piaq, we first extend the
conditions in order to meet D, while adding no new elements to
(7)1 (1)~(p})~ 1 (1). Next, we add such an element. The last step is to split
each pi into piao and pia,

Suppose pi is defined for all i€2, se"2. F ix the unique m such that

D. < P™. Enumerate all tuples d = {Sq, -+, Sm—1,J > such that Sg, ..., Sm—1
n

. are distinct members of "2 and fe™2; let (d: i <k) be such an enumera-.

tion. We successively extend the conditions pi (i€2,5e"2) in k stages
0,1,..., L..., k to (p});, as follows. First, set (P)o = pi. In general, if 1<k
then to define (pi),., from (pl),, first write @, as <50, --» Sm-15 £>. Extend the
m-tuple <(PLs .-, (P M)y to a tuple <go, ---s Gm—1Y€D,; we may do
this because D, is dense in P™. Further extend these g; to g; so that dom(g})
=, for some fixed oy (all j < m). Now set Py =4 for all j<m.
Finally, for <i, s> ¢ 1<f(), s;>: i,j <m}, extend (Psh to a functicn .(p;),,u1 with
domain o, by the rule: (p)).; (f) =0 for all Bea, , \dom((ph)).

Notice that throughout this procedure, we never add any new elements
to (094 ()N(ph)iy (1). Hence, we have (by the inductive hypothesis 2):
1(B: (P2 (B) =1 = (P} ()}l = n. We now extend the conditions (pl), (s€"2,
ic2) to conditions pi; (a-+2)—2 (for se"2, ie2, je2) by the rules:

(a) phaj() =1 for all se"2, ie2, je2.

. 0ifi=j,

(b) P;'\j(“kﬂ) = %1 i

Now (a) guarantees that |{8: p/(f) =1= p (B)}| is one greater than
béfore, hence = n+1 which preserves inductive hypothesis 2. Part (b) pre-
serves this property, and also guarantees the splitting required by inductive
hypothesis 0. =

Remark 4. As indicated in Remark 1, countability is not quite as
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essential as it appears: if ORD™ has cofinality w, then our theorem remains
true. (Similarly, for Ml=[Peano Arithmetic], if M has cofinality w then our
theorem goes through.) For suppose («,: n < ) is cofinal. Basically, at stage
1 we construct the p, (s€"2, ie2) so that every dense set is intersected. which
is %, definable with parameters in R(a,) (the sets of rank <oc7). This
argument was previously carried out for arithmetic in Schmerl [4]. Itn is also
shqwn there (Theorem 1.6) that if (N,: v<od is a MacDowell-Specker
chau}, there cf(o) > w, then N, has only one expansion to a model of
predicative second-order extension X% —CA of PA. In a more recent paper
Schmerl ES] has shown that in fact, if S <N, and {xeS: x<N“a‘vp?s
deﬁnab]e. in N, for all ag|N,|, then § is definable in N,. (A similar rejsult
appears in Theorem 1.5 of [4], but only for regular cardinals o)
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Orderability from selections:
Another solution to the orderability problem

by
Jan van Mill and Evert Wattel (Amsterdam)

Abstract. We prove that a Tychonov space X is a GO-space iff X admits a certain type of
(weak) selection.

0. Introduction. All spaces under discussion are Tychonov.

A space is called orderable iff its topology is generated by a linear
ordering. In addition, a space is called a generalized ordered space (ab-
breviated GO-space) iff there exists a linear order < on X such that every
point in X has arbitrary small <-convex neighborhoods. It is well known
that the class of GO-spaces coincides with the class of subspaces of orderable
spaces. As far as we know, the most general characterization of GO-spaces
was given by van Dalen & Wattel [1}:

A space X is GO-space iff X possesses an open subbase consisting of
two nests. :

In this paper we will give quite a different characterization of GO-
spaces, namely, we give a characterization in terms of selections. This
generalizes results from our paper [3] where the compact case was treated.

1. Preliminaries. Let X be a space and let 2¥ denote the hyperspace of
nopempty closed subsets of X. A selection for X is a map F: 2¥ - X such
that F(4)e A for all Ae2*. Let X(2) denote the 2-fold symmetric product of
X, ie. the subspace of 2¥ consisting of all non-empty closed subspaces of X
consisting of at most two points. A weak selection for X is a map s: X(2)
— X such that s(4)e 4 for all 4eX(2), It is easy to see that X has a weak
selection if and only if there is a map s: X2 — X such that for all x, ye X,

1) s(x, y) = s(y, x),
and
(2 s(x, ye{x, y}:

Such a map s: X?— X will also be called a weak selection.
‘Michael [2] showed that for a continuum X the following statements
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