Corollary 3.6. Let \((X, T)\) be a point-transitive flow where \(X\) is a sphere, real or complex projective space, or lens space (of dimension greater than one), and \(T\) is a connected abelian Lie group. Then \((X, T)\) satisfies all conclusions of Theorem 2.15 and Proposition 3.5.

References

Received 19 February 1979;
in revised form 17 August 1981

Connectivity properties in hyperspaces and product spaces

by

Charles Dorsett (College Station, Tex.)

Abstract. In this paper connectedness, local connectedness, and point-wise local connectedness in the class of product spaces and product spaces of hyperspaces are investigated and the relationships between these connectivity properties in hyperspaces of product spaces and product spaces of hyperspaces are determined. In order to include as many spaces as possible, the results in this paper are stated and proved for \(R_0\) and \(R_1\) topological spaces.

1. Introduction. One of the earliest results about connectivity properties in hyperspaces, due to Wojdyslawski [7] in 1939, is that for a metric continuum \((X, T)\), \((2^X, E(X))\) is locally connected (l.c.) iff \((X, T)\) is l.c. Since 1939 mathematicians have continued the investigation of connectivity properties in hyperspaces. In this paper connectivity properties in hyperspaces of product spaces and product spaces of hyperspaces are investigated. In order to include as many spaces as possible, the results in this paper are stated and proved for weak topological spaces. Listed below are definitions and theorems that will be utilized in this paper.

Definition 1.1. A space \((X, T)\) is \(R_0\) iff for each \(e \in T\) and \(x \in e\), \(|x| = 0\) [1].

Definition 1.2. A space \((X, T)\) is \(R_1\) iff for each pair \(x, y \in X\) such that \(x \neq y\), there exist disjoint open sets \(U\) and \(V\) such that \(x \in U\) and \(y \in V\) [1].

Definition 1.3. Let \((X, T)\) be a space, let \(A \subseteq X\), and define \(2^X\), \(C(X), K(X), S(A), I(A)\) as follows: \(2^X = \{F \subseteq X\} F\) is nonempty and closed, \(C(X) = \{F \subseteq 2^X\} F\) is connected, \(K(X) = \{F \subseteq 2^X\} F\) is compact, \(S(A) = \{F \subseteq 2^X\} F \subseteq A\), and \(I(A) = \{F \subseteq 2^X\} F \cap A \neq \phi\). Then the Vietoris topology on \(2^X\), denoted by \(E(X)\), is the smallest topology on \(2^X\) which satisfies the conditions that if \(G \subseteq T\), then \(S(G) \subseteq E(X)\) and \(I(G) \subseteq E(X)\) [6].

Theorem 1.1. The product of an arbitrary family of nonempty topological spaces is \(R_0\) iff each factor space is \(R_0\) [4].

Theorem 1.2. If \((X, T)\) is \(R_1\), then \((X, T)\) is \(R_0\) [5].

Theorem 1.3. If \((X, T)\) is \(R_0\), then the following are equivalent: (a) \(X\) is connected, (b) \(2^X\) is connected, and (c) \(K(X)\) is connected [2].
Theorem 1.4. If \((X, T)\) is \(R_0\) and \(B \in C(X)\), then \(2^X\) is lc. (connected im kleinen \(c.i.k\)) at \(B\) iff for each \(U \in T\) such that \(B \subseteq U\), there exists an open connected set \(V\) such that \(B \subseteq V \subseteq U\) (for each \(U \in T\) such that \(B \subseteq U\), the component of \(U\) containing \(B\) is in \(U\)) \([2]\).

Theorem 1.5. If \((X, T)\) is \(R_0\) and \(M \subseteq 2^X\), then the following are equivalent: (a) \(X\) is lc. \(c.i.k\) at each element of \(M\), (b) \(2^X\) is lc. \(c.i.k\) at each element of \(K(M)\), and (c) \(X\) is lc. \(c.i.k\) at each element of \(K(M)\), (d) \(X\) is lc. \(c.i.k\) at each element of \(\{x\in M\}|\{x\} \in M\}|\{x\} \in M\} \([2]\).

Theorem 1.6. If \((X, T)\) is \(R_0\) and \(C\) is a component of \(X\), then the following are equivalent: (a) \(C\) is lc. \(c.i.k\) at \(C\), (b) \(C\) is closed open in \(X\), and (c) \(2^X\) is lc. \(c.i.k\) at \(C \([2]\).

Theorem 1.7. If \((X, T)\) is \(R_0\) and \(C \subseteq X(X) \cap C(X)\), then \(2^X\) is lc. \(c.i.k\) at \(C\) if \(K(X)\) is lc. \(c.i.k\) at \(C \([2]\).

Theorem 1.8. If \((X, T)\) is \(R_0\), \(B \subseteq K(X)\), and \(2^B\) or \(K(X)\) is lc. \(c.i.k\) at each component of \(B\), then \(2^B\) and \(K(X)\) are lc. \(c.i.k\) at \(B \([2]\).

Theorem 1.9. The product of an arbitrary family of nonempty topological spaces \(R_0\) iff each factor space is \(R_0\) \([5]\).

Theorem 1.10. If \((X, T)\) is \(R_1\) and \(A \subseteq K(X)\), then the following are equivalent: (a) \(2^A\) is lc. \(c.i.k\) at \(A\), (b) \(2^A\) is lc. \(c.i.k\) at each component of \(A\), and (c) \(A\) is a component of \(A\) if \(U \in T\) such that \(A \subseteq U\), then there exists an open connected set \(V\) such that \(A \subseteq V \subseteq U\), \((U)\) is lc. \(c.i.k\) at each component of \(A\), and \(A\) is lc. \(c.i.k\) at \(A \([3]\).

Theorem 1.11. If \((X, T)\) is locally compact \(R_0\) and \(A \subseteq K(X)\), then the following are equivalent: (a) \(K(X)\) is lc. \(c.i.k\) at \(A\), (b) \(K(X)\) is lc. \(c.i.k\) at each component of \(A\), (c) \(K(X)\) is lc. \(c.i.k\) at each component of \(A\), if \(U \in T\) such that \(A \subseteq U\), then the component of \(U\) containing \(A\) contains \(A\) in its interior, (d) \(2^A\) is lc. \(c.i.k\) at each component of \(A\), and (e) \(2^A\) is lc. \(c.i.k\) at \(A \([3]\).

2. Connectivity properties and product spaces. The first result follows from Theorem 1.1 and Theorem 1.3.

Corollary 2.1. If \((X_\Lambda, T_\Lambda)\) is nonempty and \(R_0\) for all \(\Lambda \subseteq A\), then the following are equivalent: (a) \((X_\Lambda, T_\Lambda)\) is connected for all \(\Lambda \subseteq A\), (b) \(2^{\Lambda X_\Lambda}\) is connected, (c) \(K(\Lambda X_\Lambda)\) is connected, (d) \(\Lambda X_\Lambda\) is connected, and (e) \(\Lambda X_\Lambda\) is connected.

Theorem 2.1. For each \(\Lambda \subseteq A\) let \((X_\Lambda, T_\Lambda)\) be a nonempty \(R_0\) space and let \(C_\Lambda \subseteq C(X_\Lambda)\). If \(2^{\Lambda X_\Lambda}\) is lc. \(c.i.k\) at \(\Lambda X_\Lambda\), then \(\Lambda X_\Lambda\) is lc. \(c.i.k\) at \(\Lambda X_\Lambda\) where

\[
W_\Lambda = \begin{cases}
C_\Lambda & \text{if } \Lambda \notin F, \\
X_\Lambda & \text{if } \Lambda \notin F
\end{cases}
\]

and \(F \subseteq A\) = \{\Lambda \subseteq A\} | \(B \subseteq \Lambda X_\Lambda\) \(X_\Lambda\) is not connected\}, \(\Lambda X_\Lambda\) is not connected\} is finite.

Proof. For each \(\beta \subseteq A\) let \(P_\beta: \Pi_{\Lambda \subseteq A} X_\Lambda \to X_\beta\) be the projection function.

Consider the case that \(2^{\Lambda X_\Lambda}\) is lc. \(c.i.k\) at \(\Lambda X_\Lambda\). Let \(B \in A\) and let \(0 \subseteq \Lambda \subseteq T_\beta\) such that \(C_\beta \subseteq 0\). For each \(\Lambda \subseteq A\) let

\[
B_\Lambda = \begin{cases}
0 & \text{if } \Lambda = \beta, \\
X_\Lambda & \text{if } \Lambda \neq \beta
\end{cases}
\]

Then \(\Pi_{\Lambda \subseteq A} C_\Lambda = \Pi_{\Lambda \subseteq A} R_\Lambda\), which is open in \(\Pi_{\Lambda \subseteq A} X_\Lambda\), and by Theorem 1.4, there exists an open connected set \(\gamma\) such that \(\Pi_{\Lambda \subseteq A} C_\Lambda = \gamma \subseteq \Pi_{\Lambda \subseteq A} R_\Lambda\). Then \(C_\beta = P_\beta(\gamma) \subseteq 0\), where \(P_\beta(\gamma)\) is open connected. Hence, by Theorem 1.4, \(2^{\Lambda X_\Lambda}\) is lc. \(c.i.k\) at \(\beta\). Also, since \(P_\beta(\gamma) = X_\beta\) except for finitely many \(\Lambda \subseteq A\), then \(F_\beta = \{\Lambda \subseteq A\} | X_\beta\) is not connected\} is finite. Let \(F \subseteq A\). For each \(\Lambda \subseteq A\), \(X_\Lambda\) is a closed open component and by Theorem 1.6, \(2^{\Lambda X_\Lambda}\) is lc. \(c.i.k\) at \(\Lambda X_\Lambda\). Therefore \(2^{\Lambda X_\Lambda}\) is lc. \(c.i.k\) at \(\Lambda X_\Lambda\) for all \(\Lambda \subseteq A\) and \(2^{\Lambda X_\Lambda}\) is connected except for finitely many \(\Lambda \subseteq A\), which implies \(\Pi_{\Lambda \subseteq A} X_\Lambda\) is lc. \(c.i.k\) at \(\Pi_{\Lambda \subseteq A} W_\Lambda\).

By a similar argument, the theorem follows for \(c.i.k\).

Theorem 2.2. For each \(\Lambda \subseteq A\) let \((X_\Lambda, T_\Lambda)\) be nonempty \(R_0\) and let \(M_\Lambda \subseteq 2^{X_\Lambda}\). Then the following are equivalent: (a) \(X_\Lambda\) is lc. \(c.i.k\) at each element of \(M_\Lambda\) for all \(\Lambda \subseteq A\) and \(X_\Lambda\) is connected except for finitely many \(\Lambda \subseteq A\), (b) \(\Pi_{\Lambda \subseteq A} X_\Lambda\) is lc. \(c.i.k\) at each element of \(\Pi_{\Lambda \subseteq A} M_\Lambda\), (c) \(2^{\Lambda X_\Lambda}\) is lc. \(c.i.k\) at each element of \(\Pi_{\Lambda \subseteq A} M_\Lambda\), (d) \(K(\Pi_{\Lambda \subseteq A} X_\Lambda)=\Pi_{\Lambda \subseteq A} (K(X_\Lambda))\) is lc. \(c.i.k\) at each element of \(\Pi_{\Lambda \subseteq A} M_\Lambda\), (e) \(\Pi_{\Lambda \subseteq A} X_\Lambda\) is lc. \(c.i.k\) at each element of \(\Pi_{\Lambda \subseteq A} M_\Lambda\), (f) \(2^{\Lambda X_\Lambda}\) is lc. \(c.i.k\) at each element of \(\Pi_{\Lambda \subseteq A} M_\Lambda\), (g) \(2^{\Lambda X_\Lambda}\) is lc. \(c.i.k\) at each element of \(\Pi_{\Lambda \subseteq A} M_\Lambda\), (h) \(\Pi_{\Lambda \subseteq A} X_\Lambda\) is lc. \(c.i.k\) at each element of \(\Pi_{\Lambda \subseteq A} M_\Lambda\), (i) \(\Pi_{\Lambda \subseteq A} X_\Lambda\) is lc. \(c.i.k\) at each element of \(\Pi_{\Lambda \subseteq A} M_\Lambda\), (j) \(\Pi_{\Lambda \subseteq A} X_\Lambda\) is lc. \(c.i.k\) at each element of \(\Pi_{\Lambda \subseteq A} M_\Lambda\), (k) \(\Pi_{\Lambda \subseteq A} X_\Lambda\) is lc. \(c.i.k\) at each element of \(\Pi_{\Lambda \subseteq A} M_\Lambda\).
is lc. (c.i.k.) at each element of $\{K_\alpha\}_{\alpha \in A}$, and (i)
$\prod K(X_\alpha)$ is lc. (c.i.k.) at each element of $\{\{x_\alpha\}_{\alpha \in A} | x_\alpha \in M_\alpha \text{ for all } \alpha \in A\}$.

Proof. Consider the theorem for lc. The straightforward proof that (a) and (b) are equivalent is omitted. By Theorem 1.5 (b) through (g) are equivalent and by Theorem 2.1 (g) implies (h).

(h) implies (i): For each $\alpha \in A$ let $K_\alpha \in K(M_\alpha)$. Let $\beta \in A$ and let $C_\beta \in C(M_\beta)$. For each $\alpha \neq \beta$ let $x_\alpha \in M_\alpha$. For each $\alpha \in A$ let

$$W_\alpha = \begin{cases} C_\beta & \text{if } \alpha = \beta, \\ \{x_\alpha\} & \text{if } \alpha \neq \beta. \end{cases}$$

Then for each $\alpha \in A$, $W_\alpha \in C(M_\alpha)$ and $\prod W_\alpha$ is lc. at $\{W_\beta\}_{\beta \neq \alpha}$, which implies 2^{\times_α} is lc. at W_α for all $\alpha \in A$ and 2^{\times_α} is connected except for finitely many $\alpha \in A$. Thus 2^{\times_α} is lc. at each element of $C(M_\alpha)$ and by Theorem 1.5 2^{\times_α} is lc. at each element of $K(M_\alpha)$, which implies 2^{\times_α} is lc. at K_α. Therefore 2^{\times_α} is lc. at K_α for all $\alpha \in A$ and 2^{\times_α} is connected except for finitely many $\alpha \in A$, which implies $\prod 2^{\times_\alpha}$ is lc. at $\{K_\alpha\}_{\alpha \in A}$.

(i) implies (j): Since $\{\{x_\alpha\}_{\alpha \in A} | x_\alpha \in M_\alpha \text{ for all } \alpha \in A\} \subset \{\{x_\beta\}_{\beta \in A} | K_\beta \in K(M_\beta) \text{ for all } \beta \in A\}$, then $\prod 2^{\times_\alpha}$ is lc. at each element of $\{\{x_\beta\}_{\beta \in A} | K_\beta \in K(M_\beta) \text{ for all } \beta \in A\}$.

(j) implies (k): For each $\alpha \in A$ let $K_\alpha \in K(M_\alpha)$. Let $\beta \in A$ and let $x_\alpha \in M_\alpha$. For each $\alpha \neq \beta$ let $x_\alpha \in M_\alpha$. Then $\prod 2^{\times_\alpha}$ is lc. at $\{x_\alpha\}_{\alpha \in A}$, which implies 2^{\times_α} is lc. at $\{x_\alpha\}$ for all $\alpha \in A$. Hence 2^{\times_α} is lc. at each element of $\{x_\alpha\}_{\alpha \in A}$ and by Theorem 1.5 $K(X_\alpha)$ is lc. at each element of $K(M_\alpha)$, which implies $K(X_\alpha)$ is lc. at K_α. Also, since 2^{\times_α} is connected except for finitely many $\alpha \in A$, then by Theorem 1.3 $K(X_\alpha)$ is connected except for finitely many $\alpha \in A$. Therefore $K(X_\alpha)$ is lc. at K_α for all $\alpha \in A$ and $K(X_\alpha)$ is connected except for finitely many $\alpha \in A$, which implies $\prod K(X_\alpha)$ is lc. at $\{K_\alpha\}_{\alpha \in A}$.

(k) implies (l): Since $\{\{x_\alpha\}_{\alpha \in A} | x_\alpha \in M_\alpha \text{ for all } \alpha \in A\} \subset \{\{x_\beta\}_{\beta \in A} | K_\beta \in K(M_\beta) \text{ for all } \beta \in A\}$, then $\prod K(X_\alpha)$ is lc. at each element of $\{\{x_\beta\}_{\beta \in A} | x_\beta \in M_\beta \text{ for all } \beta \in A\}$.

(l) implies (a): Let $\beta \in A$ and let $x_\beta \in M_\beta$. For each $\alpha \neq \beta$ let $x_\alpha \in M_\alpha$. Then $\prod K(X_\alpha)$ is lc. at $\{x_\alpha\}$, which implies $K(X_\beta)$ is lc. at $\{x_\beta\}$ for all $\beta \in A$ and $K(X_\beta)$ is connected except for finitely many $\beta \in A$. Then by Theorem 1.3 X_β is lc. at x_β. Therefore X_β is lc. at each element of M_β and since $K(X_\beta)$ is connected except for finitely many $\beta \in A$, then by Theorem 1.3 X_β is connected except for finitely many $\beta \in A$.

By a similar argument the theorem follows when lc. is replaced by c.i.k.

If M_α is a component of X_α for all $\alpha \in A$, Then the 24 statements in Theorem 2.2 are equivalent and each of the statements imply M_α is closed open for all $\alpha \in A$ and $\prod M_\alpha$ is closed open in $\prod X_\alpha$. Also, if $M_\alpha = X_\alpha$ for all $\alpha \in A$, then the 24 statements are equivalent and each of the statements imply components of X_α are closed open for all $\alpha \in A$ and components of $\prod X_\alpha$ are closed open.

Corollary 2.2. For each $\alpha \in A$ let $\{X_\alpha, V_\alpha\}$ be nonempty compact R_0. Then the following are equivalent: (a) X_α is lc. for all $\alpha \in A$ and X_α is connected except for finitely many $\alpha \in A$, (b) $\prod X_\alpha$ is lc. and $\prod 2^{\times_\alpha}$ is lc. except for finitely many $\alpha \in A$, (c) $\prod 2^{\times_\alpha}$ is lc. and $\prod X_\alpha$ is connected except for finitely many $\alpha \in A$.

Theorem 2.3. For each $\alpha \in A$ let $\{X_\alpha, V_\alpha\}$ be nonempty compact R_0 and let $M_\alpha \in C(X_\alpha)$ such that X_α is lc. (c.i.k.) at each element of M_α for all $\alpha \in A$. Then the following are equivalent: (a) $\prod \overline{\prod X_\alpha}$ is lc. (c.i.k.) at $\prod M_\alpha$, (b) $\prod 2^{\times_\alpha}$ is lc. (c.i.k.) at $\{M_\alpha\}_{\alpha \in A}$, and (c) X_α is connected except for finitely many $\alpha \in A$.

The proof is straightforward using the previous results and is omitted.

Lemma 2.1. For each $\alpha \in A$ let $\{x_\alpha, V_\alpha\}$ be a nonempty topological space, let K_α be a nonempty compact subset of X_α, and let θ be open in $\prod X_\alpha$ such that $\prod K_\alpha \subset \theta$. Then for each $\alpha \in A$ there exists $M_\alpha \in V_\alpha$ such that $M_\alpha = X_\alpha$ except for finitely many $\alpha \in A$ and $\prod K_\alpha \subset \theta'$.

Proof. Since a base for the weak topology on $\prod X_\alpha$ is $\mathcal{B} = \{\prod O_\alpha | O_\alpha \in V_\alpha \text{ for all } \alpha \in A \text{ and } O_\alpha = X_\alpha \text{ except for finitely many } \alpha \in A\}$, then for each $\{x_\alpha\}_{\alpha \in A} \in \prod K_\alpha$, let $\prod O_\alpha \in \mathcal{B}$ such that $\{x_\alpha\}_{\alpha \in A} \in \prod O_\alpha \in \theta'$.

Then $\prod O_\alpha \in \{x_\alpha\}_{\alpha \in A} \subset \prod K_\alpha$ is an open cover of $\prod K_\alpha$ and there exists a finite subcover $\{\prod O_{\alpha_0}\}_{i=1}^n$. Let $F = \{\alpha \in A | O_{\alpha_0} \neq X_\alpha \text{ for some } i \in \{1, \ldots, n\}\}$, which is finite. For each $\alpha \in A$ and $y_\alpha \in K_\alpha$ let

$$N_\alpha = \begin{cases} x_\alpha & \text{if } \alpha \in F, \\ y_\alpha & \text{if } \alpha \notin F, \end{cases}$$

and let

$$M_\alpha = \begin{cases} x_\alpha & \text{if } \alpha \in F, \\ y_\alpha & \text{if } \alpha \notin F, \end{cases}$$

for $\alpha \in A$. Then M_α is lc. at each element of M_α.
Then $M_x \in T_x$ for all $x \in A$, $M_x = X_x$ except for finitely many $x \in A$, and
\[\prod_{x \in A} K_x = \prod_{x \in A} M_x = \emptyset. \]

Theorem 2.4. For each $x \in A$ let (X_x, T_x) be nonempty R_0 and let $K_x \in K(X_x) \cap C(X_x)$. Then the following are equivalent:
(a) X_x is connected except for finitely many $x \in A$ and if $O_x \in T_x$ then there exists an open connected set C_x such that $K_x \subseteq C_x \subseteq O_x$ for all $x \in A$,
(b) \[\prod_{x \in A} K_x \quad \text{is l.c. at} \quad \{K_x\}_{x \in A}, \]
(c) \[\prod_{x \in A} K_x \quad \text{is l.c. at} \quad \{K_x\}_{x \in A}, \]
(d) \[\prod_{x \in A} K_x \quad \text{is l.c. at} \quad \{K_x\}_{x \in A}, \]
(e) \[\prod_{x \in A} K_x \quad \text{is l.c. at} \quad \{K_x\}_{x \in A}, \]
(f) $K(\prod_{x \in A} X_x)$ is l.c. at $\{K_x\}_{x \in A}$.

Proof: (a) implies (b): By Theorem 1.3 $K(X_x)$ is connected except for finitely many $x \in A$, by Theorem 1.4 X_x is l.c. at K_x for all $x \in A$, and by Theorem 2.6 $K(X_x)$ is l.c. at K_x for all $x \in A$, which implies $\prod_{x \in A} K(X_x)$ is l.c. at $\{K_x\}_{x \in A}$.

(b) implies (c): Since $\prod_{x \in A} K(X_x)$ is l.c. at $\{K_x\}_{x \in A}$, then $K(X_x)$ is connected except for finitely many $x \in A$ and $K(X_x)$ is l.c. at K_x for all $x \in A$, which implies $\prod_{x \in A} K(X_x)$ is l.c. at $\{K_x\}_{x \in A}$.

(c) implies (d): Since $\prod_{x \in A} K(X_x)$ is l.c. at $\{K_x\}_{x \in A}$, then X_x is connected except for finitely many $x \in A$, which implies X_x is connected except for finitely many $x \in A$, and X_x is l.c. at K_x for all $x \in A$. Let θ be open in $\prod_{x \in A} X_x$ such that $\prod_{x \in A} K_x \subseteq \theta$. By Lemma 2.1 for each $x \in A$ there exists $M_x \in T_x$ such that $M_x \subseteq X_x$ except for finitely many $x \in A$ and $\prod_{x \in A} K_x \subseteq \prod_{x \in A} M_x = \emptyset$. For each $x \in F = \{x \in A \mid M_x \notin X_x \}$ or $x \notin F$ let C_x be open connected in X_x such that $K_x \subseteq C_x \subseteq M_x$. For each $x \in A$ let $B_x = \begin{cases} C_x & \text{if } x \notin F, \\ X_x & \text{if } x \in F. \end{cases}$

Then $\prod_{x \in A} B_x$ is open connected in $\prod_{x \in A} X_x$ and $\prod_{x \in A} K_x \subseteq \prod_{x \in A} B_x \subseteq \theta$. Thus by Theorem 1.4 $\prod_{x \in A} B_x$ is l.c. at $\prod_{x \in A} K_x$.

(d) implies (e): By Theorem 1.7 $K(\prod_{x \in A} X_x)$ is l.c. at $\prod_{x \in A} K_x$.

(e) implies (a): By Theorem 1.7 $\prod_{x \in A} K_x$ is l.c. at $\prod_{x \in A} K_x$. Then by Theorem 2.1 $\prod_{x \in A} K_x$ is l.c. at $\{K_x\}_{x \in A}$ and X_x is connected except for finitely many $x \in A$. Since $\prod_{x \in A} K_x$ is l.c. at $\{K_x\}_{x \in A}$, then 2^n is l.c. at K_x for all $x \in A$, which implies if $O_x \in T_x$ such that $K_x \subseteq O_x$, then there exists an open connected set C_x such that $K_x \subseteq C_x \subseteq O_x$ for all $x \in A$.

Theorem 2.5. For each $x \in A$ let (X_x, T_x) be nonempty R_0 and let $K_x \in K(X_x) \cap C(X_x)$. Then the following are equivalent:
(a) X_x is connected except for finitely many $x \in A$ and if $O_x \in T_x$ such that $K_x \subseteq O_x$, then the component of O_x containing K_x contains K_x in its interior for all $x \in A$,
(b) $\prod_{x \in A} K(X_x)$ is c.i.k. at $\{K_x\}_{x \in A}$,
(c) $\prod_{x \in A} K(X_x)$ is c.i.k. at $\{K_x\}_{x \in A}$,
(d) $\prod_{x \in A} K(X_x)$ is c.i.k. at $\{K_x\}_{x \in A}$,
(e) $K(\prod_{x \in A} X_x)$ is c.i.k. at $\{K_x\}_{x \in A}$.

The theorem follows by an argument similar to that for Theorem 2.4 and is omitted.

**Theorem 2.6. For each $x \in A$ let (X_x, T_x) be nonempty R_0 and let $C_x \in K(X_x)$ such that X_x is connected except for finitely many $x \in A$ and if $x \in A$, K_x is component of C_x, and $O_x \subseteq T_x$ such that $K_x \subseteq O_x$, then there exists an open connected set B_x such that $K_x \subseteq B_x \subseteq O_x$. Then $\prod_{x \in A} K(X_x)$ and $\prod_{x \in A} K(X_x)$ are l.c. at $\{C_x\}_{x \in A}$ and $K(\prod_{x \in A} X_x)$ and $\prod_{x \in A} K(X_x)$ are l.c. at $\{C_x\}_{x \in A}$.

Proof. Since X_x is connected except for finitely many $x \in A$, then X_x and $K(X_x)$ are connected except for finitely many $x \in A$. By Theorem 1.4 X_x is l.c. at each component of C_x and $K(X_x)$ are l.c. at C_x. Hence $\prod_{x \in A} K(X_x)$ and $\prod_{x \in A} K(X_x)$ are l.c. at $\{C_x\}_{x \in A}$. Let θ be a component of $\prod_{x \in A} C_x$. Then $\theta = \prod_{x \in A} K_x$, where K_x is a component of C_x for all $x \in A$, and by Theorem 2.4 $\prod_{x \in A} K(X_x)$ and $K(\prod_{x \in A} X_x)$ are l.c. at θ. Then by Theorem 1.8 $\prod_{x \in A} X_x$ and $K(\prod_{x \in A} X_x)$ are l.c. at $\prod_{x \in A} C_x$.

**Theorem 2.7. For each $x \in A$ let (X_x, T_x) be nonempty R_0 and let $C_x \in K(X_x)$ such that X_x is connected except for finitely many $x \in A$ and if $x \in A$, K_x is component of C_x, and $O_x \subseteq T_x$ such that $K_x \subseteq O_x$, then the component of O_x containing K_x contains K_x in its interior. Then $\prod_{x \in A} K(X_x)$ and $\prod_{x \in A} K(X_x)$ are c.i.k. at $\{C_x\}_{x \in A}$ and $K(\prod_{x \in A} X_x)$ and $\prod_{x \in A} K(X_x)$ are c.i.k. at $\{C_x\}_{x \in A}$.

The theorem follows by an argument similar to that for Theorem 2.6 and is omitted.

Theorem 2.8. For each $x \in A$ let (X_x, T_x) be nonempty R_0 and let $C_x \in K(X_x)$ for all $x \in A$. Then the following are equivalent:
(a) X_x is connected except for finitely many $x \in A$ and if $x \in A$, K_x is a component of C_x, and $O_x \subseteq T_x$.
such that \(K_s \subseteq O_s \), then there exists an open connected set \(B_s \) such that
\(K_s \subseteq B_s \subseteq O_s \). (b) \(\prod X_s \) is l.c. at \(\{C_s\}_{s \in A^*} \) and \(\prod 2^{s} \) is l.c. at \(\{C_s\}_{s \in A^*} \). (d)
\(K(\prod X_s) \) is l.c. at \(\prod C_s \) and (e) \(\prod 2^{s} \) is l.c. at \(\prod C_s \).

Proof. By Theorem 2.6 (a) implies (b).

(b) implies (c): Since \(\prod K(X_s) \) is l.c. at \(\{C_s\}_{s \in A^*} \), then \(K(X_s) \) is connected except for finitely many \(s \in A \) and \(K(X_s) \) is l.c. at \(C_s \) for all \(s \in A \). Then by Theorem 1.3 \(2^{s} \) is connected except for finitely many \(s \in A \) and by Theorem 1.10 \(2^{s} \) is l.c. at \(C_s \) for all \(s \in A \). Thus \(\prod 2^{s} \) is l.c. at \(\{C_s\}_{s \in A^*} \).

(c) implies (d): Since \(\prod 2^{s} \) is l.c. at \(\{C_s\}_{s \in A^*} \), then \(2^{s} \) is connected except for finitely many \(s \in A \) and \(2^{s} \) is l.c. at \(C_s \) for all \(s \in A \). Then by Theorem 1.3 \(X_s \) is connected except for finitely many \(s \in A \), by Theorem 1.10 if \(s \in A \), \(K_s \) is a component of \(C_s \), and \(O_s \in T_s \) such that \(K_s \subseteq O_s \), then there exists an open connected set \(B_s \) such that \(K_s \subseteq B_s \subseteq O_s \), and by Theorem 2.6 \(\prod 2^{s} \) is l.c. at \(\{C_s\}_{s \in A^*} \).

(d) implies (e): Since \(\prod X_s \) is \(R \), \(\prod C_s \subseteq K(\prod X_s) \), and \(\prod 2^{s} \) is l.c. at \(\prod C_s \), then by Theorem 1.10 \(K(\prod X_s) \) is l.c. at \(\prod C_s \).

(e) implies (a): Let \(\beta \in A \), let \(K_s \) be a component of \(C_s \), and let \(O_s \in T_s \) such that \(K_s \subseteq O_s \). For each \(s \neq \beta \) let \(K_s \) be a component of \(C_s \). Then \(\prod K_s \) is a component of \(\prod C_s \) and by Theorem 1.10 \(\prod X_s \) is l.c. at \(\prod K_s \). Then by Theorem 2.4 \(X_s \) is connected except for finitely many \(s \in A \) and there exists an open connected set \(B_s \) such that \(K_s \subseteq B_s \subseteq O_s \).

Theorem 2.9. For each \(s \in A \) let \((X_s, T_s) \) be nonempty locally compact \(R \), and let \(C_s \subseteq K(X_s) \) for all \(s \in A \), where \(X_s \) is compact except for finitely many \(s \in A \). Then the following are equivalent: (a) \(X_s \) is connected except for finitely many \(s \in A \) and if \(s \in A \), \(K_s \) is a component of \(C_s \), and \(O_s \in T_s \) such that \(K_s \subseteq O_s \), then the component of \(O_s \) containing \(K_s \) contains \(K_s \) in its interior, (b) \(\prod K(X_s) \) is c.i.k. at \(\{C_s\}_{s \in A^*} \), (c) \(\prod 2^{s} \) is c.i.k. at \(\{C_s\}_{s \in A^*} \), (d) \(K(\prod X_s) \) is c.i.k. at \(\prod C_s \), and (e) \(\prod 2^{s} \) is c.i.k. at \(\prod C_s \).

The theorem follows by an argument similar to that for Theorem 2.8 and is omitted.