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On Michael’s problem concerning the Lindelof property
in the Cartesian products

by

K. Alster* (Lubbock, Tex)

Abstract. In this paper we present a negative solution of Michael's conjecture which says
that if Yx X is Lindeldf, for every hereditarily Lindelsf space Y, then Yx X® is Lindelsf, for
every hereditarily Lindelsf space Y.

Introduction. It is known that if Y is a hereditarily Lindelof space and X
a metric separable space then Yx X and also ¥x X“ are Lindelof. Z. Frolik
proved (see [F1]) that if Y is a hereditarily Lindel6f and X is a Lindelsf and
complete in the sense of Cech space then Yx X and also Yx X* are Lindeldf.

"R. Telgarski showed (see [T]) that if Y is a hereditarily Lindel6f space and X

a Lindelof and scattered space then Yx X is Lindelof. I have improved the
result of Telgarski [Al,], by showing that ¥Yx X® is Lindelsf. I think that
these results were the motivation of Michael’s conjecture which says that if
the product Yx X is Lindelsf for every hereditarily Lindelsf space Y then
Yx X is Lindelof for every hereditarily Lindelof space Y. In this paper we
proved that the answer to the Michael's conjecture is a negative one.

Examples.

ExampLE 1. There exists Z such that, for every natural number n and
for every hereditarily Lindeldf space ¥, the product ¥YxZ" is Lindeldf but Z¢
is not.

ExampLE 2. There exist a separable metric space M and a space X such
that, for every Lindelof space Y and every natural number n, the products
Yx X" and X® are Lindelof but M x X® is not.

It is easy to see that in order to obtain Example 1 it is enough to put Z
=M x X, where M and X are from Example 2.

* 1978. Mathematics Subject Classification. Primary 54 B 10.
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Terminology and notation. Our topological terminology follows [E].

Let us recall that X is a P-space if every Gysubset of X is open. The
symbol N stands for natural numbers and D = {0, 1} for the two-points set.
Greek letters are used to denote ordinal numbers, in particular w stands for
the first infinite ordinal number and w, for the first uncountable ordinal
number. The symbol D stands for the Cantor set and B(i,...i,), where
{io, ..., 1.} = D, denotes the set {ig} x ... x {i,) xDxDx ... If a is an ordinal
number then we shall identify it with the set of ordinal numbers less than a.
If 4 is a set then the symbol |A| stands for the cardinality of A.

Auxiliary lemmas.

Lemma 1. If N, = N x [k}, for ke D, h: No®N, = D is a mapping such
that h(N,) =k, for keD, and B is an analytic subset of the Cantor set then

there is a closed subset By of (Ng@®N,)® such that f = h°|B, is a mapping from
B; onto B. -

Proof. Let g be a mapping from N°® onto B Then B
={(x, 9(x): xeN®} is a closed subset of N®xD®. Let gx, for keD, be a
mapping given by g, (n, k) = n. Write z = [{g0®g,) AR]®. 1t is easy to see that
z is a homeomorphism from (No@N,)® onto N® x D®. Now it is enough to
put B, =z"1(B).

Let us attach to every limit countable ordinal number « a monotonically
increasing sequence («(n):, of non-limit ordinal numbers which converges

" to a in the order topology of w,. Let us put A= {aeD“': la=t ()|
<w}uU{aeD®': o is a limit ordinal number less than w; and a;*(1)
= {a(n): neN}}. The topology on 4 is induced by the sets of the form
Ba, p)={bed: b|p+1 =df+1}.

LEMMA 2. The space A has the Lindelof property.

The proof of Lemma 2 appeared in [P]. We shall give a sketch of it for
the sake of completeness.

Proof. Let % be an arbitrary open covering of A. There is B, < w, and
Ue# such that B(0, fo) = U, where 0 =(0...0..). Let us put %,
= {B(0, Bo)}. If %, and B, for i <n, are defined then put K, = {aecAd:
a”'(1) =B, +1}. The set K, is countable so there are Bus1 > B, such that
Uysy = (B(a, Bovy): ack,) refines «. Put B=sup{f,: neN). Notice that
if a#a; then ac(iU %, neN|. Indeed, there is neN such that
a'(nB=a*()n(B,+1). Let « be an element of K, such that
d|f =alf. Then acB(d, Bus1)EUpy .

Lemma 3. If B is a countable ordinal number not less than  then there
is one-to-one function hy: N~ B from N onto B such that for every limit
ordinal number o not greater than B there are subsequences of natural numbers
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(M= and (sde=1 such that the following conditions are satisfied:

(@) hy(m) = (), for keN,

(b) for every keN and for every i< if hg (i) < o then hy (i) < a(s§).

The sequence (x(sp))iZ; is a subsequence of (x(n)2,, where
(o(m))i= ; was defined in connection with Lemma 2.

Proof. We shall consider only the more complicated case when the set
{o < B: o is a limit number} is infinite. Let N = | IN;j=0,1,2,..} be
a decomposition of N such that elements of it are infinite and pairwise

disjoint. Let (a;)ji; be the sequence consisting of all limit numbers not
greater than B. For every jeN, there is a subsequence (c;/)2, of natural
numbers such that if i and i'eN and i#i then [o;(cy): keNln
” . . [ 3 .
Aoy (ci): keN} = @. Write {f;: ie N} = p\ {o;(c}): k,jeN}. Let us put
(G =(sghE, and nj' =infN,. If n, ..., m are defined then put mL,
=inf{neN: n>n'l. Write
inf N, if f;2a,
Moy = inf{neNg: n>n, where k =inf{k'eN: f; <o, (ss))}, if B, <o
. a ;. @,
and hy(ns ) = B;. Let us assume that (m;')i2,, (le),i‘;l,. e (mRZ 1 (890851
are defined and the function hy' is described on the set

By By} o {op(ed): keN and j <j} in such a way that the conditions (a)
and (b) are satisfied. Write .

0,
ki=9."., iy
inf{keN: ¢4y <o{s),

if a0, >0
if g <oy

for i <j, and
. . . aig g
k' =inf {teN: for every i<j such that i o <ajyq then gy (¢’ >a
. oy . o, . 1. 3 . j 2
it T= (B, ... 8} v {{a(cd): keN}\lw(s)): keN}: i<j}, #eT and ¢
a1y}
<ajyy then @ <oy q(e?*)).
. . i1
Let us put s¢*!=cy%l.,, for keN and ny
; i i . %y I
every i <, if k>0 then ng*'>ml} If n*t, ... mI*! are defined then
i inf j i+ 1y, n
put mgt =infneNypin > n " I Qe {Biu s} U loje g (6 k< K} then
write n, = inf [ne Ny hy(n) is not defined, if ¢ <a;, for i <j+1, then there is

=inf{neN;,,: for

t;e N such that a;(s;)) > @ and n > n;/} and put hy(n,) = @. If the domain of by

is equal to N" and N’ # N then it is enough to replace i, by the composition
hyoh, where h is a one-to-one function from N onto N’ preserving the order of
natural numbers.
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Construction of the space X and M from Example 2. Write
A={u;: le{—1}Uw,} where

0, if A=-1,
a1={a9+w2, if 1=0+1,
sup{ag: 6 <4}, if A is a limit number.

If 2 =041 then put o, (n) = ay+(n—w+1, for neN. If A is a limit number
then let us attach to it a monotonically increasing sequence (A(n)),
of non-limit ordinal numbers converging to 1 in ,; and put o, (n) = o L
Let us take A'={aeD"!: [a™'(1) <w}U {a,,€D"": w;64 and M (D)
= {a;(m): neN}}. If the sequences (B(n))7, for feA are defined as above
then A’ is a subset of 4. Let us consider the set A’ with the topology of the
subspace of 4 and put X = Ao@A, where A, and A are copies of A'.
Notice that A" is a closed subspace of A and 4 is a Lindelsf P-space so by
the Noble’s theorem (see [N]) the product X is Lindelsf. From the fact that
X is a LindelSf P-space it follows very easily that for every Lindelsf space Y
and neN the product Yx X" has the Lindelsf property.

Put M = C, where C is a coanalytic subset of the Cantor set which is
not a Borel set.

The description of an uncountable subset L of C x X® without points
of condensation is the difficult part of the construction of Example 2.

If m=(mn)ioeM then put X, = !’0 Ap. Let us notice that P
=U{{m} xX,: meM} is a closed subset of M x X®. It is enough to define

an uncountable set L={l;: le{—1}Uw,}, where I, =(m,, x;), m,eC,

x;€X,, and m; #mg, for 1+ B, without points of condensation in P.
The set L will be defined by the transfinite induction with respect to
Ae{-1}vew,.

If xe X then there is r(x)eD such that xed;,. If xe X", where neN, x
= (x(0), ..., x(n—1)) then r (x) = (r (x(0)), ..., 7 (x(n—1))). The symbols a2, G,
for Aew,, will denote elements of 4}, and Aj respectively which correspond to
a,, of 4.

In every step of induction we shall also define some conditions which
will restrict our freedom of choice of I, = (m,, X;) in the consecutive steps of
induction. In the sequel these conditions will be called restrictions. The
restrictions defined in the steps precedent to the d-step will ensure that every
point (m, x(n) o) of M x X®, where me M .and x(m)¢{ay, aia}, for new, will
not be a point of condensation of L. Notice that x(n)¢ (a9, a;.} is equivalent
to the fact that a,¢x(n)™*(1)na,"?, where the closure operation is taken
with respect to the order topology of w,. The role of restrictions will play
some Borel subsets of the Cantor set. These subsets will be denoted by the
symbols R(x,+nw, x), where de{—1}Uw,, xeX" and neN. The set
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R(otp+nw, x) will depend only on xe,+nw. We shall say that the point
(m, x'), where meD® and x'&X, is consistent with the restriction
R(op+nw, x) or that (m, x) satisfies the condition R(ap+nw, x) if
(m, x)e{ly: B3} or if (¥|m)oy+nw = xje,+nw and r(x'|n) =r(x) then
meR (a5 +nw, x). The set R(x;+nw, x) will be defined in the d-step of
induction.

The points of L will be defined in such a way that they will be
consistent with defined restrictions.

Write B = D\ C and for ne N and p = (p(0), ..., p(n—1))e(No®N,)" put
Hp) = ({20} x ... x{p(n=1} x(Ne®N) x ... x(No®N,) x ...)NBy)
and Z(p) = H(p), where f and B, are from Lemma 1 and the closure
operation is taken with respect to the topology of the Cantor set. Let us
notice that

(1) if pe(No@N,)® and Z(pn) is not empty, for neN, then f(p)eB.

The claim (1) follows from the fact that B, is a closed subset of
(No@N, ).

We shall apply the claim (1) in order to destroy points of condensation
of L in Mx X,

If xeX" then put
% inf {0 <j < n: x()elaf, ag}}, if{0<j<nx(elad,, a,)) # 0,
1= 0.

iy(x) = . . ]
1 -1, ] f0<j<n: x()elag,, as,}}

Let us put, for neN, H,= (H(p): pe(No@®N,)" and H(p) # @),
P, = [pe(N,®N,)": H(p)eH,) and F,={Z(p): pcP, and Z(p) =H(p)" }.
If xeX", Cew; then ,x will stand for an element of X" such that
r(ax) =r(x), ox|@ = x|@ and (x())"*(1) < @, for 0<j <n. In the sequel we
shall write x|0 = |0, for dew,, neN and x, ye X" if r(x) =r(y) and x|0
= y|o.

lFor neN, de{—1}uw, xeX, let us put [x],,= {yeX: ya, = xlas
and for every keN and greater than n we have y~*(1) N ((aq+kew)\
\(@o+(k—1))) # @ if and only if x™ ' (1) N (o +kew)\(ota+(k— 1) w)) # O]

First step of induction. Let I_, =(m_,, x_), where m_, is an
arbitrary element of C and x., of X, _,.

Write E; = {xeX: ,,x"'(l) = @} and let w, be a function wy: E; = P,
from E, onto P, such that for every pe P, the set wy ' (p) is infinite and, for
every xe X, wy(x)€ Nyy. Let us assume that

(1,,-1) For every xe X, R(w, x) = R(w, ,X) = Z(wy (,x))
and

0y _ Jwi(x), i xeky, x
(2 -1) 1) = 0, otherwise for xeX.

5 = Fundumenta Mathematicas 121.2
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Let us assume that, for xe X", R(nw, x) and I1°(x) = (I3(x), ..., I?- 1 (x))
are defined in such a way that the following conditions are satisfied:
(3,-1) For 0<i<mnand xeX", I?(x)e{P;: jeN and j<i+1} L {0}
(4, ;) For xeX" and n> 2, I°(x) is an extension of I°(xjn—1).
(5,-1) If j<n—1, xe X", I}(x) = p, where peP;, then
q, where ge{q'€ Py, ¢lj' = p, H@)NR((+ Do,
xj+1) A B(r(x(0)...r(x(j+ 1)) # O}
if this set is not empty and (,ox(i’))'l(l) c(j+2)w,
@  otherwise.

I;)"' 1(x) =

(6,,-1) If xeX" and for every j <n—1, I?(x)= @ then
(q, where ge{g'e Py: H(@)nR(n—Dw, xjn—-1)n
I (%) = AB(r(x(0)...r(x(n—1))) # @)
if this set is not empty and (,,x(0))"*(1) < now,
O otherwise,

(7,,-1) For every xe X", R(nw, x) = R(nw, ,,X).

(8,-1) Let us assume that n>1, xeX", I°(x) #(9,..., ®), supij
<n: I)(x) # O} =jo, 15(x)=p, where peP; and put, for i<jo, k
=sup{seN: x(@)~ (D) N (sw\s— o) # D} so=ko, sy =sup{lko+1),ks},...
ves Sjp—1 = SUP {(sjro_2+1), kjn-1}. If yeX™ such that ,.yljo = 4 Xjo and
sjoY 185 = s0%ls;, for j<jo, then I°(yljo+1) = I°(xljo+1).

9,,-1) If xeX" then

R((n—1a, xIn—1)AB(r(x(0)) ...r(x(n—1)) 0 Z (p),
R(nw, x) = { if p=1"1 (wX)s
0, if I_, () = 0.

(10, -,) For every xe X" R(nw, x)Dw = {Z(p): there is i < n such that
B(x)=p} if I°0) #(D, ..., D).

(11, -1) R(nw, x) is a Borel set in D, for xe X"; in fact R(nw, x) is
compact.

(12, ;) Let n be greater than 1, i<n, x=,xeX""! §(x)=
veX" y(j) =x(j), for j <i, and y(j) = x(j—1), for j>i}. For every y,
= Yo €S;(x) and for every g such that gePy if I°(yoln—1) = (0, ..., ) or
geP; .y, where jo=sup{j<n-—1: I}’(yoln—l) # 0, 1,‘-]0(}101”“1) =peP;
and ¢qlj'=p, and R((n—1)w, yoln—1)"H(g) " B(r(yo(0))...r(ye(n—1))
#* ©, the set

fno¥t YES; (9, 4 =171 (), YD ElVo Diey, -1,

1° (¥l ) = I°Gubolj) and R(jo, y|j) = R(jw, yolj), for j < n—1}
is infinite.

©
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Let us notice that if we define R((n+1)w, y) and 1°(y), for ye X**! and
Y = w+1)0)> in such a way that the conditions By -1)—(12,_4) will be
satisfied then the conditions (3, _ )—(9, ) will determine R((n+1)o, y) and
I°(y) for the remained points of X"*1,

Write S ={S{(x): i<n, xeX" and (.;,x=x} where Si(x)=
{ye8:(%): (n+1)0y =y} Let us notice that the set {YeX: pinwy =y} is
countable so also S is countable and it consists of countable and infinite sets.
If Si(x), Sp(x) belong to S and Sj(x)# Si(x') then the intersection
Si(x) N 8 (x) is finite. Let us order § = {0,: ke N}. Let us assume that
R((n+1)w, y) and I°(y) are defined for ye(){O,: k <Kk'}. Let us assume
that yo €0y 44 =S8i(x), where i <n and xeX”" Then the set

D(y,) = {yeSE(X)\U {0y k< Ky Yy eloOk+1,-15
I°Gol) = I°(u¥ol) and R(jw, y1j) = R(jo, yolj), for j < n}

is infinite. If i = n then it follows from the definition of §5(x); let us recall
that S;(x) n(U{O: k<k’}) is finite. If i<n then it follows from the
inductive assumption (see (12, ;) and (8,,—1))- Let us notice that from the
definition of D(y,) and from the conditions (5,,-1) (6,-1) and (8,.,) it
follows that for every yeD(y,) .

Io({n+ 1)m}’|n) = Io(yln) =]° ((n+ m;)’o|") =1° oln).
Write

P(yo) = {geU {P;: jeN}: R(nw, yovln)f\H(q)ﬂB(r(yo(O)) . r(r(m) # O,

if I°(oln) =@, ...,@) then geP,, if I°(yoln) # (@, ...,®) then
qePj.y and gqlj'=p, where p=1I (yon)eP;, and j,=
sup{j <n: I} (yoln) # O}}. '

If P(yo) = @ then R((n+1) w, y) = I2(y) = O, for every y € D(y,). Assume
that P(yo) # ©. Let v be a function from D (y,) onto P(y,) such that for every
g€ P(yo) the set v™ ' (g) is infinite. Let us put I3 (y) = v(y) and R((n+ 1w, y)
= R(nw, yln) ~B(r(y(0) ...r(y(m)) nZ(v(»)), for yeD(yp). This completes
the construction of R (n+1)w, y) and I°(y), for ye X"**,

Let y = (y(m)o be an element of X* such that agéy(n)™ (1) nay '
and meC. We shall show that (m, y) will not be a point of condensation of
L. Write, for new, k,=sup{seN: y(n)™ ' n(sw\(s—1)w)# @} and put
So =ko, 8y =supiky, (So+1},..., 8 = ik, (Sy—1+1D},... If there is neN
such that R(nw, yjn) = @ then, according to the condition attached to
R (nw, y|n), the point (m, y) will not be a point of condensation of L. Let us
assume that R(nw, yjn) # @ for every neN. From (6, ;) it follows that
there is p(0)e P, such that Ifo_l(y]so) = p(0). Let us assume that p(0)... p(n)
are defined. Then by (5, - ;) we infer that there is p(n+ 1) € N,g(n+ 1y Such that
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Put2 = (P(0), ...
follows that

R(s,®, YIs) © Z(pps1) " B(r(y(0) ...

By (1) we infer that (r(y))izo =S (p(0), ..., P(n), .
point of condensation of L

Let us assume that we have already defined R(x,+nw, x), I7*'(x)
=(I3"1(x), ..., IZ*} (x) and I, = (mp, x;) of L, for @ < §, neN, xe X", in such
a way that for every @ < fi the point , is consistent with defined restrictions
and the following conditions are satisfied, for ¢ < # and neN, s

(L, If xeX" and i,(x)e{—1, n—1}\{0} then R{x,+nw, x) = R(xp+
+nw, x), where

,p(n+1)eP,,, and 1£”+1—1(Y|5n+1) = Pu+2- From (9,-4) it

r(y(s,— 1)) # 0.

.JeB so (m, y) will not be a

L _fsupld<d: —l<iy(x)<n}, if A<® —1<i()<n}#0,
=11, A< —1<ij(x)<n =0
and I'*Y(x) = (@, ..., O), let us recall that a_, = 0.

If xeX and xe{a], a}.} then R(xp+w, x) =I""'(x) = .

(2, For every i<n and xeX" I!*'(x)eJ{P;: jeN and j<i+
+1}u {0}

(3, For every xe X" and n > 2 I"**(x) is an extension of I?** (x|n—1).If
there exists t€ N such that t <n and {x(t—1), x(1)} < {a},: keD, 1 < 0+1]
then IiT1(x) = ©.

4.0 If xeX", —1 <ip)(x) <n—1, {x(t—1), x(t)} & {
+1} and I (x|n—1) = (0, ..., @) then

Ii*i(x)e {gePy: H(g) N R(xs+(n— l)co x|n—1) " R(ay +nw, x) # O}
if this set is not empty, (5,,, x(0))™*(1) crxa+nw and (ﬂ1+1 x(0)7 (1) & a,,
where @' is defined in the same way as in (1, ,); 1571 (x) = If " (x), where &
=sup{A<?: —1<i(x}<i(x)} if {A<d —1<iy(x) <ip(x)}+# O or
=—1 otherwise, if I7"'(x)#(D,..., D), (ip;, (@) ' () ca, and
ia(x) 5 0, where If 1 (x) = {I§'*1(x), ..., IT%* ()} A P;; 121 (x) = @ if none
of the above cases hold.

(5.0 If xeX", I77}(x)=p, where peP; and j<n—1 then I{*'(x)

€{gePy.y:4qlj' = p, H(q) 0 R(as+jo, X)) " R(ax+(j+ D w, x| j+1) # O},
where ' is defined in the same way as in (1,,), if this set is not empty,
(se XU (1) € ata+(j+1)w and the following condition is satisfied:

{x(j=1), x()} ¢ lai,: keD, A< +1),
o X+ 1 # 2| j +1 or ip(x) < );

I x)y = {151 (%), ..., 19" Y (x)} O\ Pj.,.,, where 8" is defined in the same
way as in (4, ), if o, X1 +1= axlj'+1 and ip(x) > j'; 13*1(x) = O if none of
the above cases hold.

a,: keD, A<+
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Remark 1. Notice that if x and j are taken from (5,,5) and {x( ] '—1),
x(j)} = {dk,: keD, A< 8} then I%{}(x) = .

(6.,0) R(2g+nw, x) = R{ag+nw, 4,4 4%), for xeX" and neN.
(7,,) Let us assume that xe X", I"*(x) % (Q,..., ®) and I e, ..

. I,!’j“ (x)) is a subsequence of I?*!(x) conmsisting of all its non-empty
elements. If ye X", . ylj=,,, xljand agts+ Do Vs 1 = o0+ o Xis+1,
for s <j, then I°** (yli;+1) = 171 (x]i; +1).

8,2 If xeX",
R(o;+now, x) = R

n22 and iy(x) <n—1 then

{to+(n— Do, xln—1) " R (@z +no, x)n Z(p),

where p=1I%}(,,+n,%) and o is defined in the same way as in (1,,),
if Igi% (aﬁi-nwx) # ®; R(ab-l"na) X) = R(aﬁ +nw, x) if aa+nme+1 = uaxlj‘f'l,
where j =0 if {I3**(x),...,IZ*1(x)} " P, = @ or j =sup{seN: {IJ*'(x), ...

LX)} N P # @) otherw1se and i;(x) > j; R(xy+nw, x) = @ if none of
the above cases hold.

Remark 2. Notice that from (5, ;) and (8, ), for A < 4, it follows that if
. -1 if 55100, .., ()} n P =0,
/= sup {sen: I?*1(x) # Q}, otherwise

is less than n—1, where neN.and xeX" and

g 0, lf] = -1,
7 =1s, where Lti(x)eP,,

ifj#0
then R(a;+(j+2) @, x1j+2)= O if j # 0 and {x(j'~1), x(j)} < {ak,: keD,
1<0).

(9,,0) The closure of R(ax,+nw, x) with respect to the topology of the

. Cantor set is included in () {Z(p): there is ien such that I“‘(x) p}, for

xeX" if Ia“(x);é((D ., D).
(10, 2 R(aa+nw, x) is a Borel subset of the Cantor set, for xe X"
(11, fn>2ien x= la)r,“,,xe‘)("“, 0 < i{(x) <i—1and i,(x) 0, for
< ¢, then put S(x) lyeX™ for jei y(j) =x(j), for i <j<n—1, y(j)
= x( j—1) and y(i)¢ | la,,/\' A< 0, keD} and for every yo €8;:(x), Yo = aptnoVos
write

0; lf {Ig+1(a;;+nwy0(0))
Jj(yo) =< sup{seN: [Ig*! (p+nwyo(0))

I"*‘(aa+..wyo(n Q)P =9,
n 2(a«+muy0(n 2))1 ﬂP # (Z)}
otherwise.

If i5(yo) < j(¥o) Or wpVolj (Vo) +1 # aytmaVol (Vo) +1 then for every ge Py, )1y
such that g is an extension of

{18+1(m;)+nwy0(0))1 2+§(aa+nwy0 n_z))} nPj(yo}r lf ](y()) > 0:
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and
R(stp+(n=1) @, yoln—1)n H(g) N R (@p+nw, yo) # O,

where &' is defined in the same way as in (1, ,), the set

{rza+nmy: yeSix), yO) eyo i+ 1,00 ¢ = 1121 (ap+ nod)s
Ia+ ! (za+ijIj) = Ia+1 (ma+jwy0|j) ﬂl’ld R(mﬁ +j(l), ylj)
= R(ag+jw, yolj), for 1 <j <n}
is infinite. ‘

Remark 3. Let us notice that if y,e X" and (11, ;) does not apply to it
then the definition of R (a,+nw, yo) and I3 (y) follows from (8, ), (1,,2), (4,,5)
(51,6) and (7r,6)' )

Let y = (y(n)):2 o be an element of X such that a, ¢ y(n)~ ' (1) M, ", it is
equivalent to the fact that y(n)¢{a£ﬂ, a;ﬂ}, and meC. We shall show that (m, y)
will not be a point of condensation of L. If there is ne N and a < B such
that R(x;+nw, yln) = @O then, according to the condition attached to
R{x;+no; yln) the point (m, y) will not be a point of condensation of L. Let us
assume that, for neN and 8 < B, R(x;+nw, yjn) # O. From (1) and the
definition of f it follows that it is enough to show that there are sequences
(Pn= 05 (Gdaz o and (sl o such that p,ePoyy, Ppialn+1=p,, d,e{—1} U,
sw€N, and R(xo, +5,@, YIs,) = Z(p,) " B(r(y(0)... 7 (y(s,— 1))). By (1,,) for
< B we infer that the set (‘,ﬂy(O))'l(l) is finite. Put I' = {0ef: there is sew such
that y()efay, ay}}. IF T # B then by the inductive assumption (m, y) is not a
Point of condensation of L. Let us assume that I' = g. Write j, = inf {ie N:there
is o€ f and se N such that y(i)e{afﬁo, ajao} and (‘,ﬂy(O)“‘(l)) < oy + 50} I
(uﬁy(O))"l(l) ¢ o, then put

so =inf{seN: nlﬂy(O)‘1 S R=1"
If y(0)7*(1) < a,, then put ‘ :
Wo={0el: there are i<j, and seN such that y()e{ag,, ag,},

YO n{l<w;: ap <A <oy+so}# O and does not exist
0 <X’ < B such that iy (yli+1)# —1},

o‘u{supWo, if Wo# 0,
7 -1, if Wy =9

26 S0}

and
so =inf{seN: (,,,eoﬂy(O))"1 (1) < oy +s0}.
Let us put s, = sup {s’(,, Jo+2}. Using (4,,2,) ‘and (5,,2,) one can prove that

o+ do+1
1371 Olso)ePy. Put 13- 1 (Jso) = po. Let us notice that for every 4, < 0 < f
and seN i

"' (s)e{geU{P;: jeN}: qll = po} U {O)}.
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Let us assume that jo, ..., fy—15 Sg» -++5 Sy—15 Qs --+» On—q a0d Pg, ..., Py are
defined. Put j,=inf{ieN: i>j,_, and there are d,eI' and seN such
thatt y(i) € {a,?a", a},an} and (%.‘y(n))'1 (1) « oy +sw}. If (uﬂy(n))"(l) ¢ o then
pu

s, =inf{se N: (,ﬁy(n))"l(l) < ap, +50},

If (aﬂy(n))‘l(l) < a,, then put
W, = {0eT: there are i <j, and seN such that
y(i)e{afa, s} (az,,y(n))'l Mn{l<oy: a<d<ogt+sw}# O,
0> sup{A < B: i,0l) > —1}, if ((1=D)" (V) £ o,
then & = 0,-,, if (mﬂy(n-—l))“(l) Sap,_, then 0> 6, .},

if (epy(m)™* (1) is finite; W, = {0}, if y(n)e{a, a;0}

sup W,, if W,# 0,
0, = { On-15 if Wy=0 and (,y(n—1)7"'(1) £,
01, if W,# @ and (aﬂy(n——l))‘l(l) cap,_,

and

s, =inf{sew: (,onﬂy(n))“’(l) < o, + 500}

Put s, =sup{s,, j,+n+2, s, +1}. Using (4,5) and (5,,) one can prove that
If"fll(yls,,) =p,eP,;, and pjn=p, ;. Let us notice that, for every 0, < <p
and seN, I7*2(ys)e{gel {P;: ieN}: there is jen+1 such that ¢ = p; or gn+1
= p,} U {@}. From (8, ), for new, and (9,,-,) it follows that the sequences
(P 0, (82 and (s, have required properties.

We shall show that there are myeC\{my: de{—1}u B} and xeX,,
such that the point (my, x,) of C x X® is consistent with R (x;+nw, x), where
de{—1}UpB, neN and xe X" Let p be an arbitrary element of P,. By (1, 1),
(2,,~1), (12,,~1) and (9, ) we infer that thereis y,e X 2 such that ,(0) = ,,(0),
yp(Dela, ayl, 1Goy) =p and Z(p) = RQw, y)) > H(p). From (§,-,) it
follows that we can assume, without loss of generality that p is an extension
of I?(3,¥,). for jeD.

In order to prove that there are mpe C\{m,: de{—~1}up} and xeX,,
such that (mg, x,) is consistent with already defined restrictions, it is enough to
show that there is a Borel subset C (a4, v,) of the Cantor set such that C(og, ¥p)
> H(p) and for every meC(x,, y,) there is xeX,, satisfying the following
conditions: x|2 =y, and (m, x) is consistent with already defined restrictions.

We shall omit the proof of the case of f < w. In fact the proof of this case is
included in the proof of the case § = w.If § < » then we do not need Lemma 3.
Let us assume that § > @ and h = h, be a one-to-one function from N onto f,
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given from Lemma 3. Write W, = {xe X: x = 3,x}. If W,_, is defined then put
W,={xeX: x" (1) c(2n+1)ou
VU{R <0t ayy <2<y +(2n+ Do, j <nll
Let us put
{3, if ne2,

Y=<W, if 2<n=2j,
(B Gy} H 2<n=2+1

For every de B, let n(d) be the unique natural number such that, for every y
of P Y, y(n(d)e{a], ai,}. Notice that if x & W, for je N, then x™* (1) is finite.
i=0

n(0) f
Let y be a point of P Y. From the definition of ¥, for iec, it follows that
i=0

130y () + 1)0Y) € Puioy+ 1, iF R((n(0)+1)o, J’) #(. Let us put Py =150/ (moy+ 1Y)
and C(xp, y) = Z(p,). We shall show that for every m of C(o, ¥) there is

ze(.f’0 ¥) N X,, such that zin(0)+1 =y and (m, 2) is consistent with R(ncw, x), for
neN and xeX". From the definition of ¥, for iew, and p, = 19, ((n(0y+ 1))
€Pyo+1 it follows that R((n(0)+ 1), o)+ 1Y) = Z(p,). Write t; = n(0)+2j,
for jeN. Let m = (m(n)®, be an arbitrary element of Z (py)- By the defini-
tion“of (o (m)s2y one can infer, applying (12, -,) two times, that there is
z eifox such that zyn(O)+1=), I (+102) =p, and R((t; + e, zy)
=Z(p,) " B(m(0)...m(z)). If z, is defined then one can show, in a similar way

fet 1
as above, that there is Zk+1E.POYi such that z.,)t+1 =z,
i=

II(L-H ((z,(.H +1)o ij-x =b and R((tk+1 +1o, 2k+1) = Z(p,) nB(m(O) m(tk+l))-
The point z which is defined by (z¢)¢1 has the required properties.
From the reasoning presented above it follows that for k = n(0) there is

k
xeig’oY,- such that for every n(0)<j <k

I?(m neXlj+1) = 12(0) ((n(0)+ neXIn(0)+ 1)-
By the definition of ¥;, for icw, and (9, _;) we infer that R(k+ 1o, x)
=Z(px|,,(o)k+1)r\B(r(x(O))...r(x(k))), if R((n(©O)+1)w, xin(0)+1) # @. Put
I = {Xeifo ¥: I_?(U+l)mx|j+ )= Ip?(o) ((n(0)+1)wx|n(0)+ 1), for n(0)<j< k},

B(C(ato, xIn(0)+1), x)=Z(p,l,,(o)ﬂ)mB(r(x(O))...r(x(k))) for xeT, and
B(C (oo, XIn(0)+1), x) = @ if x¢ T, where Painoy+1 = Ino) ((woy + 1yoX|m (0) + 1).
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Let us notice that for every meB(C(ao, x|n(0)+1), x) there is xle('fo HnX,

such that x}k+1 = x and (m, x) is consistent with R (new, z), for ze X" and neN, and
k+1
B(C (oo, %In(0) +1), x) = U {B(Clato, xn(0)+1), x"): x"e 'Po Y, Xk+1=xk.
=

Notice that C (o, x|n(0)+1), and p,juy+; depend only on (x|n(0)+1)|x, and
B(C(xo, x|n(0)+1), x) on xaq. v

Let us assume that, for & <@, where ¢ <, and xe_g) Y, we have defined
Priny + 1€ Puey1s Clote, xIn(@)+1) and B(C (o, xIn(@)+1), xli+1), for i
= n(), in such a way that the following conditions are satisfied:

k
(1.,#) For ZE'_POY,- and k> n(@), Pymmm+1 and C(qca., zjn(@)+1)

depend only on (zn (@) + 1)z and B(C (#y, z|n(&)+1), z) depends only on zla;.
) v
(2.,») Let us assume that yEZ’O Y; and

_ fsup{d <@ n(l) < n(@)}, i {2 <8 n(l) <n(@)} # O,
=1 - 1, otherwise.

It n# —1 (n=—1) and B(C(a, yin(m+1), ) " Rz, +(n(2)+ o, y) =
(R((n(@)+ 1), y) = ©) then Clez, y) = © and p, is an arbitrary element of

n(@y+ 1
n(d)

(3e7) M ye P Y, n = —1(sce (2,5)) and R((n(@)+1)w, y) # @ then put

Py = Iy (oey + 100Y) € Py 1+ '
nad’)
(4, Let us assume that YE.P Y, n#—1 and B(C(a"' A+

i=0

+1), y) A R(oy +(n(@) + 1) w, y) # @. Put
@) - .

1= {y'Eifo Y, Yoty = Vletgs I (e g ¥ 1+ D) = 1" s ganadli +1)

and R (o, +(j+ Do, y|j+1) = R{o,+(j+ Do, yj+1), for j <n(@)},
0() = {g€Pym+1: B(Clay, ¥n(m+1), y)nH(g) N

AR (o, +(n (@) + 1), y) # O,

if j=sup{i<n: u,IYIi"l"l = a,,+(n(a')+1)w)’|i+1} then

qlj+1 = pypuey+1lJ+1, if I?+1(a,’+(n(a’)+l)wy) # O, for i < n(?),

then ¢ is an extension of Ij*! (anﬂ,,(,y,ﬂ)wy)}.

IfQ(y) = O thenC(y, y) = @ and p, is an arbitrary element of P+ 1. Let us
assume that 0(y) # . Then for every y'e[y], for every even natural number i
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greater than n(n) and less than n(9) and for every qeQ(y) the set {ze[y]:
V' (j) = z(j) ifj # i and p, = g} is not empty, p,, €Q(y) and if z and 2z’ beleng to
[¥] and ay+ (@) + Do = ay+m@)+ Do ? then p, = p,,.

' (@)

(5., For every yeé’o Y,, C(ay, y) is a Borel subset of the Cantor set
including H(p) NnR((n(®)+ 1w, y), if n=-1, or H(p)B(C(x,
yin(m+1), y) AR (o, +(n(8)+ 1), y), if n# —1 (for the definition of # see
(2,)-

n(@")
(6,7) For every y of 2’0 Y, and meC(xy,y) there is z of

o0
(_!’0 Y)nX, such that the point (m,z) of CxX® is consistent with
R0y +nw, x), for A <&, neN and xe X", and z[n(&)+1 = y.

k
(7o) For every k>n(?) and ze P ¥, the set B(C (o, Zn (@) +1), z)

S ‘
= {meCloy, zIn(0)+1): there is ze(P ¥Y)nX, such that zlk+1=z
i=0

and the point (m, z) is consistent with R(wx;+nw, x), for 1 <, - neN
and xe X"} is a Borel subset of the Cantor set which depends only on z)a,, and

k+1
B(C(ag, 2n(@)+1), z) = U {B(C(ag, 2In(@) +1), 2): z”eiPo Y, 2'k+1=z}.
né)

Let y be a point of .!’0 Y. There are two cases:

(a) there is A < @ such that n(l) < n(d),

(b) there is no A < @ such that n(l) < n(0).

The proofs of this cases are similar but the second one is a little bit simpler
than the first one so we shall consider only the first case.

Put 57 =sup{A <@ n(l) <n(d}. Let us assume that

B(C(a,, yin(m+1), ¥) AR (o +(n(D+ 1) w, y) # O,

)
bl= {y’ei_!o %t ylay = yly, I (g 10Vl +1) = ]"H(a,,+0+ ve¥lj+1)

and R(a,+(j+ Do, ylj+1) = R(x,+(j+ 1), yi+1), for j < n(d)}.
The set J(y) is defined in a similar way as in (4;,7). Let us assume that

o) # ®.
Let i be an arbitrary even number greater than n(n) and less than n(d) and
z an element of [y] satisfying a e+ e = 2. Write A(z, 1) = {z'e[y]:

2= m_l'. and z'(j)=2z(j), for j+#i}. The family of all sets of
the form A(z, })_1s countable so let us assume that it is equal to {As: seN}.
From the definition of Y, for j > n(n), and (11, ,) it follows that A, is infinite and

icm
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from the definition of A, that it is countable, for s€ N. Write 4, = {z,: ne N}
and define p, in such a way that the condition (4,,,) is satisfied, for ze 4, . Let us
assume that p, is defined for ze 4, U... U 4,. The set Ay ; N(4; ... U4,)is
finite s0 Ayy \(A;U...U4,) is infinite. We can define p, for
z€ A4 1 \(41 U ... U Ay in such a way that required condition is satisfied, for
z€A; U...Ud,,. If z is an arbitrary element of [y] then put

Pz = Dy»
Case 1 (3 =A+1). Put K, (y) = {y} and v(1) = n(0). Let us assume that a

where z' = ay (D + D

()
subset K;(y) of ié) Y;, where v(j) is an odd number not less than n(d), is
defined. Then write '
' v()+2, i n(d) < v,
inf{seN: s> v(j) and there is A’ such that
9> A >sup{A’ < a: n(2") <v(j)} and n(}) =5},
if n(4) > v(j),

v(j+1) =

o(j+1) .
Kip )= {zeK;(y) x P Y if n(d) >0()) then p,p+e1 =plo()+1

i=v(f)+1
and Q(z) # O, if n(1) <v(j) then, for every j <v(j+1)
such that I}*1(z) # @, p, is an extension of I}**(2)}-

Let us put
. 1, if n(2) <n(d),
Jo ={j, where v(j) = n(d), if n(d) > n(d)
and
O, if n(d) <n(d),
Jo() =1 B(C(a, yin(m+1), y)n
AR(a,+(n(d+1)o, y)\U{Claz, 2): zeK;,(0}
if n(3) > n(d).
If J,(y) is defined then put
Jor1 ) = U {B(Cleas Zn(h+1), 2) A R (a3 + (0 (jo) + 25+ 1) 0, z)\
WU {R (2 + (@00 +2(s+ D)+ Do, 2): 2'€Kjgrse1(y) and
(o) +2s+1 =2}): 2K}
Write J (y) = U {J,(3): sew} and put
C oo y) = (B(C (@, yinm+1), y) 0 R (2 +(n(+ 1), ))\T O).
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Let z be a point of ié’o Y;, where t = n(d). If t <v(j), where j is such that
v(j) =n(4) and j =inf{seN: t < v(s)} then .
®, if there is no z' of K, (zn(&)+1)
such that z|t+1 =z,
U{C(a, 2): z"eK;(2ln(d)+1) and
Zlt+1 = 2)\J (zn(@)+1),

B(C (o, 2In(0)+1), z) =

otherwise.
If t > 0()),

g _{t, if ris an odd number,
t+1, otherwise,
and j' is such that ' =wv(j) then

0, if there is no z' of K, (zIn(0)+1)
such that z|t+1 =z,
U{B(C (e, zIn(2)+1), 2) N R, +(t' + Do, z")\
\J (eAn(@)+1): 2" €K, (dn(@)+ 1)and 2|t+1 =z},
otherwise.

B(C (oo, zln(d)+1), 2) =

Case 2 (0is a I[ijﬁnit number). Put K, (y) = {y} and v(1) = n(d). Let us
assume that K;(y) = ifo Y; is defined, where v(j) is an odd number not less than

n(8). Write v(j+1) = inf {se N: s > v(j)} and there is A < d such that n(d) =s
and 1 >sup {2’ < a: n(A) < v(j)} and put

v(j+1)
K ()= {zeK;(y) x ig) Y pdn(@)+1
=Ppg+1In(@+1=p, and Q(z) # O},
Puta. s{z = (21(8)—1)//2. If s s defined then write s}, = inf {s
cel{gkt .k e]\; }i 5 > 8.} (see Lemma 3), @(n) was defined in connection with the
Lz r:[ln 1;1; .o Gy, and s, = 2s,+1. This is the unique place where we need
Let j(s,) and 7, be such that v(j(sy)) =s, and 8 = n(n,). Put
To(y) = B(C(a, yin(n)+1), ¥) AR (o, +(n(d)+ 1), N {Clay,, 2):

where ze Ky, ,(»)}).
If J,(y) is defined then put b J)

Jir1 ) =U {C(a,,kH, Z)\(U {C(zx,,k”, z’): ZlEKJ(SHz)(y)
and Zlo(j(ser 1)) +1 = 2}): zeKyq,, 0D}

icm
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Put J(y) = U {J(»): kew} and
C(aa, ¥) = B(C (0, yln(m)+1), y) " R (o +(n(D)+ 1) 0, )\T (3)-

Let z be a point of ié’o Y;, where t > n(d). Write k =inf (k' ew: t < 5.}
then
@, if there is no z'e Ky, (2In(0)+1)
such that z'|t+1 =z,
(W] {C oty 2 z”eKj(xh)(z]n(a)—}-I)
and 2'lt+1 = z})\J (zn(@)+1),
otherwise.

B(C(as, zln(8)+1), 2) =

From the definition of the constructed objects and the inductive assump-
tion it follows that they depend on (y|n (@) + 1), or on yla,, for yeili’o Y,, where
k > n(d). From the last fact and the inductive assumption we infer that
C (@ yIn(?)+1) and B(C (o, yIn(&)+1), y) are Borel sets, for yeif’o Y; where k

> n(8). The condition (7,,,) follows from the definition of J (zn(d)+1), (1,,2),

4,20 (5r.2) (8,.2), for 2’ < 4, and from the inductive assumption. In order to

finish the proof that the conditions (1, 5)—(7,,,) hold it is enough to show that the
n(d)

" intersection J (y) n H (p,) is empty, for y e P Y,. The proof of this fact in the case
i=0

of limit ordinal numbers is more or less the same as in the case of non-limit
numbers so we shall give only the proof of the first case.

In order to show that the intersection J (y)  H (p,) is empty it is enough to
prove that if

meH(py)r\B(C(oc,,, yin(n)+1), y)nR(a”+(n(6)+1)w, y)
or

meH (p,)n C(ay,, 2), for z'eKj(sk,(y), where keN,

ng?
then there is z'eKy,,(y) or z'eKy, o0 and s +l=z such that
meC (o, 2) or me C(ay, , ,» 2'). The consideration of these cases is similar but
the second case is a little bit more complicated so in the sequel we shall assume
that me H (p,) N C(a,, 2)- Let g be an clement of Py +, such that ¢ is an
extension of p, and me H(g). Put t; =j(s,)+i’, where i'eN and ' <j(S¢+1)—
u(ty)
—j(s). From the fact that me C(a,,, 2) it follows that there is z eil’o Y; such

that z|s,+1 =z and meB(C(,, 2), z). From the definition of 5, and a,, it
follows that z (n ()™ (1) N ((oty, + @) \ ey, ) # O 50 by (4, G B (1Lry)
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and the definition of Y. for kew, we infer that the set
v(ty) ) —
V= {xeif0 % xloy, = 24|y, xls+1 =2z and if I}* (g + 0 110%) # 0]

, . 1
then g, = qv(t,)+1 is an extension of I’ (o + 5+ 110,
for i <wv(ty)}

is not empty. Notice that if xe V then g, €Q (x). By (4,,;), where A is such that
n(1) = v(t;), we infer that there is z, € ¥ such that P:; =4 Itis easy to see that
meC (o, z;). After (j(s,+1)—j(s,) steps we shall find (s )~ Jisgy = 2 Which
has the required properties.

From (1,4)—(7,,) it follows that C (g, yp) is a required set.

The construction of R(xs+nw, x), for neN, xeX" is similar to the
construction of R (nw, x). This completes the definition of L so we conclude that
X and M have properties mentioned in Example 2.

Comments.

Remark 4. If X" is the derivative of X, where X is from Example 2, then
one can show (see [AL]) that X' = {J{X,: neN}, where X, is a Lindelsf
scattered space so from [Al, ] it follows that the product ¥ (X")® is Lindeldf, for
every hereditarily Lindelsf space Y.

Remark 5. In[Al,] we proved, in some sense, a dual result to Example 2.
We showed that if X is a Lindelsf P-space and M is a separable metric space
which admits a complete metric space M’ such that M’ = M and M'\ M does
not contain uncountable compact subsets then the product M x X® is Lindeldf.

Let me finish this paper with some problems related to the Michael's
conjecture.

ProsLEM 1. Let us assume that the product Yx X is Lindeldt, for every
Lindelof space Y. Is it true that X® is a Lindelsf space?

ProBLEM 2. Let us assume that ¥x X has the Lindel5f property, for every
hereditarily LindelSf space Y. Is it true that X? is a Lindelsf space?

ProsLeM 3. One can ask similar questions for other covering properties. I
do not know, for example, whether the product ¥x X is paracompact, where X
is a space having only one non-isolated point and Y is a perfect paracompact
space?

Notice that it is not enough to assume that ¥ is a hereditarily paracompact
space.
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