On Michael’s problem concerning the Lindelöf property in the Cartesian products

by

K. Alster* (Lubbock, Tex.)

Abstract. In this paper we present a negative solution of Michael’s conjecture which says that if $Y \times X$ is Lindelöf, for every hereditarily Lindelöf space Y, then $Y \times X^\omega$ is Lindelöf, for every hereditarily Lindelöf space Y.

Introduction. It is known that if Y is a hereditarily Lindelöf space and X a metric separable space then $Y \times X$ and also $Y \times X^\omega$ are Lindelöf. Z. Frolik proved (see [F]) that if Y is a hereditarily Lindelöf and X is a Lindelöf and complete in the sense of Čech space then $Y \times X$ and also $Y \times X^\omega$ are Lindelöf. R. Telgarski showed (see [T]) that if Y is a hereditarily Lindelöf space and X a Lindelöf and scattered space then $Y \times X$ is Lindelöf. I have improved the result of Telgarski [A1], showing that $Y \times X^\omega$ is Lindelöf. I think that these results were the motivation of Michael’s conjecture which says that if the product $Y \times X$ is Lindelöf for every hereditarily Lindelöf space Y then $Y \times X^\omega$ is Lindelöf for every hereditarily Lindelöf space Y. In this paper we proved that the answer to the Michael’s conjecture is a negative one.

Examples.

Example 1. There exists Z such that, for every natural number n and for every hereditarily Lindelöf space Y, the product $Y \times Z^n$ is Lindelöf but Z^n is not.

Example 2. There exist a separable metric space M and a space X such that, for every Lindelöf space Y and every natural number n, the products $Y \times X^n$ and X^n are Lindelöf but $M \times X^n$ is not.

It is easy to see that in order to obtain Example 1 it is enough to put $Z = M \times X$, where M and X are from Example 2.

* 1978. Mathematics Subject Classification. Primary 54 B 10.
Terminology and notation. Our topological terminology follows [E].

Let us recall that X is a P-space if every Gδ-subset of X is open. The symbol N stands for natural numbers and D = (0, 1] for the two-points set. Greek letters are used to denote ordinal numbers, in particular α stands for the first infinite ordinal number and ω1 for the first uncountable ordinal number. The symbol Dα stands for the Cantor set and B(0, 1) = D, where |c0| × ... × |c1| × D × D × ... denotes the set {c0} × ... × {c1} × D × D × ... If α is an ordinal number then we shall identify it with the set of ordinal numbers less than α. If A is a set then the symbol |A| stands for the cardinality of A.

Auxiliary lemmas.

Lemma 1. If Ν, N = N × |k|, for k ∈ D, k: N ⊕ D N → D is a mapping such that h(Nk) = k, for k ∈ D, and B is an analytic subset of the Cantor set then there is a closed subset B1 of (N ⊕ N) such that f = h|B1 is a mapping from B1 onto B.

Proof. Let g be a mapping from Nk onto B. Then B' = [z, g(z): z ∈ Nk] is a closed subset of Nk × D. Let gα, for k ∈ D, be a mapping given by 〈gα(n1, n2) = n2. Write z = 〈gα ⊕ gR, Dk〉. It is easy to see that z is a homeomorphism from (N ⊕ N) onto D. Now it is enough to put B1 being an inverse of B'.

Let us attach to every limit countable ordinal number x a monotonical increasing sequence (a(n)n) of non-limit ordinal numbers which converges to α in the order topology of ω1. Let us put A = {a ∈ D+: a < ω}; B = {b ∈ D+: b > 0}. The topology on A is induced by the sets of the form B(a, b) = {b ∈ B: a + b < 1}. Let us put A = {a ∈ D+: a ∈ [0, 1]} and B = {b ∈ D+: b > 1}. The topology on A is induced by the sets of the form B(a, b) = {b ∈ B: a < b}.

Lemma 2. The space A has the Lindelöf property.

The proof of Lemma 2 appeared in [P]. We shall give a sketch of it for the sake of completeness.

Proof. Let be an arbitrary open covering of A. There is b < a1 and C such that B(0, b) ⊊ C, where 0 = 0, ... 0. Let us put A = {a ∈ D+: a < b}. If b < a and b is defined then put K = {a ∈ A: a < b}. Then K is countable so that b > a and b is defined. Let B(a, b + 1) = {x ∈ D+: a + b < 1}. The topology on A is induced by the sets of the form B(a, b + 1) = {x ∈ D+: a + b < 1}.

Lemma 3. If b is a countable ordinal number not less than α then there is one-to-one function h: N → B from N onto B such that for every limit ordinal number α not greater than b there are subsequences of natural numbers (n(i)n) and (n(i)n) such that the following conditions are satisfied:

(a) h(n) = n, for k ∈ N;
(b) for every i ∈ N and for every i < n if h(i) < α then h(i) < a;

The sequence (z(z)n) is a subsequence of (z(n)n) where (z(n)n) was defined in connection with Lemma 2.

Proof. We shall consider only the more complicated case when the set [a < b: a is a limit number] is infinite. Let N = N ∪ {Nj: j = 0, 1, 2, ...} be a decomposition of N such that elements of it are infinite and pairwise disjoint. Let (z(z)) be the sequence consisting of all limit numbers not greater than b. For every j ∈ N, there is a sequence (z(z)) of natural numbers such that if i and j ∈ N and i ≠ j then [z(z) ⊊ N] ∩ [z(z) ⊊ N] = 0. Write [z(z) ∈ N] = β (z(z) ⊊ N); k, j ∈ N. Let us put (z(z)) = (z(z)) and n = inf N1. If n1, ... n are defined then put n+1 = inf n ∈ N1: n > n+1. Write

n+1 = inf n ∈ N1: n > n1.

If b < a and b is defined then put h(b) = b. Let us assume that (z(z)) = (z(z)), (z(z)) = (z(z)), (z(z)) are defined and the function h is described on the set (z(z)) = (z(z)) in N and N. In this way the conditions (a) and (b) are satisfied. Write

k1 = {0, if a > b, if a > a1, k1 = inf k ∈ N: a > a1 (z(z))}, k1 = 0 if a > a1, k1 = inf k ∈ N: a > a1 (z(z))}.

For i < j, and

K = inf k ∈ N: for every i < j such that a < a1 then a > a1 (z(z)) > a;

if T = (z(z)) then i ∈ j, if i < j, if h(i) = 0 then n(i) = inf n ∈ Nj: n > n(i);

Let us put (z(z)) = (z(z)) for k ∈ N and n = inf n ∈ Nj: for every i < j, if h(i) = 0 then n(i) = inf n ∈ Nj: n > n(i). If h(i) = 0 then n(i) = inf n ∈ Nj: n > n(i). If h(i) = 0 then n(i) = inf n ∈ Nj: n > n(i). If h(i) = 0 then n(i) = inf n ∈ Nj: n > n(i).
Construction of the space X and M from Example 2. Write $A = \{a_\lambda : \lambda \in \{-1\} \cup \omega_1\}$ where

$$a_\lambda = \begin{cases} 0, & \text{if } \lambda = -1, \\ a_\lambda + \omega^2, & \text{if } \lambda = \theta + 1, \\ \sup \{a_\beta : \beta < \lambda\}, & \text{if } \lambda \text{ is a limit number.} \end{cases}$$

If $\lambda = \theta + 1$ then put $a_\lambda(n) = a_\lambda + (n-1)(\omega+1)$, for $n \in N$. If λ is a limit number then let us attach to it a monotonically increasing sequence $(\lambda(n))_{n=1}^\infty$ of non-limit ordinal numbers converging to λ in ω_1 and put $a_\lambda(n) = a_{\lambda(n)} + 1$.

Let us take $A' = \{a \in D^\omega : \{\lambda \in \omega_1: a_\lambda \neq 0\} \text{ is a subset of } A\}$ and $A'' = \{a \in A' : \text{for all } \beta \in A, a_\beta \neq 0\}$.

Notice that A' is a closed subspace of A and A'' is a Lindelöf P-space as well as the Cantor set $[0, 1]$.

Put $M = C$, where C is a coanalytic subset of the Cantor set which is not a Borel set.

The description of an uncountable subset L of $C \times X^*$ without points of condensation is the difficult part of the construction of Example 2.

If $m = (m(n))_{n=0}^\infty \in M$ then put $X_m = \bigcap_{n=0}^\infty A_{m_n}$. Let us notice that $P = \bigcup_{m \in M} X_m$ is a closed subset of $M \times X^*$. It is enough to define an uncountable subset $L = \{l_m : m \in M\}$, where $l_m = (m_0, x_0), m_0 \in C, x_0 \in X_{m_0}, m_0 \neq x_0, \lambda \neq \beta$, without points of condensation in P.

The set L will be defined by the transfinite induction with respect to $\lambda \in \omega_1$.

If $x \in X^*$ then there is $\rho \in D^\omega$ such that $x \in A_\rho$. If $x \in X^*$, then for $n \in N$, $x \in (x(0), \ldots, x(n-1))$ then $x(n) = \{x(0), \ldots, x(n-1)\}$. The symbols a_ρ^0, a_ρ^1 for $\lambda \in \omega_1$, will denote elements of A_ρ and A_{ρ_1} respectively which correspond to a_ρ^0 of A'.

In every step of induction we shall also define some conditions which will restrict our freedom of choice of $l_m = (m_0, x_0)$ in the consecutive steps of induction. In the sequel these conditions will be called restrictions.

The restrictions defined in the steps precede to the ω-step to ensure that every point $(m, x(\lambda_{-1}) \in M \times X^*$, where $m \in M$ and $x(\lambda_{-1}) \in A_\lambda$, for $\lambda \in \omega_1$ will not be a point of condensation of L. Notice that $x(\lambda_{-1}) \in A_\lambda$, for $\lambda \in \omega_1$, is equivalent to the fact that $a_\lambda \in x(\lambda_{-1}) \cap A_\lambda$, with respect to the topology of A_λ. The role of restrictions will play some Borel subsets of the Cantor set. These subsets will be denoted by the symbols $R(x_\lambda + n, n)$, $x \in X^*$, and $n \in N$. The set $R(x_\lambda + n, n)$ will depend only on $x_\lambda x_\lambda + n, n)$. We shall say that the point (m, x), where $m \in M$ and $x \in X^*$, consistent with the restriction $R(x_\lambda + n, n)$ or that (m, x) satisfies the condition $R(x_\lambda + n, n)$ if $(m, x) \in \bigcup_{n} \{1 \leq \beta \leq \delta\}$ or if $(x(\lambda_{-1}) x_\lambda x_\lambda + n, n) = x_\lambda x_\lambda + n, n)$ and $x(\lambda_{-1}) = x(\lambda_{-1})$ (and $R(m, x)$ is a set $R(x_\lambda + n, n)$). The set $R(x_\lambda + n, n)$ will be defined in the ω-step of induction.

The points of L will be defined in such a way that they will be consistent with defined restrictions.

Write $B = D^\omega \cup C$ and for $n \in N$ and $p = (p(0), \ldots, p(n-1)) \in (N_0 \cap N_1)^n$, put $H(p) = \bigcup_{n=0}^N (p(n), \ldots, p(n)) \times (N_0 \cap N_1)^{n+1} \times (N_0 \cap N_1)^{n+1}$, and $Z(p) = H(p)$, where f and B_1 are from Lemma 1 and the closure operation is taken with respect to the topology of the Cantor set. Let us notice that

$$1. \text{if } p \in (N_0 \cap N_1)^n \text{ and } Z(p) \neq \emptyset, \text{then } n \in N, \text{then } f(p) \in B.$$
Let us assume that, for \(x \in X^* \), \(R(n_0, x) \) and \(I^p(x) = (I^p_1(x), \ldots, I^p_{n_1}(x)) \) are defined in such a way that the following conditions are satisfied:

\((3, \neg1)\) For \(0 < i < n \) and \(x \in X^* \), \(I^p_i(x) \in \bigcup \{P_i : j \in N \land j \leq i + 1 \} \cup \{\emptyset\} \).

\((4, \neg1)\) For \(x \in X^* \) and \(n \geq 2 \), \(I^p(x) \) is an extension of \(I^p(x_{n-1}) \).

\((5, \neg1)\) If \(j < n - 1 \), \(x \in X^* \), \(I^p_j(x) = p \), where \(p \in P_j \), then

\[
I^p_{j+1}(x) = \begin{cases}
q, & \text{where } q \in \{q' \in P_{j+1} : q' \neq p, H(q') \cap R((n+1-\omega) \circ x_{n-1}) \cap \bigcap B[r(x(0)) \ldots r(x(n-1))] \neq \emptyset \} \\
\emptyset & \text{otherwise }
\end{cases}
\]

\((6, \neg1)\) If \(x \in X^* \) and for every \(j < n - 1 \), \(I^p_j(x) = \emptyset \) then

\[
I^p_{n-1}(x) = \begin{cases}
q, & \text{where } q \in \{q' \in P_{n-1} : H(q') \cap R((n-1) \circ x_{n-1}) \cap \bigcap B[r(x(0)) \ldots r(x(n-1))] \neq \emptyset \} \\
\emptyset & \text{otherwise }
\end{cases}
\]

\((7, \neg1)\) For every \(x \in X^* \), \(R(n_0, x) = R(n_0, x_{n-1}) \).

\((8, \neg1)\) Let us assume that \(n > 1 \), \(x \in X^* \), \(I^p(x) \neq \emptyset \), \(p \in P_n \), and \(j < n - 1 \) such that

\[
s_j = \sup \{s \in N : x(s) \neq x(n-1) \} \cap \{s \in N : I^p_s(x_{n-1}) \neq \emptyset \}, s_0 = k_0, s_1 = \sup \{s_0, \ldots, s_j \}, \ldots, s_{n-2} = \sup \{s_0, \ldots, s_{n-2} \} \}
\]

\((9, \neg1)\) If \(x \in X^* \) then

\[
R(n_0, x) = \begin{cases}
R((n-1) \circ x_{n-1}) \cap \bigcap B[r(x(0)) \ldots r(x(n-1)) \cap Z(p)], & \text{if } p \neq p_{n-1}, x_{n-1} \\
\emptyset & \text{otherwise }
\end{cases}
\]

\((10, \neg1)\) For every \(x \in X^* \), \(R(n_0, x) \) is a Borel set in \(D^p \), for \(x \in X^* \); in fact \(R(n_0, x) \) is compact.

\((11, \neg1)\) Let \(n > 1 \), \(x \in X^* \), \(I^p(x) \neq \emptyset \), \(p \in P_n \), and \(q \in P_{n-1} \), where \(j_q = \sup \{j < n - 1 : I^p_j(x_{n-1}) \neq \emptyset \} \), \(I^p_q(x_{n-1}) = p \in P_j \), and \(q' = p \), and

\[
R((n-1) \circ x_{n-1}) \cap H(q) \cap \bigcap B[r(x(0)) \ldots r(x(n-1)) \cap Z(p)] \neq \emptyset.
\]

\((12, \neg1)\) Assume that \(R(n_0, x) \neq \emptyset \). Let \(x \in X^* \), \(y = x_{n-1} \), and \(y \in R(n_0, y_{n-1}) \cap H(q) \cap \bigcap B[r(x(0)) \ldots r(x(n-1)) \cap Z(p)] \neq \emptyset \).

\[
I^p(y_{n-1}) = I^p(y_{n-2}) \cap R((n-1) \circ x_{n-1}) \cap H(q) \cap \bigcap B[r(x(0)) \ldots r(x(n-1)) \cap Z(p)] \neq \emptyset.
\]

Let us notice that if we define \(R((n+1) \circ x) \) and \(I^p(x) \) for \(x \in X^{*+1} \) in such a way that the conditions \((3, \neg1) - (12, \neg1)\) will be satisfied then the conditions \((3, \neg1) - (9, \neg1)\) will determine \(R((n+1) \circ x) \) and \(I^p(x) \) for the remaining points of \(X^{*+1} \).

Write \(S = \{S_i(x) : i < n, x \in X^* \} \) and \((n+1) \circ x = x \). Let us notice that the set \(\{y \in S_i(x) : (n+1) \circ y = y \} \) is countable so also \(S \) is countable and it consists of countable and infinite sets. If \(S_i(x) \) and \(S_j(x) \) belong to \(S \) and \(S_i(x) \neq S_j(x) \) then the intersection \(S_i(x) \cap S_j(x) \) is finite. Let us order \(S = \{O_i : i \in N \} \). Let us assume that \(R(n+1, x) \) and \(I^p(x) \) are defined for \(y \in \bigcup \{O_i : k \leq i \} \). Let us assume that \(y_0 = O_{k+1} \neq S_i(x) \), where \(i < n \) and \(x \in X^* \). Then the set

\[
D(y_0) = \{y_0 \in S_i(x) : (n+1) \circ y = y_0 \}, y_0(0) = y_0(1), \ldots, y_0(n_0-1)
\]

is infinite. If \(i = n \) then it follows from the definition of \(S_i(x) \); if \(i < n \) then it follows from the inductive assumption (see \((12, \neg1) - (8, \neg1)\)). Let us notice that from the definition of \(D(y_0) \) and from the conditions \((5, \neg1) - (6, \neg1)\) it follows that for every \(y \in D(y_0) \)

\[
I^p_{(n+1) \circ y_0}(n) = I^p(y_0(n)) = I^p_{(n+1) \circ y_0}(n+1).
\]

Write

\[
P(y_0) = \{q \in \bigcup \{P_j : j \in N \} : R(n_0, y_0(n)) \cap \bigcap B[r(x(0)) \ldots r(x(n-1)) \cap Z(p)] \neq \emptyset, \text{ if } p = p_{n-1}, x_{n-1} \}
\]

If \(q \in P_{n-1} \), then \(q' = p_0 \), if \(q \in P_{n-1} \), then \(q' = p_{n-1} \), and \(q' = p_0 \).

Let us put \(y_0(1) = y_0(2) = \ldots, y_0(n_0-1) = y_0(n_0) \).

Let us assume that \(R(n_0, x) \neq \emptyset \) for every \(x \in D(y_0) \). Assume that \(P(y_0) = \emptyset \). Let \(x \) be a function from \(D(y_0) \) onto \(P(y_0) \) such that for every \(q \in P(y_0) \) the set \(q^{-1}(q) \) is infinite. Let us put \(x_0 = y_0(1) = y_0(2) = \ldots, y_0(n_0-1) = y_0(n_0) \).

Let \(y = (y_0)_{n_0}^{n_0+1} \) be an element of \(X^{n_0+1} \) such that \(q_0 \in y_0(1) \cap \ldots, q_{n_0-1} \in y_0(n_0) \).

Write

\[
S_i(x) = \{y_0 \in D(y_0) : y_0(0) = y_0(1) = \ldots, y_0(n_0-1) = y_0(n_0) \}, y_0(0) = y_0(1) = \ldots, y_0(n_0-1) = y_0(n_0) \}
\]

is infinite.
If \(x_j \in eX^*\) and \(\{i(x_j)\} \subseteq \{p \in P \mid j \notin \{p \} \} = \emptyset\), then \(I^{r+1}(x_j) = \emptyset\). If \(x_j \not\in eX^*\), then \(I^{r+1}(x_j) \subseteq \emptyset\).

Remark 1. Notice that if \(x = f(p, \ldots, p(n+1))\), then \(I^{r+1}(x) = \emptyset\).

Remark 2. Notice that from \((S+1)\) and \((S+2)\), it follows that if \(x_j \not\in eX^*\), then \(I^{r+1}(x_j) \subseteq \emptyset\).
Let us assume that \(j_0, \ldots, j_n-1, s_0, \ldots, s_{n-1}, \hat{c}_0, \ldots, \hat{c}_{n-1} \) and \(p_0, \ldots, p_{n-1} \) are defined. Put \(j_i = \inf \{ i \in N : j_i \geq j_n-1 \} \) and there are \(\hat{c}_0 \in F \) and \(s \in N \) such that \(y(i) \in \{ a_{\hat{c}0}, a_{\hat{c}1}, \ldots, a_{\hat{c}k} \} \) and \((y(p))^{-1} \{ 1 \} \subset a_{s0} + s0 \). If \((y(p))^{-1} \{ 1 \} \subset a_{s0} + s0 \), then put

\[
s_i = \inf \{ s \in N : (y(p))^{-1} \{ 1 \} \subset a_{s0} + s0 \}.
\]

If \((y(p))^{-1} \{ 1 \} \subset a_{s0} + s0 \), then put

\[
W_i = \{ \hat{c} \in \hat{F} : \text{there are } i < j_0 \text{ and } s \in N \text{ such that } y(i) \in \{ a_{\hat{c}0}, a_{\hat{c}1}, \ldots, a_{\hat{c}k} \}, \quad y(i)^{-1} \{ 1 \} \subset \{ \hat{c} \} \}.
\]

Then put \(W_i = \{ \hat{c} \in \hat{F} : \text{there are } i < j_0 \text{ and } s \in N \text{ such that } y(i) \in \{ a_{\hat{c}0}, a_{\hat{c}1}, \ldots, a_{\hat{c}k} \}, \quad y(i)^{-1} \{ 1 \} \subset \{ \hat{c} \} \} \). We notice that, for every \(\hat{c}_0 \leq \hat{c} \leq \hat{c}_0 \) and \(\hat{c}_0 \in \hat{F} \) we infer that the set \(\{ \hat{c} \} \{ y(p) \} \) is finite. Put \(\Gamma = \{ \hat{c} \} \hat{F} \); there is \(\hat{c} \in \hat{F} \) such that \(y(i) \in \{ a_{\hat{c}0}, a_{\hat{c}1}, \ldots, a_{\hat{c}k} \} \). If \(\hat{c} \in \hat{F} \) then by the inductive assumption (m, y) is not a point of condensation of \(L \). We assume that, for \(n \in \mathbb{N} \) and \(\hat{c} < \hat{c} \), there is a point of condensation of \(L \) for the \(n \)-th \(\hat{c} \). Write \(\theta_n = \inf \{ i \in N : \text{there is } \hat{c} \in \hat{F} \text{ such that } y(i) \in \{ a_{\hat{c}0}, a_{\hat{c}1}, \ldots, a_{\hat{c}k} \} \} \).

Let us put \(s_0 = \sup \{ s_0, j_0 + 2, s_0 \} \). Using \((s_0, s_0) \) and \((s_0, s_0) \) one can prove that

\[
(\psi_{s0})^{-1} \{ 1 \} \subset a_{s0} + s0.
\]

Put \(\theta_n = \inf \{ s \in N : (\psi_{s0})^{-1} \{ 1 \} \subset a_{s0} + s0 \} \).
given from Lemma 3. Write \(W_i = \{ x \in X : x = 3x \} \). If \(W_{n-1} \) is defined then put
\[
W_n = \{ x \in X : x^{-1}(1) < (2n+1)\alpha \cup
\begin{align*}
\cup \{(\hat{\beta} < 0) & : a_{\hat{\beta}} \leq \hat{\beta} < a_{\hat{\beta}} + (2n+1)\alpha, j < n\}\end{align*}
\]
Let us put
\[
Y_i = \begin{cases} \{ y_{i}(n) \} & \text{if } n \in \mathbb{Z}, \\
W_j & \text{if } 2 \leq n = 2j, \\
\{a_{\hat{\beta}} \leq \hat{\beta} < a_{\hat{\beta}} + (2n+1)\alpha \} & \text{if } 2 < n = 2j+1.
\end{cases}
\]
For every \(\hat{\beta} \in \mathbb{B} \), let \(n(\hat{\beta}) \) be the unique natural number such that, for every \(y \) of \(\bar{P} Y_i \), \(y(n(\hat{\beta})) \in \{a_{\hat{\beta}} \leq \hat{\beta} < a_{\hat{\beta}} + (2n+1)\alpha \} \). Notice that if \(x \in W_j \), for \(j \in \mathbb{N} \), then \(x^{-1}(1) \) is finite.

Let \(y \) be a point of \(\bar{P} Y_i \). From the definition of \(Y_i \), for \(i \in \mathbb{N} \), it follows that
\[
I_{P}(x_0, x_{n(\hat{\beta})}) \in P_{x_0 + 1}, \quad \text{if } \mathcal{R}(x_{n(\hat{\beta})} + (2n)\alpha, y) = \varnothing.
\]
Let us put \(p_y = I_{P}(x_0, x_{n(\hat{\beta})}) \) and \(C(x_0, y) = Z(p_y) \). We shall show that for every \(m \) of \(C(x_0, y) \) there is
\[
z \in \{ \bar{P} Y_i \} \cap X_\alpha \text{ such that } z(n(\hat{\beta}) + 1) = y \text{ and } (m, z) \text{ is consistent with } R(\mathbb{R}(\hat{\beta}), x_0).
\]
Let \(m = (m(n))_{n=0}^{\infty} \) be an arbitrary element of \(Z(p_y) \). By the definition of \((a_{\hat{\beta}} \leq \hat{\beta} < a_{\hat{\beta}} + (2n+1)\alpha) \) one can infer, applying \((12, \ldots, 1)\) two times, that there is \(z \in \bar{P} Y_i \) such that
\[
z = Z(p_y) \cap B(m(0) \ldots m(t_1)).
\]
If \(z \) is defined then one can show, in a similar way as above, that there is \(z_{k+1} = p_{z_{k+1}} \) such that \(z_{k+1} = z_{k+1} \cap B(m(0) \ldots m(t_k)) \).

The point \(z \) which is defined by \((a_{\hat{\beta}} \leq \hat{\beta} < a_{\hat{\beta}} + (2n+1)\alpha) \) has the required properties.

From the reasoning presented above it follows that for \(k \geq n(0) \) there is
\[
x \in \bar{P} Y_i \text{ such that for every } n(0) \leq j \leq k
\]
\[
I_{P}(x_0, x_{n(0)+1}) = I_{P}(x_0, x_{n(0)+1}) \cap B(m(0) + 1).
\]

By the definition of \(Y_i \), for \(i \in \mathbb{N} \), and \((9, \ldots, 1) \) we infer that \(R((k+1)\alpha, x) \cap B(r(x_0) \ldots r(x(k))) \), if \(\mathcal{R}((n(0)+1)\alpha, x \cap B(m(0) + 1) = \varnothing \). Put \(T_0 = \{ x \in \bar{P} Y_i : I_{P}(x_0, x_{n(0)+1}) \cap B(m(0) + 1) \cap \mathbb{N} \}, \) for \(n(0) \leq j \leq k \), \(B(x_0, x_{n(0)+1}), x \in \bar{P} Y_i \cap B(r(x_0) \ldots r(x(k))) \) for \(x \in T_0 \) and \(B(x_0, x_{n(0)+1}), x \in \varnothing \) if \(x \notin T_0 \), where \(P_{x_0 + 1} = I_{P}(x_0, x_{n(0)+1}) \cap B(m(0) + 1) \).

Let us notice that for every \(m \in \mathbb{B} \) \(B(C(x_0, x_{n(0)+1}), x) \) there is \(x \in \bar{P} Y_i \) such that \(x_{n(0)+1} = x \) and \((m, x) \) is consistent with \(R(\mathbb{R}(\hat{\beta}), x_0) \) for \(x \in X_\alpha \) and \((n \in \mathbb{N} \), and
\[
B(C(x_0, x_{n(0)+1}, x) \in \mathcal{R}(x_{n(0)+1} + 1) \cap \mathbb{N} \), where \(\hat{\beta} \in \mathbb{B} \) and \(x \in \bar{P} Y_i \), we have defined
\[
P_{x_{n(0)+1} + 1} \cap B(C(x_0, x_{n(0)+1}, x) \in \mathcal{R}(x_{n(0)+1} + 1) \cap \mathbb{N} \), where \(\hat{\beta} \in \mathbb{B} \) and \(x \in \bar{P} Y_i \), where \(\hat{\beta} \in \mathbb{B} \) and \(x \in \bar{P} Y_i \), where \(\hat{\beta} \in \mathbb{B} \) and \(x \in \bar{P} Y_i \), where \(\hat{\beta} \in \mathbb{B} \) and \(x \in \bar{P} Y_i \), where \(\hat{\beta} \in \mathbb{B} \) and \(x \in \bar{P} Y_i \), where \(\hat{\beta} \in \mathbb{B} \) and \(x \in \bar{P} Y_i \), where \(\hat{\beta} \in \mathbb{B} \) and \(x \in \bar{P} Y_i \), where \(\hat{\beta} \in \mathbb{B} \) and \(x \in \bar{P} Y_i \), where \(\hat{\beta} \in \mathbb{B} \) and \(x \in \bar{P} Y_i \), where \(\hat{\beta} \in \mathbb{B} \) and \(x \in \bar{P} Y_i \), where \(\hat{\beta} \in \mathbb{B} \) and \(x \in \bar{P} Y_i \), where \(\hat{\beta} \in \mathbb{B} \) and \(x \in \bar{P} Y_i \), where \(\hat{\beta} \in \mathbb{B} \) and \(x \in \bar{P} Y_i \), where \(\hat{\beta} \in \mathbb{B} \) and \(x \in \bar{P} Y_i \), where \(\hat{\beta} \in \mathbb{B} \) and \(x \in \bar{P} Y_i \), where \(\hat{\beta} \in \mathbb{B} \) and \(x \in \bar{P} Y_i \), where \(\hat{\beta} \in \mathbb{B} \) and \(x \in \bar{P} Y_i \), where \(\hat{\beta} \in \mathbb{B} \) and \(x \in \bar{P} Y_i \), where \(\hat{\beta} \in \mathbb{B} \) and \(x \in \bar{P} Y_i \), where \(\hat{\beta} \in \mathbb{B} \) and \(x \in \bar{P} Y_i \), where \(\hat{\beta} \in \mathbb{B} \) and \(x \in \bar{P} Y_i \), where \(\hat{\beta} \in \mathbb{B} \) and \(x \in \bar{P} Y_i \).
greater than \(n(\eta) \) and less than \(n(\bar{\theta}) \) and for every \(q \in Q(y) \) the set \(\mathcal{Y} \in [y] \):
\(y'(j) = z(j) \) if \(j \neq 1 \) and \(p_\eta = q \) is not empty, \(p_\eta \in Q(y) \) and if \(m \) and \(z \) belong to
\(\mathcal{Y} \) and \(x_\eta + (n(\bar{\theta}) + 1)z_\eta = x_\eta + (n(\eta) + 1)z_\eta \) then \(p_\eta \in \mathcal{Y} \).

\((\eta, x) \) For every \(y \in \prod_{\alpha \in \Gamma} Y_\alpha \), \(C(x, y) \) is a Borel subset of the Cantor set including
\(H(y) \cap R((n(\bar{\theta}) + 1)\omega, y) \), if \(\eta = \eta_1 \), or
\(H(y) \cap B(C(x_\eta, y(n(\eta) + 1), y) \cap R(x_\eta + (n(\bar{\theta}) + 1)\omega, y), \eta) \), if \(\eta \neq \eta_1 \) (for the definition of \(\eta \) see
\((\eta, x) \)).

\((\gamma, \alpha) \) For every \(y \in \prod_{\alpha \in \Gamma} Y_\alpha \) and \(m \in C(x, \gamma) \), \(y \) there is \(z \) of
\(\prod_{\alpha \in \Gamma} Y_\alpha \) such that the point \((m, z) \) of \(C \times X^\alpha \) is consistent with
\(R(x_\eta + n, x) \), \(\lambda < \gamma \), \(n \in N \) and \(x \in X^\alpha \), and \(\nu(n(\bar{\theta}) + 1) = y. \)

\((\gamma, \alpha) \) For every \(k \geq n(\bar{\theta}) \) and \(z \in \prod_{\alpha \in \Gamma} Y_\alpha \), the set \(B(C(x_\eta, z(n(\bar{\theta}) + 1)), z) = \{ m \in C(x, \gamma) \cap X_\eta \} \times X_\eta \) such that \(z \in \prod_{\alpha \in \Gamma} Y_\alpha \) and the point \((m, z) \) is consistent with \(R(x_\eta + n, x) \), \(\lambda < \gamma \), \(n \in N \) and \(x \in X^\alpha \) is a Borel subset of the Cantor set which depends only on \(x_\eta \), and
\(B(C(x_\eta, z(n(\bar{\theta}) + 1)), z) = \bigcup [B(C(x_\eta, z(n(\bar{\theta}) + 1)), z')] \cap \prod_{\alpha \in \Gamma} Y_\alpha, z' \in X_\eta, z' \in X_\eta, z' \in X_\eta. \)

Let \(y \) be a point of \(\prod_{\alpha \in \Gamma} Y_\alpha \). There are two cases:

(a) \(\lambda < \gamma \) such that \(n(\lambda) \neq n(\bar{\theta}) \),
(b) \(\lambda = \gamma \) such that \(n(\lambda) = n(\bar{\theta}) \).

The proofs of these cases are similar but the second one is a little bit simpler than the first one so we shall consider only the first case.

Put \(\eta = \sup \{ \lambda < \gamma : n(\lambda) \neq n(\bar{\theta}) \} \). Let us assume that
\(B(C(x_\eta, z(n(\bar{\theta}) + 1)), y) \cap R(x_\eta + (n(\bar{\theta}) + 1)\omega, y) \neq \emptyset \).

\([y] = \{ y \in \prod_{\alpha \in \Gamma} Y_\alpha : y_\alpha = y_\alpha, \prod_{\alpha \in \Gamma} (x_\alpha + (n(\bar{\theta}) + 1)\omega, \omega, y_\alpha) \neq \emptyset \}, \)

\(\mathcal{Y} = \{ y \in \prod_{\alpha \in \Gamma} Y_\alpha : y_\alpha = y_\alpha, \prod_{\alpha \in \Gamma} (x_\alpha + (n(\bar{\theta}) + 1)\omega, \omega, y_\alpha) \neq \emptyset \}. \)

The set \(Q(y) \) is defined in a similar way as in \((\lambda, \eta) \).

Let us assume that
\(Q(y) \neq \emptyset \).

Let \(t \) be an integer even number greater than \(n(\eta) \) and less than \(n(\bar{\theta}) \) and an element of \([y] \) satisfying
\(x_\eta + (n(\bar{\theta}) + 1)z_\eta = x_\eta + (n(\eta) + 1)z_\eta \). Write \(A(z, 0) = \{ z' \in [y] :
\)
\(z' = x_\eta + (n(\bar{\theta}) + 1)z' \) and \(z(j) = z(j), \) for \(j \neq 1 \). The family of all sets of the form \(A(z, 0) \) is countable so let us assume that it is equal to \(\{ A_\sigma : s \in N \}. \)

From the definition of \(Y_\alpha \), \(y > n(\eta) \), and \((11, \alpha) \) it follows that \(A_s \) is infinite and
Let \(\mathbf{P} \) be a point of \(\hat{\mathbf{p}}, \mathbf{P} \), where \(r \geq n(\check{\eta}) \). If \(t < v(j) \), where \(j \) is such that \(v(j) = n(\lambda) \) and \(f = \inf \{s \in \mathbb{N} : t < v(s) \} \) then

\[
B(C(a_\eta, z[n(\check{\eta})+1], z) = \begin{cases}
\mathcal{O}, & \text{if there is no } z' \text{ of } K_f(z[n(\check{\eta})+1]) \text{ such that } z'[t] = z \\
\bigcup \{C(a_{\eta}', z') : z' \in K_{f}(z[n(\check{\eta})+1]) \text{ and } z'[t] = z \} \cup \{z[n(\check{\eta})+1] \} \text{, otherwise.}
\end{cases}
\]

If \(t \geq v(j) \),

\[
t' = \begin{cases}
t, & \text{if } t \text{ is an odd number,} \\
t + 1, & \text{otherwise,}
\end{cases}
\]

and \(f' \) is such that \(f' = v(j) \) then

\[
B(C(a_\eta, z[n(\check{\eta})+1], z) = \begin{cases}
\mathcal{O}, & \text{if there is no } z' \text{ of } K_{f}(z[n(\check{\eta})+1]) \text{ such that } z'[t] = z \\
\bigcup \{B(C(a_{\eta}', z[n(\check{\eta})+1], z) \cap R(a_{\eta} + (t' + 1) \omega, z') : z'[t] = z \} \cup \{z[n(\check{\eta})+1] \} \text{, otherwise.}
\end{cases}
\]

Case 2 (\(\check{\eta} \) is a limit number). Put \(K_1(y) = \{y\} \) and \(v(1) = n(\check{\eta}) \). Let us assume that \(K_f(y) = \mathbb{N} \). If \(v(j) \) is defined, where \(v(j) \) is an odd number less than \(n(\check{\eta}) \).

Write \(v(j + 1) = \inf \{s \in \mathbb{N} : s > v(j)\} \) and there is \(\lambda < \check{\eta} \) such that \(n(\lambda) = s \) and \(\lambda > \sup \{\check{\eta} < \check{\eta} : n(\check{\eta}) \leq v(j)\} \) and put

\[
K_{j+1}(y) = \{z \in K_j(y) \times \prod_{i=0}^{n(j+1)} Y_i : p_i[n(j)+1] = p_i[n(j)+1] + 1 \text{ and } (z) \in \mathcal{Q} \}.
\]

Put \(s' = n(j+1)/2 \). If \(s' \) is defined then write \(s' = \inf \{s' : k \in \mathbb{N} : s' > s'_k \} \) (see Lemma 3), \(n(\check{\eta}) \) was defined in connection with the definition of \(a_{\eta} \), and \(s = 2s' + 1 \). This is the unique place where we need Lemma 3.

Let \(j(\eta) \) and \(\eta_\eta \) be such that \(v(j(\eta)) = s' \) and \(\eta_\eta = n(\eta_\eta) \). Put

\[
J_0(y) = B(C(a_\eta, y[n(\check{\eta})+1], y) \cap R(a_{\eta} + (n(j+1) + 1) \omega, y) \cup \{z \in K_{j+1}(y) : z \in \mathcal{Q} \}.
\]

If \(J_0(y) \) is defined then put

\[
J_{k+2}(y) = \{z \in K_{j+2}(y) \} \text{, where } z \in K_{j+1}(y)\).
\]

Put \(J_0(y) = \bigcup \{J_k(y) : k \in \mathbb{N} \} \text{ and } C(a_\eta, y) = B(C(a_\eta, y[n(\check{\eta})+1], y) \cap R(a_{\eta} + (n(j+1) + 1) \omega, y) \cup \{z \in K_{j+1}(y) : z \in \mathcal{Q} \}.
\]

Let \(z \) be a point of \(\hat{\mathbf{p}}, \mathbf{P} \), where \(r \geq n(\check{\eta}) \). If \(t < v(j) \), where \(j \) is such that \(v(j) = n(\lambda) \) and \(f = \inf \{s \in \mathbb{N} : t < v(s) \} \) then

\[
B(C(a_\eta, z[n(\check{\eta})+1], z) = \begin{cases}
\mathcal{O}, & \text{if there is no } z' \text{ of } K_f(z[n(\check{\eta})+1]) \text{ such that } z'[t] = z \\
\bigcup \{C(a_{\eta}', z') : z' \in K_{f}(z[n(\check{\eta})+1]) \text{ and } z'[t] = z \} \cup \{z[n(\check{\eta})+1] \} \text{, otherwise.}
\end{cases}
\]

If \(t \geq v(j) \),

\[
t' = \begin{cases}
t, & \text{if } t \text{ is an odd number,} \\
t + 1, & \text{otherwise,}
\end{cases}
\]

and \(f' \) is such that \(f' = v(j) \) then

\[
B(C(a_\eta, z[n(\check{\eta})+1], z) = \begin{cases}
\mathcal{O}, & \text{if there is no } z' \text{ of } K_{f}(z[n(\check{\eta})+1]) \text{ such that } z'[t] = z \\
\bigcup \{B(C(a_{\eta}', z[n(\check{\eta})+1], z) \cap R(a_{\eta} + (t' + 1) \omega, z') : z'[t] = z \} \cup \{z[n(\check{\eta})+1] \} \text{, otherwise.}
\end{cases}
\]

From the definition of the constructed objects and the inductive assumption it follows that they depend on \((y[n(\check{\eta})+1] \), \(\omega \))", and \(C(a_\eta, y) = B(C(a_\eta, y[n(\check{\eta})+1], y) \cap R(a_{\eta} + (n(j+1) + 1) \omega, y) \cup \{z \in K_{j+1}(y) : z \in \mathcal{Q} \}.
\]

Let \(z \) be a point of \(\hat{\mathbf{p}}, \mathbf{P} \), where \(r \geq n(\check{\eta}) \). Write \(k = \inf \{k' \in \omega : t < s_k \} \) then

\[
B(C(a_\eta, z[n(\check{\eta})+1], z) = \begin{cases}
\mathcal{O}, & \text{if there is no } z' \text{ of } K_{f}(z[n(\check{\eta})+1]) \text{ such that } z'[t] = z \\
\bigcup \{B(C(a_{\eta}', z[n(\check{\eta})+1], z) \cap R(a_{\eta} + (t' + 1) \omega, z') : z'[t] = z \} \cup \{z[n(\check{\eta})+1] \} \text{, otherwise.}
\end{cases}
\]

From the definition of the constructed objects and the inductive assumption it follows that they depend on \((y[n(\check{\eta})+1] \), \(\omega \))", and \(C(a_\eta, y) = B(C(a_\eta, y[n(\check{\eta})+1], y) \cap R(a_{\eta} + (n(j+1) + 1) \omega, y) \cup \{z \in K_{j+1}(y) : z \in \mathcal{Q} \}.
\]
and the definition of Y_{k} for $k \in \omega$, we infer that the set
\[V = \{ x \in P \mid \exists z \in F_{k}, z = x \mid \forall k \} \]
for $i \leq v(t_{i})$ is not empty. Notice that if $x \in V$ then $q_{i} \in Q(x)$. By $(4,3)$, where λ is such that
\[n(\lambda) = v(t_{i}), \]
we infer that there is $z_{i} \in V$ such that $p_{i} = q_{i}$. It is easy to see that
\[n \in C_{i}(z_{i}). \]
After $(j(t_{i+1}) - j(t_{i}))$ steps we shall find $z_{i+1} = x'$ which has the required properties.

From $(1,4)-(7,9)$ it follows that $C_{i}(z_{i}, y_{i})$ is a required set.

The construction of $R_{i}(x_{i} + n_{0}, x)$, for $i \in N$, $x \in X^{*}$ is similar to the construction of $R_{i}(n_{0}, x)$. This completes the definition of L so we conclude that X and M have properties mentioned in Example 2.

Comments.

Remark 4. If X is the derivative of X, where X is from Example 2, then one can show (see [Al1]) that $X = \bigcup \{ X_{n} : n \in N \}$, where X_{n} is a Lindelöf scattered space so from [Al1] it follows that the product $Y \times (X)^{n}$ is Lindelöf, for every hereditarily Lindelöf space Y.

Remark 5. In [Al1] we proved, in some sense, a dual result to Example 2. We showed that if X is a Lindelöf P-space and M is a separable metric space which admits a complete metric space M' such that $M' \supset M$ and $M' \setminus M$ does not contain uncountable compact subsets then the product $M \times X^{n}$ is Lindelöf.

Let me finish this paper with some problems related to the Michael's conjecture.

Problem 1. Let us assume that the product $Y \times X$ is Lindelöf, for every Lindelöf space Y. Is it true that X^{n} is a Lindelöf space?

Problem 2. Let us assume that $Y \times X$ has the Lindelöf property, for every hereditarily Lindelöf space Y. Is it true that X^{2} is a Lindelöf space?

Problem 3. One can ask similar questions for other covering properties. I do not know, for example, whether the product $Y \times X^{n}$ is paracompact, where X is a space having only one non-isolated point and Y is a perfect paracompact space?

Notice that it is not enough to assume that Y is a hereditarily paracompact space.

References