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may also think that X is not a quasi retract of a disk. This is not so. The
continuum X can be embedded as the sin1/x curve as shown in Figure 5b.
By Theorem 12, the continuum in Figure 5b is a quasi retract of a disk.

(a) (b) (©)
Fig.5

It is also easy to show that being a quasi retract of a disk is a
topological property, i.e, it does not depend on the embedding. Hence the
continyum in Figure Sa is a quasi retract of the disk. It is not known if the
triod with a spiral shown in Figure 5c is a quasi retract of a disk.
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Baire category in spaces of probability measures, II
by

J. B. Brown (Auburn, Ala) and G.V. Cox (Redlands, Ca.)

Abstract. Completeness relationships for a space X, and its space of probability measures
P(X) are compared. All implications between X and P(X) and between compactness, local
compactness, topological completeness, pseudo completeness, Baire completeness, and strong
Baire completeness are resolved, The continuum hypothesis has been assumed when needed.

1. Introduction. In [B], completeness relationships between a separable
metric space (X, d) and the space of probability measures on X endowed
with the separable metric of weak convergence, (P (X), g) were investigated. It
was shown that X PC — P(X)PC - P(X)BC-— X BC and none of the impli-
cations are reversible. Here, as in [B], TC means topologically complete, PC
means pseudo complete (i.e., contains a dense TC subspace), and BC means
Baire complete (i.e., is a Baire space). We also denote strongly Baire complete
by SBC. A space is SBC if every closed subspace is BC.

Based upon results of Prohorov [P] and Luther [L], we know
that X compact < P(X) compact« P(X) locally compact, and also that
XTC+ P(X)TC. The purpose of this paper is to resolve the following
diagram.

X compact <> P(X) compact <= P(.X') locally compact

1

X locally compact

X TC <> P(X)TC

P(X)SBC Ail%c
X SBC P(X)PC

N
"

X BC
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That P(X)SBC — X SBC follows from the fact that if F is closed in X,
{ueP(X): u(x) =1 for some xeF} is homeomorphic to F and is closed in
P(X). As it is well known that

X SBC

the only remaining items to be shown are (Theorem 4) X SBC + P(X)BC, and
(Theorem 5) P(X)SBC + P(X)PC.

As a tool for obtaining these theorems, we prove two results related to
the theory of totally imperfect spaces (cf. [K]); namely we provide a
characterization of property C” and have shown which of the “Lusin-type”
universal null spaces can be SBC and which cannot.

2. Results concerning totally imperfect spaces. For the proof of Theorem
4, we will require a space which is SBC and a § space (one of universal
measure zero or equivalently, one which supports atomic measures only).
Therefore it was desirable to determine just which of the spaces in the
hierarchy of “Lusin-type” totally imperfect spaces discussed in Section 40 of
[K] and elsewhere in the literature (e.g., L, is defined in [B])

CON
: c : C — f —totally imperfect,

can have property SBC. A space X (assumed to be embedded in some space Y)
has property CON (relative to Y) if there exists a countable subset M of ¥
about which it is concentrated, i.e., such that if Q is an open subset of ¥ which
contains M, then X \ Q is countable. A space has property P if it is concentrated
about a countable subset of itself. The statement that X has property C" means
that if {U(x, n): xeX,n=0,1,2,...} is a family of open subsets of X such
that xeU(x, n) for each x and », then there exists a SEqUeNce Xg, Xy, Xg,...

countable - L—v—L; —» P

<]
such that X = (J U(x,, n). A space has property C if it is true that for every
n=0
sequence fy, f1, /2, ... of positive numbers, there exists a sequence Xgs X15 Xg,.u.
0
of elements of X such that X = {J N(x,, f,), where N(x, f) denotes the f-
n=0

neighborhood of x. In order to facilitate the construction given in the proof of
Theorem 3, we first give the following C-like characterization of property C”.

TueoreM 1. A space X has property C" if and only if it is true that fof
every sequence fo, f1, f3,... of positive valued continuous Junctions with domain
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X, there exists a sequence Xg, Xy, X,,... of elements of X such that X
o0

= UON(xmf;x(xn))'
ne

Proof. It is obvious that property C” implies the latter property, so
suppose that X satisfies the latter property. Let {U(x, n): xeX, n
=0,1, 2,...} be a family of open sets such that xe U (x, n) for each x and n.
For each n, let g, be the function defined by g,(x) = sup{s: there exist ye X
such that N(x, ¢) is a subset of U(y, n)}, for each xe X. (If this sup fails to
exist for infinitely many n, the conclusion follows, so we may assume that the
sup exists in every case.) The functions go, gy, g2,.. are continuous and
positive valued on X. Let f, =g,/2 for each n, and let x,, x;, X5,... be a

sequence such that X = (J N(x,, f,(x,)). For each n, let y, be an element of

n=0

X such that N(x,, f,(x,) lies in U(y,, n). Then X = {J U(y,, n).
n=0

THEOREM 2. There exists no uncountable space which is SBC and has
property CON.

Proof. Let X be an uncountable subset of the space ¥, and assume that
X is concentrated about the subset M = {my, m;, m,,...} of Y. Let @, be an
open subset of Y containing m, such that X\Q, is uncountable. Let K, be
the range of a nonrepeating sequence ko, ki, k;,... of elements of and
condensation points of X \(M u Q) such that k,, kj, ks,... converges to k.
Let Q; be an open subset of Y containing m; and no elements of K, such
that every element of K, is still a condensation point of X \(M L Qg v Q,).
For each element of K, pick a sequence of elements of and condensation
points of X \(M uQ,uQ,) converging to that element of K, and pick these
sequences in such a way that the union, K, of K, and the ranges of all these
sequences is closed in Y. Continue in this manner for every positive integer n.
Then K = Cly(K,u K; UK, u...) is closed relative to X, countable because

o0

it is a subset of X\ | Q,, and perfect (every point of K is a limit point of
n=0

K). Thus K is first category relative to itself, and X is not SBC.

THEOREM 3. The continuum hypothesis implies the existence of a subspace
X of the reals such that X is SBC and has property C'.

Proof. X will be constructed as the union of the sets X, defined by the
following transfinite process. Let {¢"},<,, be a well ordered sequence such
that for each a, ¢* is a sequence ¢%, ¢}, 45%,... of non-negative, lower semi-
continuous functions with domain [0, 1] such that each gf is positive valued
on some dense open subset Of of [0,1]. For each o, let H,=

% 0% 0%~ ... Assume that each sequence of non-negative, lower semi-
continuous functions with domain [0, 1] which are positive valued on dense
open subsets of [0, 1] appears in the sequence {g*}, <., - Let {Fm},,mul be a
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listing of the closed perfect subsets of [0, 1] such that each such set appears

in the list uncountably many times. For each closed perfect set F, let

{K3}a<wy list the first category (relative to F) F, subsets of F. For each «

<@y, let J, be the set obtained as follows: Denote F, by F. F appears for

the yth time at ordinal «(0 <y < w,). Let J, = | K% (J, is still F, and first
LES

category relative to F). Therefore, we have that iva is closed and perfect in
[0, 1] and K is F, and first category relative to F, there exists a such that F
=F, and K = J,.

We now begin the process of constructing X.

Level 0: Let a(0) =0 and G, = H,. Let X, < G, be the range of
a sequence xg, x{, x9,... which includes a dense subset of [0, 1] and if
possible at least ome element of (GyNFg)\J,. Then let Qo=

U N (0, g ().
i=0

Level f: Let a(f) be the first ordinal ‘greater than all a(y) with y <p
such that {J X, « H,,. Let Gy = (G, 0 Q)N H,yp. Let X; = Gy be the
<8

r<p ?
range of a sequence x§, x{, x4, ... which includes all elements of |J X, and if

. . P<p
possible includes at least one element of (Gg N Fy)\J,.  Let Qp=

o0
U N g (o).
i=0
Let X= (J X,
B<w;
We first show that X has property C”. Let 90> 915 92,-.. be a sequence
of continuous positive valued functions with domain X. Each g: can be ex-
tended to a non-negative lower semi-continuous function q; defined on [0, 1]

which is positive on a dense open subset O, of [0,1]. Let H= ﬁOi.

Let y be the first ordinal such that H,=H and ¢" = q,, q,, qz,...l=S(;nce

the entire set X = H,, there will exist a § such that a(B) = y. Now,
o

Qp= U N(*, ¢#"(xf)) contains all of X. Thus we have that
i=0 '

X = UN(x, g:(xF)), and X has property C".
i=0

We now show that X is SBC. Suppose otherwise, and that f< X is a
closed relative to X and perfect subset of X which is first category relative to
itself. Let {yq, y1, y2....} be dense in /. Let F = Clio,1;(f) and let H be an F,
first category relative to F subset of F such that J< H. Choose f such that
F=Fy, HclJy and {yg, y;, y5...} < X;. Gy contains all of X, so
{Yos ¥1, Y2, b = Gy. Therefore, Gy N F; is a dense G, set relative to Fy, but
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Jy is first category relative to. Fj. Therefore, it would have been possible for
X, to include an element of (G; N Fy)\J, at level B in the construction. Thus,
X must contain an element of '\ H. This is a contradiction and completes
the proof of Theorem 3.

3. Completeness properties. In [B, Theorem 4] it is argued that if every
element of P(X) has an atom (ie, X is a § space), then P(X) is not BC.
Thus, from Theorem 3, we have

TueoreM 4. The continuum hypothesis implies the existence of a subspace
X of the reals such that X is SBC but P(X) is not BC.

THEOREM 5. The continuum hypothesis implies the existence of a subspace
X of the reals such that P(X) is SBC but P(X) is not PC.

Proof. Index all dense G; sets in P[0, 1] and all closed subsets of
P[0, 1] as {G,}y<u, and {M,}, <, respectively. For each M,, index all first
category (rel. M,) F, subsets of M, as {Ml,,}ﬂq,l. Let g be a bijection from
, onto w?. We now construct X.

Level 0: Represent g(0) as (x, f). Select a measure u,eM,\M,; and
let Fo be a first category yet dense in [0, 1] F, set which supports u,. Now
let #,€G,y be a measure such that #,(F,) = 0. This is possible since most
measures assign F, measure 0. Finally, let H, be a first category F, set in
[0, 1] that supports n, but such that Fon Hy = 0.

Level y: Represent g(y) as (a, f). If possible, select u,eM,\M,; such
that u,(J H,) =0, and let F, be a first category yet dense F, subset of

o<

[o, 1] thatvsupports u, and such that F, n( ) H,) = ©. If the selection of p,

o<y

is not possible, let F, = @. Now let ,€G, be such that n,(|J F,} =0, and

o<y
choose H, to be a first category F, set in [0, 1] that supports 7, and such
that H,n(|) F,) = O.
<

asy

Set X = () F,. Now P(X) is not PC for it contains no G,; ie, it
contains no cfenslf: TC subspace.

However, P(X) is SBC, for suppose that M < P(X) is closed. Let M, be
the P[0, 1]<closure of M. It suffices to show that M is not first category in
itself, so suppose that it is, Then M = M, for some B. Let y = g™ (, ). At
level v, if it was possible to select u,, then we have a contradiction because
Uy €M\ M, and u, e P(X), hence p,& M\ M,;. To finish the proof then, we
need only to show that it was possible to select u,. Notice that a dense

subset (namely M) of M, assigns H = (J H, measure 0. Furthermore,
e<y

{peM,: p([0, 1]\ H) =1} is G4, so most of M, assigns H measure 0, and
hence there are measures in M,\M,, which could be selected as u,.
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On Michael’s problem concerning the Lindelof property
in the Cartesian products

by

K. Alster* (Lubbock, Tex)

Abstract. In this paper we present a negative solution of Michael's conjecture which says
that if Yx X is Lindeldf, for every hereditarily Lindelsf space Y, then Yx X® is Lindelsf, for
every hereditarily Lindelsf space Y.

Introduction. It is known that if Y is a hereditarily Lindelof space and X
a metric separable space then Yx X and also ¥x X“ are Lindelof. Z. Frolik
proved (see [F1]) that if Y is a hereditarily Lindel6f and X is a Lindelsf and
complete in the sense of Cech space then Yx X and also Yx X* are Lindeldf.

"R. Telgarski showed (see [T]) that if Y is a hereditarily Lindel6f space and X

a Lindelof and scattered space then Yx X is Lindelof. I have improved the
result of Telgarski [Al,], by showing that ¥Yx X® is Lindelsf. I think that
these results were the motivation of Michael’s conjecture which says that if
the product Yx X is Lindelsf for every hereditarily Lindelsf space Y then
Yx X is Lindelof for every hereditarily Lindelof space Y. In this paper we
proved that the answer to the Michael's conjecture is a negative one.

Examples.

ExampLE 1. There exists Z such that, for every natural number n and
for every hereditarily Lindeldf space ¥, the product ¥YxZ" is Lindeldf but Z¢
is not.

ExampLE 2. There exist a separable metric space M and a space X such
that, for every Lindelof space Y and every natural number n, the products
Yx X" and X® are Lindelof but M x X® is not.

It is easy to see that in order to obtain Example 1 it is enough to put Z
=M x X, where M and X are from Example 2.

* 1978. Mathematics Subject Classification. Primary 54 B 10.
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