V. N. Akis

142

may also think that X is not a quasi retract of a disk. This is not so. The continuum X can be embedded as the $\sin 1/x$ curve as shown in Figure 5b. By Theorem 12, the continuum in Figure 5b is a quasi retract of a disk.

Fig.5

It is also easy to show that being a quasi retract of a disk is a topological property, i.e., it does not depend on the embedding. Hence the continuum in Figure 5a is a quasi retract of the disk. It is not known if the triod with a spiral shown in Figure 5c is a quasi retract of a disk.

References

- H. Bell, On fixed point properties of plane continua, Trans Amer. Math. Soc. 128 (1967), pp. 539-548.
- [2] R. H. Bing, The elusive fixed point property, Amer. Math. Monthly 76 (1969), pp. 119-132.
- [3] J. Dugundji, Topology, Allyn and Bacon, Inc. 1978.
- [4] B. D. Garrett, Almost continuous retracts, in: General Topology and Modern Analysis (L. C. McAuley and M. M. Rao, eds.), Academic Press, New York 1981, pp. 229-238.
- [5] W. T. Ingram, An atriodic tree-like continuum with positive span, Fund. Math. 77 (1972), pp. 99-107.
- [6] K. R. Kellum, Almost continuous images of Peano continua, Top. and Appl. 11 (1980), pp. 293-296.
- [7] R. J. Knill, Cones, products and fixed points, Fund. Math. 60 (1967), pp. 35-46.
- [8] K. Kuratowski, Topology, Vol. I, New York-London-Warszawa 1968.
- [9] Topology, Vol. II, New York-London-Warszawa 1968.
- [10] K. Sieklucki, On a class of plane acyclic continua with the fixed point property, Fund. Math. 63 (1968), pp. 257-278.
- [11] J. Stallings, Fixed point theorems for connectivity maps, Fund. Math. 47 (1959), pp. 249–263.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF CALIFORNIA Davis, CA. 95616

Received 7 September 1981

Baire category in spaces of probability measures, II

by

J. B. Brown (Auburn, Ala.) and G. V. Cox (Redlands, Ca.)

Abstract. Completeness relationships for a space X, and its space of probability measures P(X) are compared. All implications between X and P(X) and between compactness, local compactness, topological completeness, pseudo completeness, Baire completeness, and strong Baire completeness are resolved. The continuum hypothesis has been assumed when needed.

1. Introduction. In [B], completeness relationships between a separable metric space (X, d) and the space of probability measures on X endowed with the separable metric of weak convergence, $(P(X), \varrho)$ were investigated. It was shown that $X PC \rightarrow P(X) PC \rightarrow P(X) BC \rightarrow X BC$ and none of the implications are reversible. Here, as in [B], TC means topologically complete, PC means pseudo complete (i.e., contains a dense TC subspace), and BC means Baire complete (i.e., is a Baire space). We also denote strongly Baire complete by SBC. A space is SBC if every closed subspace is BC.

Based upon results of Prohorov [P] and Luther [L], we know that X compact $\leftrightarrow P(X)$ compact $\leftrightarrow P(X)$ locally compact, and also that $X TC \leftrightarrow P(X) TC$. The purpose of this paper is to resolve the following diagram.

That P(X) SBC $\to X$ SBC follows from the fact that if F is closed in X, $\{\mu \in P(X): \mu(x) = 1 \text{ for some } x \in F\}$ is homeomorphic to F and is closed in P(X). As it is well known that

the only remaining items to be shown are (Theorem 4) $X SBC \rightarrow P(X) BC$, and (Theorem 5) P(X) SBC $\rightarrow P(X)$ PC.

As a tool for obtaining these theorems, we prove two results related to the theory of totally imperfect spaces (cf. [K]); namely we provide a characterization of property C" and have shown which of the "Lusin-type" universal null spaces can be SBC and which cannot.

2. Results concerning totally imperfect spaces. For the proof of Theorem 4, we will require a space which is SBC and a β space (one of universal measure zero or equivalently, one which supports atomic measures only). Therefore it was desirable to determine just which of the spaces in the hierarchy of "Lusin-type" totally imperfect spaces discussed in Section 40 of [K] and elsewhere in the literature (e.g., L_1 is defined in [B'])

countable
$$\rightarrow L \rightarrow \nu \rightarrow L_1 \rightarrow P \stackrel{\nearrow}{\rightarrow} \stackrel{\text{CON}}{\nearrow} C \rightarrow \beta \rightarrow \text{totally imperfect,}$$

can have property SBC. A space X (assumed to be embedded in some space Y) has property CON (relative to Y) if there exists a countable subset M of Y about which it is concentrated, i.e., such that if Q is an open subset of Y which contains M, then $X \setminus Q$ is countable. A space has property P if it is concentrated about a countable subset of itself. The statement that X has property C'' means that if $\{U(x, n): x \in X, n = 0, 1, 2, ...\}$ is a family of open subsets of X such that $x \in U(x, n)$ for each x and n, then there exists a sequence x_0, x_1, x_2, \ldots such that $X = \bigcup_{n=0}^{\infty} U(x_n, n)$. A space has property C if it is true that for every sequence f_0, f_1, f_2, \ldots of positive numbers, there exists a sequence x_0, x_1, x_2, \ldots of elements of X such that $X = \bigcup_{n=0}^{\infty} N(x_n, f_n)$, where N(x, f) denotes the fneighborhood of x. In order to facilitate the construction given in the proof of Theorem 3, we first give the following C-like characterization of property C''.

THEOREM 1. A space X has property C'' if and only if it is true that for every sequence f_0, f_1, f_2, \ldots of positive valued continuous functions with domain

Proof. It is obvious that property C'' implies the latter property, so suppose that X satisfies the latter property. Let $\{U(x, n): x \in X, n\}$ =0, 1, 2, ... be a family of open sets such that $x \in U(x, n)$ for each x and n. For each n, let g_n be the function defined by $g_n(x) = \sup \{\varepsilon : \text{ there exist } y \in X\}$ such that $N(x, \varepsilon)$ is a subset of U(y, n), for each $x \in X$. (If this sup fails to exist for infinitely many n, the conclusion follows, so we may assume that the sup exists in every case.) The functions $g_0, g_1, g_2,...$ are continuous and positive valued on X. Let $f_n = g_n/2$ for each n, and let x_0, x_1, x_2, \ldots be a sequence such that $X = \bigcup_{n=0}^{\infty} N(x_n, f_n(x_n))$. For each n, let y_n be an element of X such that $N(x_n, f_n(x_n))$ lies in $U(y_n, n)$. Then $X = \bigcup_{n=0}^{\infty} U(y_n, n)$.

THEOREM 2. There exists no uncountable space which is SBC and has property CON.

Proof. Let X be an uncountable subset of the space Y, and assume that X is concentrated about the subset $M = \{m_0, m_1, m_2, ...\}$ of Y. Let Q_0 be an open subset of Y containing m_0 such that $X \setminus Q_0$ is uncountable. Let K_0 be the range of a nonrepeating sequence k_0, k_1, k_2, \dots of elements of and condensation points of $X \setminus (M \cup Q_0)$ such that k_1, k_2, k_3, \ldots converges to k_0 . Let Q_1 be an open subset of Y containing m_1 and no elements of K_0 such that every element of K_0 is still a condensation point of $X \setminus (M \cup Q_0 \cup Q_1)$. For each element of K_0 pick a sequence of elements of and condensation points of $X \setminus (M \cup Q_0 \cup Q_1)$ converging to that element of K_0 , and pick these sequences in such a way that the union, K_1 , of K_0 and the ranges of all these sequences is closed in Y. Continue in this manner for every positive integer n. Then $K = \operatorname{Cl}_X(K_0 \cup K_1 \cup K_2 \cup \ldots)$ is closed relative to X, countable because it is a subset of $X \setminus \bigcup_{n=0}^{\infty} Q_n$, and perfect (every point of K is a limit point of K). Thus K is first category relative to itself, and X is not SBC.

THEOREM 3. The continuum hypothesis implies the existence of a subspace X of the reals such that X is SBC and has property C''.

Proof. X will be constructed as the union of the sets X_{ℓ} defined by the following transfinite process. Let $\{q^{\alpha}\}_{\alpha<\omega_1}$ be a well ordered sequence such that for each α , q^{α} is a sequence q_0^{α} , q_1^{α} , q_2^{α} ,... of non-negative, lower semicontinuous functions with domain [0, 1] such that each q_i^{α} is positive valued on some dense open subset O_i^{α} of [0, 1]. For each α , let H_{α} = $O_0^{\alpha} \cap O_1^{\alpha} \cap O_2^{\alpha} \cap \dots$ Assume that each sequence of non-negative, lower semicontinuous functions with domain [0, 1] which are positive valued on dense open subsets of [0, 1] appears in the sequence $\{q^{\alpha}\}_{\alpha<\omega_1}$. Let $\{F_{\alpha}\}_{\alpha<\omega_1}$ be a

listing of the closed perfect subsets of [0,1] such that each such set appears in the list uncountably many times. For each closed perfect set F, let $\{K_{\alpha}^{F}\}_{\alpha<\omega_{1}}$, list the first category (relative to F) F_{σ} subsets of F. For each $\alpha<\omega_{1}$, let J_{α} be the set obtained as follows: Denote F_{α} by F. F appears for the γ th time at ordinal α ($0<\gamma<\omega_{1}$). Let $J_{\alpha}=\bigcup_{\sigma\leqslant\gamma}K_{\sigma}^{F}$ (J_{α} is still F_{σ} and first category relative to F). Therefore, we have that if F is closed and perfect in [0,1] and K is F_{σ} and first category relative to F, there exists α such that $F=F_{\alpha}$ and $K\subset J_{\alpha}$.

We now begin the process of constructing X.

Level 0: Let $\alpha(0)=0$ and $G_0=H_0$. Let $X_0\subset G_0$ be the range of a sequence $x_0^0,\,x_1^0,\,x_2^0,\ldots$ which includes a dense subset of $[0,\,1]$ and if possible at least one element of $(G_0\cap F_0)\setminus J_0$. Then let $Q_0=\bigcup_{i=0}^\infty N\left(x_i^0,\,q_i^{\alpha(0)}(x_i^0)\right)$.

Level β : Let $\alpha(\beta)$ be the first ordinal greater than all $\alpha(\gamma)$ with $\gamma < \beta$ such that $\bigcup_{\gamma < \beta} X_{\gamma} \subset H_{\alpha(\beta)}$. Let $G_{\beta} = \bigcap_{\gamma < \beta} (G_{\gamma} \cap Q_{\gamma}) \cap H_{\alpha(\beta)}$. Let $X_{\beta} \subset G_{\beta}$ be the range of a sequence x_{0}^{β} , x_{1}^{β} , x_{2}^{β} ,... which includes all elements of $\bigcup_{\gamma < \beta} X_{\gamma}$ and if possible includes at least one element of $(G_{\beta} \cap F_{\beta}) \setminus J_{\beta}$. Let $Q_{\beta} = \bigcup_{i=0}^{\infty} N(x_{i}^{\beta}, q_{i}^{\alpha(\beta)}(x_{i}^{\beta}))$. Let $X = \bigcup_{\beta < \omega_{1}} X_{\beta}$.

We first show that X has property C''. Let g_0, g_1, g_2, \ldots be a sequence of continuous positive valued functions with domain X. Each g_i can be extended to a non-negative lower semi-continuous function q_i defined on [0, 1] which is positive on a dense open subset O_i of [0, 1]. Let $H = \bigcap_{i=0}^{\infty} O_i$. Let γ be the first ordinal such that $H_{\gamma} = H$ and $q^{\gamma} = q_0, q_1, q_2, \ldots$ Since the entire set $X \subset H_{\gamma}$, there will exist a β such that $\alpha(\beta) = \gamma$. Now, $Q_{\beta} = \bigcup_{i=0}^{\infty} N(x_i^{\beta}, q_i^{\alpha(\beta)}(x_i^{\beta}))$ contains all of X. Thus we have that $X = \bigcup_{i=0}^{\infty} N(x_i^{\beta}, g_i(x_i^{\beta}))$, and X has property C''.

We now show that X is SBC. Suppose otherwise, and that $f \subset X$ is a closed relative to X and perfect subset of X which is first category relative to itself. Let $\{y_0, y_1, y_2, \ldots\}$ be dense in f. Let $F = \operatorname{Cl}_{[0,1]}(f)$ and let H be an F_{σ} first category relative to F subset of F such that $f \subset H$. Choose β such that $F = F_{\beta}$, $H \subset J_{\beta}$, and $\{y_0, y_1, y_2, \ldots\} \subset X_{\beta}$. G_{β} contains all of X, so $\{y_0, y_1, y_2, \ldots\} \subset G_{\beta}$. Therefore, $G_{\beta} \cap F_{\beta}$ is a dense G_{δ} set relative to F_{δ} , but

 J_{β} is first category relative to F_{β} . Therefore, it would have been possible for X_{β} to include an element of $(G_{\beta} \cap F_{\beta}) \setminus J_{\beta}$ at level β in the construction. Thus, X must contain an element of $f \setminus H$. This is a contradiction and completes the proof of Theorem 3.

3. Completeness properties. In [B, Theorem 4] it is argued that if every element of P(X) has an atom (i.e., X is a β space), then P(X) is not BC. Thus, from Theorem 3, we have

Theorem 4. The continuum hypothesis implies the existence of a subspace X of the reals such that X is SBC but P(X) is not BC.

Theorem 5. The continuum hypothesis implies the existence of a subspace X of the reals such that P(X) is SBC but P(X) is not PC.

Proof. Index all dense G_{δ} sets in P[0, 1] and all closed subsets of P[0, 1] as $\{G_{\alpha}\}_{\alpha < \omega_1}$ and $\{M_{\alpha}\}_{\alpha < \omega_1}$ respectively. For each M_{α} , index all first category (rel. M_{α}) F_{σ} subsets of M_{α} as $\{M_{\alpha\beta}\}_{\beta < \omega_1}$. Let g be a bijection from ω_1 onto ω_1^2 . We now construct X.

Level 0: Represent g(0) as (α, β) . Select a measure $\mu_0 \in M_\alpha \setminus M_{\alpha\beta}$ and let F_0 be a first category yet dense in [0, 1] F_σ set which supports μ_0 . Now let $\eta_0 \in G_0$ be a measure such that $\eta_0(F_0) = 0$. This is possible since most measures assign F_0 measure 0. Finally, let H_0 be a first category F_σ set in [0, 1] that supports η_0 but such that $F_0 \cap H_0 = \emptyset$.

Level γ : Represent $g(\gamma)$ as (α,β) . If possible, select $\mu_{\gamma} \in M_{\alpha} \setminus M_{\alpha\beta}$ such that $\mu_{\gamma}(\bigcup_{\sigma < \gamma} H_{\sigma}) = 0$, and let F_{γ} be a first category yet dense F_{σ} subset of [0,1] that supports μ_{γ} and such that $F_{\gamma} \cap (\bigcup_{\sigma < \gamma} H_{\sigma}) = \emptyset$. If the selection of μ_{γ} is not possible, let $F_{\gamma} = \emptyset$. Now let $\eta_{\gamma} \in G_{\gamma}$ be such that $\eta_{\gamma}(\bigcup_{\sigma \leqslant \gamma} F_{\sigma}) = 0$, and choose H_{γ} to be a first category F_{σ} set in [0,1] that supports η_{γ} and such that $H_{\gamma} \cap (\bigcup_{\sigma} F_{\sigma}) = \emptyset$.

Set $X = \bigcup_{\gamma < \omega_1} F_{\gamma}$. Now P(X) is not PC for it contains no G_{γ} ; i.e., it contains no dense TC subspace.

However, P(X) is SBC, for suppose that $M \subset P(X)$ is closed. Let M_{α} be the P[0, 1]-closure of M. It suffices to show that M is not first category in itself, so suppose that it is. Then $M \subset M_{\alpha\beta}$ for some β . Let $\gamma = g^{-1}(\alpha, \beta)$. At level γ , if it was possible to select μ_{γ} , then we have a contradiction because $\mu_{\gamma} \in M_{\alpha} \setminus M_{\alpha\beta}$ and $\mu_{\gamma} \in P(X)$, hence $\mu_{\gamma} \in M \setminus M_{\alpha\beta}$. To finish the proof then, we need only to show that it was possible to select μ_{γ} . Notice that a dense subset (namely M) of M_{α} assigns $H = \bigcup_{\sigma < \gamma} H_{\sigma}$ measure 0. Furthermore, $\{\mu \in M_{\alpha}: \mu([0, 1] \setminus H) = 1\}$ is G_{δ} , so most of M_{α} assigns H measure 0, and hence there are measures in $M_{\alpha} \setminus M_{\alpha\beta}$ which could be selected as μ_{γ} .

148

J. B. Brown and G. V. Cox

References

- [B] J. B. Brown, Baire category in spaces of probability measures, Fund. Math. 96 (1977), pp. 189-193.
- [B'] Lusin density and Ceder's differentiable restrictions of arbitrary real functions, Fund. Math. 84 (1974), pp. 35-45.
- [K] K. Kuratowski, Topology I, New York-London-Warszawa 1966.
- [L] N. Y. Luther, Locally compact spaces of measures, Proc. Amer. Math. Soc. 25 (1970), pp. 541-547.
- [P] Y. V. Prohorov, Convergence of random processes and limit theorems in probability theory, Theor. Prob. Appl. 1 (1956), pp. 157-214.

AUBURN UNIVERSITY DEPARTMENT OF MATHEMATICS Auburn, Alabama 36830 201 Hastings Redlands, California 92373

Received 28 September 1981

On Michael's problem concerning the Lindelöf property in the Cartesian products

b

K. Alster* (Lubbock, Tex.)

Abstract. In this paper we present a negative solution of Michael's conjecture which says that if $Y \times X$ is Lindelöf, for every hereditarily Lindelöf space Y, then $Y \times X^{\omega}$ is Lindelöf, for every hereditarily Lindelöf space Y.

Introduction. It is known that if Y is a hereditarily Lindelöf space and X a metric separable space then $Y \times X$ and also $Y \times X^{\omega}$ are Lindelöf. Z. Frolik proved (see [F]) that if Y is a hereditarily Lindelöf and X is a Lindelöf and complete in the sense of Čech space then $Y \times X$ and also $Y \times X^{\omega}$ are Lindelöf. R. Telgarski showed (see [T]) that if Y is a hereditarily Lindelöf space and X a Lindelöf and scattered space then $Y \times X$ is Lindelöf. I have improved the result of Telgarski [Al₁], by showing that $Y \times X^{\omega}$ is Lindelöf. I think that these results were the motivation of Michael's conjecture which says that if the product $Y \times X$ is Lindelöf for every hereditarily Lindelöf space Y then $Y \times X^{\omega}$ is Lindelöf for every hereditarily Lindelöf space Y. In this paper we proved that the answer to the Michael's conjecture is a negative one.

Examples.

EXAMPLE 1. There exists Z such that, for every natural number n and for every hereditarily Lindelöf space Y, the product $Y \times Z^n$ is Lindelöf but Z^{ω} is not.

EXAMPLE 2. There exist a separable metric space M and a space X such that, for every Lindelöf space Y and every natural number n, the products $Y \times X^n$ and X^ω are Lindelöf but $M \times X^\omega$ is not.

It is easy to see that in order to obtain Example 1 it is enough to put $Z = M \times X$, where M and X are from Example 2.

^{* 1978.} Mathematics Subject Classification. Primary 54 B 10.