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(Such an r must exist by Observation 3.8 ii)). Thus by Ramsey’s Theorem
there must be an infinite X < w, which is homogeneous for f. That is, there is
s < nsuch that if 4, j and k are in X and i <j < k then

(¥ M=y, (@, &)).
Now choose iy <i; <i, <iy <i, all in X. Thus by (%), we have
M=, (@, Tyi,) A Vs @y, Tp)) A U3, Ciyiz)-

But y,ed. Thus it easily follows (from Definition 3.1 ii)) that
M= (@, T,;,)- But this contradicts Observation 3.8 i). This contradiction
proves that M is relatively homogeneous. As in the proof of Proposition 2.9
it follows that there is some type g of T which is omitted in M. Let N be
prime over a realisation of g. Then M, N and the prime and countable
saturated models of T give us our four models. So Proposition 3.3 is proved.

- I should like to thank the C.N.R.S. for their financial support during a
visit 'to Université Paris VII when some of the above results were obtained.
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Fixed point theorems and almost continuity
by

Vladimir N. Akis* (Davis, Ca.)

Abstract. In 1959, John Stallings asked the following question which he attributed to K.
Borsuk : Suppose K is a non-separating planar continuum contained in the interior of a disk D. Is
there an almost continuous function r: D — D such that r(D) = K and r|K = id? We answer this
question negatively. We also show thatif Xo > X, o ... » X,  X,,; @ ... is a sequence of ARs,
with retractions f,: X,_, = X,, such that xe X,,_, ~ X, implies f,(x)e(\ X}, then " X, has the
fixed point property.

1. Introduction. Throughout this paper X, Y and Z will denote topological
spaces. A map is a continuous function. When f: X — Y may not be continuous,
we refer to it simply as the function f. An absolute retract (AR) is a retract of the
Hilbert cube. A space X has the fixed point property, if for each mapf: X — X
there exists x & X such that f(x) = x. The graph of a function f* X — Y is the
subset of X x ¥ consisting of the points (x, f (x)); this set will be symbolized
ro.
J. Stallings [11] defined a class of functions, which he named almost
continuous, for the purpose of studying the fixed point property.

Dermnirion 1 [11, p. 252]. A function f2 X — Y is almost continuous if for
each open subset % of X x Y such that I'(f) = %, there exists amapg: X =Y
such that I'(g) c %.

TueoreM 1 [11, p. 252]. A Hausdorff space X has the fixed point property
if and only if every almost continuous function f: X — X leaves a point fixed.

THeorEM 2 [11, p. 260]. Iff: X — Yis almost continuous and g: Y— Z is
a map, then gft X — Z is almost continuous.

DerFiNTION 2. If Yo X and r: X — X is an almost continuous function
such that r(X) = Y and r(x) = x for all xe ¥, then r is called a quasi retraction
and Y is called a quasi retract of X(*).

* The author gratefully acknowledges numerous conversations about topics in this paper

with Professor C. L. Hagopian.
(") In the Literature quasi retractions have been called almost continuous retractions. We

have avoided the term “almost continuous retraction” because it has also been used for almost
continuous r: X — Y such that r(x) = x for all xeY.
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TueoreM 3. If X is a Hausdorff space with the fixed point property, Y < X
and eachmap g: Y— Yhas a continuous extensionG: X — X, and if Y is a quasi
retract of X, then Y has the fixed point property.

Proof. Let g: Y- Y be a map and let G: X — X be its extension. Let
r: X — X be a quasi retraction associated with Y. By Theorem 2, Gr: X — X is
almost continuous. Hence by Theorem 1 there is xe X such that Gr(x) = x. But
r(x)e Y. So Gr(x) = gr(x)eY, therefore xe Y. Thus r(x) = x. Hence x = g(x).

CoroLLARY. If X is an AR and Y a closed quasi retract of X, then Y has the
fixed point property.

B. Garrett pointed out the assumption in Theorem 3, that each map
"g: Y- Y has a continuous extension G: X — X, is essential by defining the
following example. Let S be the sin 1/x circle and D a disk such that § » D is an
arc (see Fig. 1a). Let X = S U D. Let Y be the double sin 1/x circle, represented in
Figure 1b. Even though Y is a quasi retract of X and X has the fixed point
property, Y does not have the fixed point property.

(a ®
Fig. 1 v
Stallings’ strategy was to prove that a certain continuum Y has the fixed point

property, by exhibiting an AR, X, containing Y as a quasi retract. In particular
he asked the following question, which he attributes to Borsuk: Let C be an

Fig. 2.
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acyclic planar continuum contained in the interior of a disk D. Is ¥ a quasi
retract of D? [11, p. 263]. In this paper we answer this question negatively, by
showing that the disk with a spiral about its boundary is not a quasi retract of
any AR. This object is represented in Figure 2.

2. Almost continuous approximation. An almost continuous function is a
function approximated by maps in the sense of Definition 1. A natural question
to ask is: How is this approximation associated to the familiar pointwise and
uniform convergence of functions? The following definitions and theorems
answer this question.

Given spaces X, Y, we let C(X, Y) denote the space of all maps from X into
Y, with the compact open topology. We let A(X, Y) denote the set of all almost
continuous functions from X into Y. If S is a subset of X by CLS we denote the
closure of S in X. )

DEeFINITION 3. A sequence {f,} of functions of X into Y almost continuously
approximates a function f: X — Y if for every sequence {x,} = X, either there
exists n such that f, (x,) = f(x,) or there exists a subsequence {x, } < {x,} and
xeX such that x, —x and f, (x,) —f (x).

The next theorem shows that if {f,} almost continuously approximates f,
then {f,} approximates f in the same sense that maps approximate an almost
continuous function. '

THEOREM 4. The sequence {f,} almost continuously approximates f if and
only if for each open U < X x Y, I'(f) < % implies that for some n, I (f,) = .

Proof. For the “only if” part let B=XxY~ 4. If for all n, I'(f,) & %,
then for each n there exists x, such that (x,,f,(x,))€B. But {f,} almost
continuously approximates fand since B is closed we infer that I'(f) " B # ©.
A contradiction.

For the “if” part assume {x,} = X. Let % = X x Y ~ Cl{(x,, f,(x,)}. Since
for all n, I'(f,) ¢ %, we conclude that I' (f) & % so I'(f) n Cl{(x,, f,(x.))} # @.
Hence {f,} almost continuously approximates f.

THeOREM 5. If {f,) < A(X, Y) and {f,} almost continuously approximates f,
then fe A(X, Y).

Proof. For any open set % such that I'(f) < % < X x Y, there is some n
such that I'(f,) = %, but since fis almost continuous thereis amapg: X - Y
such that I'(g) < %.

Theorems 4 and 5 apply to arbitrary topological spaces X and Y. We
proceed to show in the case that X and Y are compact and metrizable,f: X — Y
is almost continuous if and only if for some sequence {f,} =« C(X, Y), {f,}
almost continuously approximates f. More specifically we show that if {f,} is a
countable dense subset of C(X, Y), then for any almost continuous function
f: X - Y, {f,} almost continuously approximates f. Hence by Theorem 4, for
every open % = X xY if I'(f) = % then for some n, I'(f,) = %.
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DEerFINITION 4. A sequence {f,} in C(X, Y) converges continuously to an
feC(X,Y) if f,(x,) —f(x) for each xeX and sequence x, — x.

It turns out that if X and Y are compact metric spaces, continuous
convergence is equivalent to uniform convergence in C(X, Y) [3, p. 268].

THEOREM 6. Assume X and Y are compact metric spaces. Thenfe A(X, Y)
if and only if there exists a sequence {f,} = C(X, Y) such that {f,} almost
continuously approximates f.

Proof. The “if” part follows from Theorem 4 and the fact that
C(X, VY A(X, Y)

For the “only if” part suppose fe A(X, Y). Let {f,} be a countable dense
subset of C(X, ¥). We claim {f,} almost continuously approximates f. Given
any sequence {x,} < X, let B = Cl{(x,, f,(x,))}. fge C(X, Y) then there exists a
subsequence { f,,i} which converges uniformly, and hence continuously to g. We
may assume {x, } is convergent (if not we could take a convergent subsequence
of {x,}), say x, — x. Then f, (x,) g (x), so (x, g(x))e B. We have shown that
geC(X,Y) implies that I'(g) "B # @ and since feA(X, Y) we have that
I'(f) "B # @.From the definition of B it follows that {f,} almost continuously
approximates f.

From the proof of Theorem 6, we extract the following:

CorOLLARY. If X and Y are compact metric spaces, then for any fe A (X, V),
and any countable dense subset {f,} of C(X,Y), {f,} almost continuously
approximates f.

From this corollary we conclude that {f,} almost continuously ap-
proximates f does not imply that {f,} converges pointwise to f. Therefore in the
spirit of Definition 4, we introduce the idea of almost continuous convérgence.

DerFINITION 5. A sequence {f,} in A(X, Y) converges almost continuously to
S if {f,} converges pointwise to f and {f,} almost continuously approximates f.

Clearly if some sequence {f,} < C(X, Y)converges almost continuously to
J, then fe A(X, Y), the converse however is not true. K. Kellum [6], has defined
a function fe A(I, ), where I is an arc and Y any 2nd countable space, such that
the graph of fis dense in I x Y. From [8, p. 394, Thm. 1] it follows that if X and Y
are compact metric spaces and if {f,} = C(X, Y) converges pointwise to /. then
the graph of f'is nowhere dense. In this paper however all the examples of almost
continuous functions are of the type described in Definition 5.

3. The main results. We now proceed to show that the disk with a spiral
about its boundary is not a quasi retract of an AR. '

DeriNTION 6. For any space X, the cone TX over X, is the quotient space
(X x I)/R, where R is the equivalence relation (x, #) ~ (y, s)if and only if t = 5
=lorx=yand t=s for all x,yeX and s, tel.

By <x, t) we denote the equivalence class of (x, f)e X x I. Given a function
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f: XY we define a function Tf: TX —TY by the rule Tf{x, t>
= {f(x), ).

Lemma [3, p. 127]. If feC(X, Y) then TfeC(TX, TY).

LeEMMA. Suppose X and Y are compact metric spaces. If fe A(X, Y) then
TfeA(TX, TY).

Proof. Since feA(X, Y) there exists a sequence (f,} = C(X, Y) such
that {f,} almost continuously approximate f. By the above lemma,
{Tf,} = C(TX, TY). We claim that {Tf,} almost continuously approximates
Tf. Let for n=1, 2, 3,..., {x,, t,>€ TX, Either there is an n such that f,(x,)
= f(xu), hence {f,(x,), t,> = {f(x,), t,, or for some subsequence {x,,l} and
xeX, x, —»x and f,(x,) —>f(x). In the last case assume with no loss of
generality that {t,,i} is convergent, say t,; > t. Hence {x,, t,» —<{x, ) and
oy (), 1> = {f (%), t>. We have shown that either there is an n such that
Tfulxm t) = Tf {x,,t,> or for some subsequence {Cxups tad}s
s 1y = <x, £ and Tf, {x,, t,,> = Tf <x, t>. Thus {Tf,} almost continu-
ously approximates TF.

TueorEM 7. Suppose X is a compact metric space, and that Y is a quasi
retract of X, then TY is a quasi retract of TX.

Proof If r: X =X is a quasi retraction associated with ¥, then
Tr: TX — TX is a quasi retraction associated with TY.

COROLLARY. If X is an AR and Y is a quasi retract of X then TY has the
fixed point property.

R. Knill has shown that the cone over the disk with a spiral about its
boundary does not have the fixed point property [7], [2]. We conclude that the
disk with a spiral about its boundary is not a quasi retract of an AR.

At this point we would like to make the following parenthetical remark. If
we alter Definition 2 to require re 4 (X, Y), instead of re 4(X, X), we obtain a
class of functions different from the quasi retracts, which we call almost
continuous retracts. For a contrast of these two types of retracts we refer the
reader to B. Garrett’s article “Almost continuous retracts” [4]. It is easy to see
that A(X, ¥Y) < A(X, X), hence an almost continuous retract of X is a quasi
retract of X, but the converse is not true. K. Kellum studied almost continuous
retracts and has the following theorem: Given a 2nd countable space Y, there
exists a Peano continuum P such that A(P, Y) # O if and only if Y is almost
Peano. That Y is almost Peano means that for each finite collection of nonempty
open subsets of Y there is a Peano continuum in Y which intersects each of them
[6]. Using this result we see that the double sin 1/x curve, represented by Figure
3, is not the almost continuous retract of a disk containing it. But as we will
show later, this space is a quasi retract of a disk.

4 — Fundamenta Mathematicae 121.2
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Fig3

Returning our attention to the disk with a spiral about its boundary, we see
that since it is not almost Peano, Kellum’s theorem would assert that it is not an
almost continuous retract of a disk. This is consistent with our result which says
that the disk with a spiral about its boundary is not even a quasi retract of a
disk.

We now continue with the study of some other properties of quasi retracts.
First we point out that there is a theorem involving the suspension of a space,
analogous to Theorem 7.

Derinrmion 7. For any space X, the suspension SX of X, is the quotient
space (X x I)/R, where R is the equivalence relation (x, f) ~ (v, ) if and only if
t=s=lort=s=0o0r x=yand t=s for x, yeX and s, el

THEOREM 8. Suppose X is a compact metric space, and that Y is a quasi
retract of X, then SY is a quasi retract of SX.

The proof of Theorem 8 is similar to the proof of Theorem 7.

Derinirion 8. A closed subset Y of the Hilbert cube H, is an absolute quasi
retract (AQR) if Y is a quasi retract of H.

THEOREM 9. The following are equivalent.

1) Y is an AQR.

2) Y is a closed subset of the Hilbert cube H, and Y is a quasi retract of any
AR containing it. )

3) Y is a closed quasi retract of an AR.

Proof. We first show that 1) implies 2). Let X be an AR containing Y. Let
feA(H, H) be a quasi retraction associated with Y. By [11; p. 260, Prop. 2]
f1XeA(X, H). Let r: H— X be a continuous retraction. By Theorem 2
rfiXeA(X, X). Thus Y is a quasi retract of X with rf]1X its associated quasi
retraction. It is clear that 2) implies 3). It remains to show that 3) implies 1), If X
is an AR and Y a closed quasi retract of X, let r: H—X be a continuous
retraction and feA(X, X) be a quasi retraction associated with Y Let
£} = C(X, X) such that (/) almost continuously approximates /. Extend
each f, to F,eC(H,H). We claim {F.r} almost continuously
approximates fi. Let {x,} < H, then [r(x,)) = X. Hence either there exists n
such that f,r(x,) = fr(x,), in which case F,r(x,) = fr(x,), or there exists a
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subsequence {x,} such that r(x,) -y and Jo7 () = f(y). We may assume
with no loss of generality that x, —x. Hence r(x,) = 7r(x) =y. Thus

f"ir(x"i) = F,,ir(x,,l,) — fr(x). Therefore lfreA(H , H), is the quasi retraction

associated with Y.

We will show that the product of an AR with an AQR is an AQR, for this
we will use the following:

TueoREM 10. Let X, Y and Z be compact metric spaces. If fe A(X, Y)
and geC(X, Z) then F(x) =(f(x), g(x)) is in A(X, Yx2).

Proof. Let {f,} = C(X,Y) such that {f,} almost continuously ap-
proximates f. For each n let F,(x) = (/,(x), g(x)), F,e C(X, YxZ). It is easy
to show that {F,} almost continuously approximates F.

CoroLLARY. Let X, Y, Z and W be compact metric spaces. If fe A(X, Y)
and geC(Z, W), then Fe A(X xZ, Yx W), where F(x, z) = (f (x), g (2))-

Proof. Let p;eC(X xZ, X), p,eC(X xZ, Z) be the projection maps.
Then fp, e A(X xZ, Y) by [11, p. 2617 and gp, e C(X x Z, W). Since F(x, z)
= (fp, (x, 2), gpa(x, 2)), by Theorem 10, FeA(X x Z, Yx W).

THEOREM 11. If X is an AR and if Y is an AQR, then X xY is an AQR.

Proof. Let H be the Hilbert cube, r: H — X be a continuous retrac-
tion, and f: H—H be a quasi retraction associated with Y. Let R(a, b)
= (r(a), f (b)). By the previous corollary, ReA(H x H, H x H). Hence X x Y
is a quasi retract of H x H and thus it is an AQR.

CoroLLARY. If X is an AR and Y an AQR, then X xY has the fixed
point property.

R. Knill [7] has shown that if Y is the can-with-a-skirt in Figure 8 of
[2], then Y has the fixed point property, but I x Y does not have the fixed
point property. From the above corollary, we copclude that Y is not an
AQR.

? One might hope to get a stronger version of Theorem 10, by allowing

geA(X, Z). The following example shows this cannot be done.

Let B = {z: |z] <1} be the unit disk in the plane.

Let I =[~1,1] and define functions f: IxI —1I and g: IxI -1 as

follows:
. 2n
9(s)= { R
p2(2)

cos 2
fle)= 1—lz]
p:(2) if |zl = 1,
We claim that f, geA(IxI,I). For n=2,3,4,... the restriction of the
function cos x to the interval [nn, (n+1)n] is a homeomorphism. Hence its
inverse cos, ! x is a homeomorphism of I onto [nm, (n+ 1) «]. Similarly, define

if 17 <1, if |zl <1,

if 2] > 1.

csinyY: I —[nm, (n+1)7]. Let for n=2,3,4,...
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( 2n R 2n
cos—— if |z < 1l ————,
= 1-2| cos, ' py(2)
. @) if |z > 1 2
Z ﬁ%’
b cos, ' py (2)
2 2
Sin——— i o < 1—ea
g =) T Sty 02 @)
21
if 2] > 1———r
\pZ(Z) 1 |Zl sin,,"lpz (Z)’

2
then p, (z) = cos v—l, and if

i 9,€C(I x1, I) because if |z] = 1— g
-z

T
cos, ' py (2)

lz] = 1= , then p,(z) = sin . We claim that {f,} almost con-

n his
sin, * p, (2) 1-4z
tinuously approximates f and that {g,} almost continuously approximates g.
To check this, let {z,} < IxI. If for each n>2, f,(z,) #f(z,), then |z, <1
and f,(z,) = py (z,). Let {z,} be a subsequence of {z,} converging to some
zel xI. Because f, (z,) =p, (z), we must have that |z/ =1, hence p,(z)
=f(2). By the continuity of p; we conclude that f, (z,) =f(z). We have
shown that {f,} almost continuously approximates f.‘ l

Similarly one can show that {g,} almost continuously approximates g.
Hence, f, ge A(Ix I, I). Now let F(z) =(f(2), g(2)). If FeA(I xI,1x1I) then
IxI~B would be a quasi retract of I xI. This is a contradiction because
Ix1 ~ B does not have the fixed point property. Therefore F¢ A (I x 1, I xI)
even though f, ge A(I xI, I).

Theorems 7, 8 and 11 tell us how to construct new quasi retracts from
old. The next theorem is of a different nature, giving a sufficient condition for
a space to be ‘a quasi retract.

TaeoREM 12. If X, is compact, and if X4 > X, > X, >...is a sequence
of subspaces of X, with retractions f,: X,_, — X,, such that xeX,.(~X,
implies f,(x)e \X;, then N\ X, is a quasi retract of X,.

Proof. We define a function f: X, — X, as follows: f (x) = x if xeNX;
and f(x) =f,(x) if xeX,_; ~X,. Let g, =fufu-1...fy for n=1,2,3,..;
9n€C(Xo, Xo). We claim that {g,} converges almost continuously to f; and
hence fe A(X,, X,), thus f'is a quasi retraction. It is clear that {g.} converges

- pointwise to f. We proceed to show that {g,} almost continuously ap-
proximates f.

Let A4, = {xeXy: f(x) # g,(x)}, we show that 4, =X, ~N X, If xeX ~ X,
then for some m<n xeX,_, ~X,. Hence f,(x) =f(x) and f(x)
=f2 (¥)= ... =fu-1(x) =x. Therefore f(x)= gm(x)e N X;. Hence g,(x)
=fufu-1 -+ Gm(X) = gm(x). Thus f(x) = g, (), and we conclude that A, <X,
If xe()X; then f(x) = x = g,(x). Therefore 4, < X, ~ NX,. If xex,~NX,
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then for some k>n, xeX,_ | ~X, Hence f(x)=f(x)eNX; thus
x s f(x). But since xe X, for any m < n, f,,(x) = x, thus g,(x) = x. Therefore
J(X) # g,(x), and we conclude that X, ~ N X; = A4,,.

Now we are ready to verify the conditions of Definition 3. Let
{x,} = Xo. If for all n, f,(x,) #f (x,) then for each n, x,e4,. Let X, > X.
Now since A, = Xy, fo, (%) = %y- S0 f, (x,) = x. Also xe(\Cl4, =N X;.
Hence f(x) = x.

CoroLLARY. For n=1,2,3,... let X, be as in Theorem 12, and also
assume that X, is an AR, then (\X; has the fixed point property.

Theorem 12 may be used to show that for the spaces X and Y
represented in Figure 1, Y is a quasi retract of X. Also one can use Theorem
12 to show that the double sin1/x curve of Figure 3 is a quasi retract of a
disk containing it. The cone over a Cantor set, Knaster’s U-continuum [9, p.
205] and Ingram’s T-like non-chainable continuum [5], represented in Figure
4, are also examples of quasi retracts of a disk containing them, by virtue of
Theorem 12.

Fig4

Let D be a topological disk. Dig into D, a canal, by removing from D,
the interior of a topological disk which intersects the boundary of D at an
arc (this arc is also removed). In the resulting continuum, dig a canal as
described above, starting the canal from the boundary of D. Continue this
process inductively, always starting a canal from the boundary of D. The
continuum thus obtained will be a quasi retract of the disk D by virtue of
Theorem 12. Hence it will have the fixed point property. Each of the
continua of Figure 4 can be constructed in this manner. As indicated by
Theorem 7, the disk with a spiral (Figure 2) is not a quasi retract of a disk
therefore it is not of this type. Note that the canal of this continuum is not
obtained by removing from a disk the interior of a topological disk.
However, according to the Bell-Sieklucki Theorem [1], [10], the continuum
of Figure 2 has the fixed point property. This theorem states that if a non-
separating planar continuum does not have the fixed point property, then it
has an indecomposable subcontinuum in its boundary.

Let X be an arc with a spiral as shown in Figure 5a. From our result
that the disk with a spiral of Figure 2 is not a quasi retract of a disk, one
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may also think that X is not a quasi retract of a disk. This is not so. The
continuum X can be embedded as the sin1/x curve as shown in Figure 5b.
By Theorem 12, the continuum in Figure 5b is a quasi retract of a disk.

(a) (b) (©)
Fig.5

It is also easy to show that being a quasi retract of a disk is a
topological property, i.e, it does not depend on the embedding. Hence the
continyum in Figure Sa is a quasi retract of the disk. It is not known if the
triod with a spiral shown in Figure 5c is a quasi retract of a disk.
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Baire category in spaces of probability measures, II
by

J. B. Brown (Auburn, Ala) and G.V. Cox (Redlands, Ca.)

Abstract. Completeness relationships for a space X, and its space of probability measures
P(X) are compared. All implications between X and P(X) and between compactness, local
compactness, topological completeness, pseudo completeness, Baire completeness, and strong
Baire completeness are resolved, The continuum hypothesis has been assumed when needed.

1. Introduction. In [B], completeness relationships between a separable
metric space (X, d) and the space of probability measures on X endowed
with the separable metric of weak convergence, (P (X), g) were investigated. It
was shown that X PC — P(X)PC - P(X)BC-— X BC and none of the impli-
cations are reversible. Here, as in [B], TC means topologically complete, PC
means pseudo complete (i.e., contains a dense TC subspace), and BC means
Baire complete (i.e., is a Baire space). We also denote strongly Baire complete
by SBC. A space is SBC if every closed subspace is BC.

Based upon results of Prohorov [P] and Luther [L], we know
that X compact < P(X) compact« P(X) locally compact, and also that
XTC+ P(X)TC. The purpose of this paper is to resolve the following
diagram.

X compact <> P(X) compact <= P(.X') locally compact

1

X locally compact

X TC <> P(X)TC

P(X)SBC Ail%c
X SBC P(X)PC

N
"

X BC
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