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A generalized version of the singular cardinals problem

by
Arthur W. Apter (Newark, N.J)

Abstract. We show that it is consistent, relative to the existence of an unbounded class of
cardinals each of which possesses a certain degree of supercompactness, for every limit cardinal
to be a strong limit cardinal and for the wth successor of any cardinal to violate GCH.

The behaviour of the power sets of singular cardinals has long been of
interest to set theorists. Shortly after Cohen invented forcing, Easton in his
thesis [2] showed that, roughly speaking, the power sets of regular cardinals
could be anything desired within the technical restrictions of 2! <22 if
%, < %, and cof (2¥) > x. No such results, however, were known for singular
cardinals for quite a while. Indeed, the famous singular cardinals problem
asks whether it is consistent to have 2" = N, for all natural numbers n
and yet also have Mo = .+2, o more generally, whether or not it is
consistent for a singular cardinal to be the least cardinal that violates GCH.

Much light has been shed on the singular cardinals problem within the
last few years. It is of course now known by the work of Silver [13] that if a
singular cardinal of uncountable cofinality violates GCH, then there is a
stationary set of cardinals less than it which also violates GCH. This settles
the generalized version of the singular cardinals problem. It is also known,
by the work of Jensen [1], that if a singular cardinal (by necessity of
cofinality ) is the first cardinal to violate GCH, then there is an inner
model with a measurable cardinal.

Magidor was the first person who obtained positive results in the
direction of the singular cardinals problem: Starting with models in which s
possessed a certain degree of supercompactness and violated GCH, he was
able to force and obtain a model in which ¥, is a strong limit cardinal and
yet violates GCH [8]. Then, starting with an enormously powerful hy-
pothesis, namely the existence of a supercompact cardinal with a huge
cardinal above it, Magidor was able to get a model in which 2N = N,+1 for
every natural number n and yet Mo = N, +2 [9], i.e, Magidor was able to solve
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the singular cardinals problem. Of course, by the above mentioned result of
Jensen, some large cardinal hypothesis is necessary.

Given Magidor’s results, one wonders just how far this pattern for
singular cardinals can extend. For example, is it consistent for every cardinal
% of cofinality @ to satisfy 2* = x*"* and yet have every other cardinal A
satisfy 24'= 1*? Or, in a weaker form, is it possible to have every cardinal of
cofinality @ a strong limit cardinal which violates GCH?

We have obtained a partial answer to the second of the above two
questions. We have shown that, relative to certain hypotheses, it is consistent
for every limit cardinal to be a strong limit cardinal and for the wth
successor of any cardinal to violate GCH. Specifically, we have the following
theorem:

TueOREM 1. Let V=“ZFC+2*=x* for x a singular cardinal+
+{8,: «€Ordinals) is an unbounded sequence of cardinals such that:

1. Each &, is 6 supercompact.

2. 2% =53 and 2% = 5 +7,

Then there is a model, V, for the theory “ZFC+ Every limit cardinal is a strong
limit cardinal+ The w-th successor of any cardinal violates GCH”.

Note that in ¥, for 4 the wth successor of a cardinal, we have 2* = 1**,
If we want the power sets of such 1 to be larger, e.g., if we want 2* = 1¥" for
n a natural number, then we assume that each 8, is ;" supercompact,
2= 5+ and 2D _ gn

Note also that the hypotheses of Theorem 1 are much weaker than the
existence of a supercompact cardinal. For example, using Silver's backwards
Easton techniques ([10] and [12]), the existence of a cardinal A which is a
regular limit of cardinals & each of which are 5** supercompact gives a
model for the hypothesis of Theorem 1.

The proof of Theorem 1 will use a generalized version of the partial
ordering introduced by Magidor in [8] to obtain a model in which N, is a
strong limit cardinal which violates GCH. First, though, we shall briefly
digress to give our notation and recall certain useful facts.

1. Preliminaries. Throughout, we work in ZFC. Our notation is reason-
ably standard. Lower case Greek letters o, f, 7,... will be used to denote
ordinals, with the letters %, 4, 6 generally being reserved for cardinals. For
ultrafilters and measures, we use the letters U and U

For % a cardinal, »™* will denote the ath least cardinal > x. The
cofinality of %, cof(x), is the least possible cardinality of an unbounded subset
of .

Given a set x, we shall let 2* denote the power set of x. X will be the
cardinality of x, and X is the order type of x. Further, for S a function, f"x is
the range of f on x, and f{x js f restricted to x.

For a an ordinal, R(x) is taken to be the collection of all sets of rank
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<a. For » and A cardinals, x <4, P,(}) =[A]"* = | {f: f is a strictly

a<x

increasing function from « to 1}.

The symbol |- will mean, as usual, “weakly forces”, and || will mean
“decides”. By convention, we will say that for forcing conditions p and g,
p < g means that g is stronger than p.

We will make use of Solovay’s Product Lemma for product forcing, so we
recall its statement here. Let P and R be partial orderings defined in V. Then
if G; € P, G, £ R, the following are equivalent:

1. G, xG, is V-generic over PxR.

2. G, is V-generic over P and G, is V[G,]-generic over R.

3. G, is V-generic over R and G, is V[G,]-generic over P.

We assume that the reader is quite familiar with the notions of measur-
able cardinal and supercompact cardinal. For definitions and facts about
these cardinals, consult Solovay-Reinhardt-Kanamori [14].

We recall Magidor’s notion of forcing [8] which makes X, a strong limit
cardinal that violates GCH, as well as some key lemmas about this notion of
forcing, S

First of all, for p, ge P, (1), we say that p<q iff p<g and p<gnrx.
Next, we recall the following general lemma about normal ultrafilters over
P, (1).

LemMMA 2. Let U be a normal ultrafilter over P,(A). Then:

L. {p: pnx is strongly inaccessible}eU.

2. For « <A a cardinal (a regular cardinal) {p: pra is a cardinal (a
regular cardinal)} e U.

3. For y<u, a, B4 a™?=8, {p: (pna)t’=pnp}el.

4. For o, B<1 and either 2*=f, 2* <P, or 22> B, [p: 2™
=pnBlel, {p: ?™ <pnBleU, or {p: 27> >pnplel.

We leave the proof of this lemma to the reader.

The standard notion of forcing, due to Lévy, for collapsing a strongly
inaccessible cardinal # to the successor of a regular cardinal o will also be
useful, and so we briefly recall its definition and some of its properties. Let
Col(a, f) = {f: f is a function from « x § into B such that dmn(f) < a and
such that ¢y, 6> edmn(f) =f(y) < 8}, and let Col(x, ) be ordered by inclu-
sion. Then any set of compatible conditions of length <o has an upper
bound. ‘

Now, let » be x** Y supercompact, and let 2* = x** If U is any
normal ultrafilter over P, (x**~1), then by Lemma 2, the set

D ={peP,(x** 1): pnx is an inaccessible cardinal
and (pnaxt)* =(pnx™?*Y) for 0gi<k-2}el.
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Magidor’s forcing notion P is now defined as the set of all sequences m
of the form <{py,..., Pp fos.-->fu» A, G) where:

1. For 1<i<n, peD, and for 1 <i<n—1, p; S p+;-

2. we let §=pnx, then fyeCol(w,,d,), for 1<i<g<n—1,
fieCol (8%, 6,4 ,), and f,eCol(5;, x).

3. A<D, AU, and for every geA, p, Sq and f,eCol(5}*, g nx).

4.G is a function defined on A such that for ge4,
G(g)eCol((x nq)**, ), and if peA, g S p, then G(g)eCol((x N g** % p)).

If = and n’' are elements of P,

n=<pls~--’pmf01'--,f;u A, G> and

then we say that = <’ iff:

l.n<land ¢;=p; for 1<ign

2.ficg for 0<i<gn

3. €4, G(g) <g; for n<igl

4. Bc A.

5. For every peB, G(p) < H(p).

We also recall the notions of j-direct extension and j-length preserving
extension. Let 7 and n' be as in the above, = <#’. Then for 0<j < n, ' is
said to be a j-direct extemsion of n if:

l.fi=g; forjgi<gn

2.G(g)=g; for n<i<gl

3. B={p: peA and q, Sp}.

4. For peB, G(p) = H(p).

Note that if " is a j direct extension of z, then 7’ is uniquely determined
by {gos---»95-1> and {gy+1,...,q;>. When j =0, we omit {Gos-+r Gj-1)-

The dual of the above notion is the notion of Jj-length preserving
extension which we now define. If 7 and n’ are again as above, n < ', then
n' is called a j-length preserving extension of = if: '

l.n=1

2. For 0<i<j, fi=g,.

Note that if = <n’, then there is a unique n” such that:

Lagn" <7

2. n” is a j-direct extension of r.

3. n' is a j-length preserving extension of n".

This unique =" is called the j interpolant of m and ', written as
Jjint(z, o). Note that the following 2 statements are true:

L If n <’ <« then jint(n, n") <jint(n', o).

2. If =" = jint(x, n), then jint(n', ") = n”,

Lemma 3.(Magidor [8]). Let (n,: a < 1) be an increasing sequence such

T = <ql9“"qla dos -5 g1» Bi H)i
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that for o <f <2, mg is a j-length preserving extension of m, where
A<Sf* D ifj> 0, and A < o otherwise. Then there is one condition & which
is a j-length preserving extension of every member of this sequence.

Proof. For a < 4, let

Ty = <pl: ARRE} pnafO: .. 'sf}—-l’f}xs "'sf:’ Aa: Gu>.
For j <i< n, by the closure properties of Col(5;"%, 8,,,), we let g, = {J f7,
a<i
and for pe [} A* =B, H(p) = |) G*(p). By the fact that U is x additive, we
a<i a<i

<
thus have that (py,...,DPmfor- sfj=1: Gjs--os Gn B, H> is the desired
condition. m

Lemma 4 (Magidor [8]). Let n be a condition of length n, let j < n, and
let @ be a statement in the forcing language appropriate for P. Then there is a
J length preserving extension of m, w', such that if n’ <n" and w"||p, then
Jint(r', n")|| . .

Lemma 4 is the main technical lemma that Magidor uses to show that
forcing with P makes X, a strong limit cardinal that violates GCH. We will
not prove this lemma here, but instead refer the reader to [8] for a proof of
this fact.

2. The Main Theorem. We turn now to the proof of Theorem 1.
Before starting the proof, we feel that a few intuitive remarks are in order.
After some reflection, it becomes clear that in order to prove Theorem 1,
some kind of partial ordering will be needed which makes N, a strong limit
cardinal which violates GCH, makes N,., a strong limit cardinal which
violates GCH without harming the facts about X, and so forth. Hence, a
natural partial ordering to consider is some sort of iteration or product of
Magidor’s original partial ordering. This is exactly the sort of partial
ordering which shall be employed in the proof of Theorem 1.

Proof of Theorem 1. Let V be as is the hypotheses for Theorem 1,
and let 4 = {§: & is 6* supercompact and 2% = §* *}, For each de 4, let U?
be a normal ultrafilter on Py(6%)(*), and let D? = {pePs(6*): pnd is an
inaccessible cardinal > {J{x€Ad: a <d} and (pné)* =(pnd*)}. We may
assume that (J{xeA: a <6} < 4, for otherwise, if (J{aeAd: a <8} =6 for
some &, then for d, the least such 8, R(d,) is a model for the hypotheses of
Theorem 1 in which for all 6e 4, (J{xeA4: « <8} <é. Thus, using Lemma 2
and the additivity of the measure U’ D?eU?, ‘

We are now in a position to define the forcing conditions P which will
be used to prove Theorem 1. Keeping in mind our earlier intuitive remarks,

(*) We assume throughout this paper that we have at our disposal a well-ordering W of V.
That this is consistent is a well known fact; see, for example, Felgner [3] or Gitik [4].
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we define P as follows: P consists of all sequences of the form
Py p‘,‘a,f“)“, ...,ﬁ:, A%, G*>,.4 where:

1.l ew. .
2. lgor 1<i<l, pfeD’ and for 1 <i<lL—1 pf Spfey.

3. Let 6% = p? ~a. Then fg%eCol(w,, 55°), where «, is the least element
of A. For aed, ffeCol(U{fed: p<a}***, 67). And, for acd, 1<i
<hL—1, fFeCol(6;**, &%), and fZeCol(8i"*, a).

4. For aed, A4*< D" A*eU" -

5. For every geA” pj, S¢, and fZeCol(6*, g na).

6. For every acd, G* is a function defined on A* such that for

qed’, G*(g)eCol(xng)**,a), and if peAds, ¢S<p, then G*(9)
eCol{gna™™, pna).

7. Length  (<pt,.... P}, S, - o fi%, A%, G*)) =1 except finitely = often,
where the length is defined as I,.

Note that the above definition parallels the intuition mentioned earlier,
as the least element of A4 is changed into N, and each succeeding fe A is
changed into [ {xed: a < g}]*e. '

It is appropriate to introduce here the notation which we shall use when
talking about P. Given a condition ne P, we let n,, for aeA, be the ath
coordinate of 7. nla = (my: f <a& feA), and P, is the collection of all
nle. (Note that P, is a set) An element of the partial ordering P* will be one
of the form {ng: BeA—a). Occasionally it will be useful to write a condition
as (m, ), where neP, and Y P

We can now define the ordering on P which will just be the component-
wise ordering. Specifically, if 7, n'€ P, © = (%, Dpes, 7' = {M.Dyeu» Say that
n<n iff Voed[n, <m,]; the ordering < on m, and = is the obvious
analogue of the ordering < of [8].

There is a distance function | | associated with P which is similar to the
distance function of [7]. Given conditions =, n'eP, n <=/, we define
Im,— 7| as length (m;) — length (n,). The definition of P ensures that |m, —n|
is non-zero for only finitely many a € A; hence, as in [7], the non-zero values
of |z —='| for any 7’ > = are well-ordered in the anti-lexicographical ordering.
The definition of P also ensures that for each acd, P, <a.

We can now state and prove the two main technical lemmas which we
shall need. The intuition behind them is as follows: The partial ordering P
which has just been defined is in some sense like Magidor’s notion of iterated
Prikry forcing [7] in that we wish to change the cofinalities of a class of
cardinals. to w “at the same time” (while simultaneously collapsing them).
Hence, we would like, given a condition =€ P and a formula y in the forcing
language associated with P, to be able to extend = to a condition 7’ which
decides ¢ and which is such that Va e 4 [|n,—7 = 0], i.e, for all o, n, is a 0-
length preserving extension of =, (we can, of course, do the analogous thing
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with iterated Prikry forcing; this is just Lemma 2.1 of [7]). We can then infer
that some bounded piece of the generic object is enough to determine the
cardinal structure through a certain point. Lemma 5, our next lemma, is a
technical device which is used in Lemma 6 to show that any condition z can
be extended to a condition n' as above. ‘

Lemwma 5. Let = {p%, s B S8 Sy A%, G¥dgen, and let ¢ be a for-
mula in the forcing language appropriate for P. Then there is a condition 1’ P,
=8, ..., Pl g5, - gh» B, H*)yey S0 that:

1. |n,—m, =0 for all a.

2. Ifw' <, n”||g, then ({mydy <, <Oint (n, ) D55 ||, where B is the
last coordinate such that |my—my) # 0.

Proof. We shall define each coordinate of =’ inductively. So, suppose
that <m;»,<, have been defined. We shall show how to define j.

The proof of Lemma 5 is very similar to the proof of Theorem 2.6 of
[8]. In particular, as in [8], Lemma 5 is broken into a number of sub-
lemmas. The first sublemma is the analogue of Lemma 2.8 of [8].

SusLEMMA a. Let y be the condition {{m,<p, Mg, <MyDy»pp. Let k be a
fixed natural number. Then for each a > B, there is a condition ., so that:

1. Yo = m, and |m,—y = 0.

2. Let Y be the condition {{m,>,<p, Wadaspr- W Y" 2 W', Y18 = ' 1B,
Wp—wpl =k We—¥1=0 for a>p, Yo, then <(y,!B, <Oint(yy,
VD ez 0. '

Proof. The proof of this sublemma is quite similar to the proof of,
Lemma 2.8 of [8]. Specifically, the proof is by induction on k. Let k = 0, and
distinguish 2 cases.

Case I There is a condition ¥, Y1 = {m,>, <. [mg— gl =0, |m,—1,l
=0 for «>p such that yY|lp and y<y. Let Y be the condition
LMyda<ps Wadazpp- ¥ is then our desired condition:

Let y' <", ¥llo, ¥"IB = (Mde<p, Wil =0 for a>B. Then
Lde<ps <OInt (Y, Y2)Dasp) ll, since it is equal to .

Case II. Case I fails. Then let y' = y. The sublemma is then vacuously
true, since there is no condition with the required properties.

We now come to the induction step. We assume that the sublemma is
true for k, and then show that it is true for k+1.

We are given the condition y = {{mDs<p, Mg, <M Dunp), Where mg
=<ph, ..., ohys 8, .‘.,jlg:_A”, G*>. Since the partial ordering S on A” is well-
founded (p# S ¢* = f ~ PP < B P, it can be extended to a well-ordering <
of A%, By induction on =, we are going to define a sequence of conditions
{u,: peA*> such that:

1. u, is of the form

<<7c;>a <p> <P’1‘: R pf ) q’f(f.q: ”.,ﬁﬁ.q’fﬁ.q’ Bﬂ’q’ Hﬁ,q>, <ug>a>ﬂ>'

2 ~ Fundamenta Mathematicae 121.2
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2 xS u,.

3. |m,—vd =0 for a« > p.

4.1 o, g, g€ 4% 4o S g1, q Sq; and g, eBP B, then HM(g,) and
Hp’q°(q1) are compatible. Actually, if g, < g, then Hﬁ’qo(ql) < HP4(q,).

5. For a > B, if p=<g, then 1§ < vl

Assume now that we have already defined u, for ¢ < p, g # p such that
(1)-(5) hold. Note that since <\ has been picked to extend <, we have that u,
is defined for ¢ < p.

Define u, as the condition

<<7E,;>¢ <g> <pﬂ= ces plﬂ s P,foﬂa "':fga gﬁ,p’ Aﬂ’p’ Gﬂ.p>’ <v;p>u>/]>

where:

L g"r=U{H"(p): q Sp, qe 4*}.

2. AP = {r: re(N\{B™: g S, ¢ <p}} N {r: p S#}. By the normality of
U’, A% eUP (see [8] which explains the normality properties of U* which
are being used here). , ‘

3. GPP(r) = U (HP(r): q S} if redbr.

4. For a>f, g<p, let

q_ /pnt o, % 3 x
Vg = <p15 R P?a: ths Ty hlaqs c" q: I* 11>.

v, which we shall occasionally also write as |J of, is then defined as

q<p
PLoph, UK., U ke, () €9, 1Py,
a<p qa<r q=<p
where for reC>4, I*P(r) = {J I*4(r).
q<p

We have that u, is a condition:’ ;)”"’eCol((ﬁ-m;)‘““, B) since each
H""‘(p)eCol((m)H, B). By induction, {H"4(p): ¢ Sp, gcA4®} is a com-
patible set of functions whose cardinality is at most the cardinality of
{g: q ] S p} which is [F] <?7B, Since § =(pnp)* and pnp is inaccessible,
[(p1°"¥ =p=(pnp)*. Hence, since Col((fnp)*™, B) is closed under
unions of (pn B)* compatible functions, g#?eCol (G)T\T)+ *, B).

It is also easily seen that, for « > B, the definition of u” makes sense.

This is since {g: ¢ <p} <B**, so since unions of Lévy functions are taken
in partial orderings which are at least §** closed, each union of compatible
functions produces a function in the correct Lévy ordering. Also, the
additivity of each ultrafilter ensures that we always get a measure 1 set.
Hence, each v for « > # is a well defined condition.

The other clauses in the definition of a condition can also be verified as
holding. In particular, a similar argument to one given earlier shows that

GPP()eCol((r np)**, B). Hence, u, is a condition.
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Now by the induction hypothesis, we apply Sublemma a using as our
parameters the condition u, at the coordinate § and the natural no. k (note
that the induction hypothesis is that the sublemma holds for the natural no.
k and any condition of the requisite form). We obtain a condition 1, which
satisfies the conditions of the sublemma for k and u,. Let u, = u}. Conditions
(1)(5) are preserved because of the particular way in which things were
defined. This completes the inductive definition of (u,: pe 4. '

We are now almost ready for the definition of the condition ¥’ which
will witness the sublemma for y, k+ 1, and B. We first observe that there is a
set B#' < 4%, BR'cU? so that for peBF! f§P, ...,f,g'l’ are constant. For

0<i<ly—1, we have f#?eCol(8f" ", 6%,,) and
Col(3FF*, 6, ,) = [68,,1<D" " =5, , < B,

so by the B completeness of U/, we can find B! < 4%, B#' e U” such that
for pe B%1, foﬂ’p,...,flg’fl are constant. -

For all ped’, ﬁz"’eCol(éf; T Brp). Since BAp is inaccessible,
f,/’;”'ECol(éfﬂH, a,) for some a,<pfnp, and hence, a,efnp. By the
normality of U there is a set B? e U*, B#? < B! such that on B*2, a,, is some
constant a < f. As above, we invoke the B completeness of U? to obtain
B? = B#2 Bf ¢ U’ such that for pe B, Jip is constant. We let gf, ..., gfﬁ be the
appropriate constant values.

Y’ is defined as

<<nnlz>z<ﬂa <P€a ey p‘;l ] g‘g: sy gfﬁ’ Cﬁ’ Hﬂ>: <Um>u>ﬁ>
where:

1. C* =B~ {p: peN{BP: qe 4’ q S p}}.

2. For peC*, HP(p) = [P

3. Foroa>f,v,= | 14

peA%

Note that by our definition of f#*, | J {H?4(p): qe A*, g S p} =f®" and
G*(p) =f"P. Note also that, as before, since unions and. intersections are
taken over small enough sets, the definition of v, for @ > f makes sense.

We now claim that ¥’ will satisfy the conditions of the sublemma for k+
+1. Clearly, y </, and for o = f, W, is a O-length preserving extension
of =,.

Now let /<y, U'If = (Tdacy, Wy—Vjl =k+1, o=yl =0 for
o> B, ¥"|le. Consider .u” = {{mydy<p, <OINt (Y, W5) Dz 4. Uy is the O direct
extension of yj determined by p, gy, ..., g for some p, qy,...,qeC’ and
for o> B, uy =y,

By construction, u, <u’<y". This is since u,[f=u"[f=y"|p
= Mgy ep). For > f, u,, <u/ (=) <y, by a simple examination of
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the construction. For B, we have u,, <uj <yj because G1s.eer g €CP,
PSaq S ... Sq, implies qq,...,q€BP?, for i=1,..., 1,

HP?(g) < H'(g), fP" =g, and H/(p)=f"".

We now use the definition of wu,. u,<VY", Y'[B= M.y
|uﬂ,ﬂ_¢lﬂ/| =kr fOI' a>Bs‘ ‘up,a'" ;ll =0: and '!’””(P' HCHCC, <<n;>m<p:
Oint(up,ﬂ’ l/”ﬂ,)a <0int(up.m'/l;’)>a>ﬁ>“(p' But <<n4’z>n<ﬂ7<01nt(u:! '//:)>u?ﬂ> =u"
extends the above, so u"|j@. w

We now know that given any condition y of the form <{m;>,<s,
{Ty D54, formula @, and natural no. k, there is an extension ¥’ of y of the
form {7y, <p, Widenpy such that:

1. For all a = B, |n,— . =0.

206 Y <y, IR = (ida<ps Wp—Vgl =k, IYo—~yil=0 for o>,
'/’"“% the]'l <<n¢;>a<ﬂs <01nt('//;’ ‘//:)>a>ﬁ>”q"

By induction, we define the following sequence of conditions:

Uy = <<7r;>¢<ﬁ: <7ru>412ﬁ>,

ey = M Dgcps (Maidenpy i an extension of u, which satisfies the
conditions of Sublemma a for k.
Let u= {{(myDp<p, {U Mupdaspy. Clearly, by construction, for all i
ui < “ ‘ kew
Cram. If u Sy, Y18 = (mdy<p, [a=Yi] =0 for a> B, and y'|op,
then <<n;>a<ﬂ! <01nt(uaa ‘/’;’)>a3ﬂ>”(p'

Proof. We know that |ug—yj| = k for some natural number k. But we
also know, by construction, that u,,, < u < ". By Sublemma a, we have
that

’ (A Da <ps 0It (Ut 10, Y5)Das 5 0.

But {7y Dy <p, <0int(u,, Va)azp)ll @, since it extends the above.m

We thus have

SUBLEMM.A b. Let x = (<MD cpy {Mudezpy be a given condition, and let ¢
be a formula in the forcing language appropriate for P. Then there is v, x <y
such that:

Ly I8 = Cmdu<p :

g. I} or‘lla 2P, Yo is a O length preserving extension of Ty

AV SYE YIB =m0 decps Wi =0 for a> B, Y|

i ) ’/ , > « > @, then
<<na>a<ﬂ’ <Olnt(d’as a’)>¢>ﬁ>”(p' )

W.e ‘can now resume the proof of Lemma 5. As a reminder, we are given
a condition = = (pj, ..., Do S8 o S A% G*peq, a formula ¢ in the forcing

lalllnguagc associated with P, and we wish to obtain a condition ' > n such
that:

1. Va[jx,—=] = 0.
2 fn< 1:",47-r”|!(p, and B is the last coordinate so that Img —msl =0,
then <<n;>u<ﬂa <01nt(n;’ 7[;’)>a?ﬂ>”¢'
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So, as mentioned earlier, we proceed inductively as follows: We assume
that the condition x = {{m;>, <4, 75, {MyDs54)> has already been defined. We
then show how to define =}, the fth coordinate of the desired condition n'.

By our GCH assumptions, we know that

T={t teP& (mly<p <t} S Ufe: a <p&acd}™™;

this is since |{a: & < B&a €A} is either some ae A, in which case Py<a*™,
or it is some singular cardinal, in which case

Py Ul a<ibecd) — () {0 o < P& e A})*.

Let yo=(U{o: « <B&aeAd})™™, and let {f,: « <y,) enumerate T. By
induction on y < y,, we shall define a sequence (Y’: y < yo) of elements of
P so that for each y <y, (¥)y? for o> B will always be a O length
preserving extension of Y for a <y. .
We proceed as follows: Assume that y* has been defined for a <. To
define y”, we first consider the conditon s? = <t", {{J ¥ s2,,. Again, since
a<y

¥ < 7o, by the additivity of the measures involved and the closure properties
of the Lévy orderings, we know that s? is a condition. (This, incidentally, is
the point where we use the fact that

feeCol((l {ned: a <a})**+,59))

Now apply Sublemma b to s* and B and obtain a condition y* such that
s" <y and such that the conditions of Sublemma b are met. Since for o = B,
Y} is a 0 length preserving extension of {J ¥, property (%) is preserved.

a<y
To define m; and the condition &’ which will be used in the next stage of
the induction, we let )

W= T eeps < U Vodozp)-
a<yg

Again, by the additivity properties of the measures and the closure properties
of the Lévy orderings, u' is a condition.

We now claim that the condition n’ = (x4 50 obtained witnesses the
truth of Lemma 5, ie, if n'<n”, B is the last coordinate where |m;—
—mgl >0, 7', then <7y dq<p, <OINt(Mg, 1)z p -

. To see this, we note, using the same notation as in the inductive
definition of =/, that <{m; >, <€ T, so it equals t, for some y < y,. Hence, by
construction, we have Y’ <n' <n”. By Sublemma b, Y’ is such that
Y dg<ps OINL(YZ, ) Dazp)llp.  But  for all a>f,  Oint(yz, m;)
< Oint(my, my), 50 (M Dy <ps C0IDt(My, T)Dazp) llp. m

Armed with the above lemma, we can now show that any condition ©
may by extended to a larger condition, all of whose coordinates have the
same length as n, that decides a formula ¢. Specifically, we have:
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Lemma 6. Let neP, nw={pi, ..., o, 8, .- s Jip» A% G*Doens and let ¢ be
a formula in the forcing language appropriate for P. Then there is y > n such
that:

1. VaeAl|ln, —y} =01

2. xle.

Proof. Lemma 6 is the analogue of Lemma 2.1 of [7], and its proof is
yirtually the same as the proof of this lemma. First, by Lemma 5, let n’ > =,
=g, ..., B, g%, ... G5, BY, H) be such that:

1. Yae A[|n,—n]] = 0.

2. If o' < n”, n’|lop, B is the last coordinate such that |z —mg| = 0, then
LAYy <py 0IDL(T, TY)De5 50 |l0. We will obtain an extension of ' which
satisfies the conclusions of Lemma 6,

Let G be Vgeneric on P. Recall that by the Product Lemma, for any
Bed, Gy = {Y!B: YeG} is V-generic on Py, and G? = {WDanp: YEG} is
V [G,]-generic on P’.

Now assume that n’'eG. Define a partition Fy- of [B1<° = {{py, .-
eis Pudi Pise--, Pn€Bf and p; S ... S p,} into three pieces as follows:

0 if there is some Y eG, and
{C*»4»4 such that each C*eU* and
<ll/= <p11;’ Tty Pf ’ qls coes lps ggs
- gl HA(q1), ..., H (g,), CP, HPICP),
<Pis e P 05 -0 g1
H*[C*Y5p0 (-0

1 if there is some
Y eGy and (C*},,, such that
each C*eU* and {y, <p’1',.‘.,p{’ﬁ,
ql’ e q’l’ gg? R glﬁﬁ? Hﬁ(ql)""

- H%(q,), C*, H'ICP), {pf, ..., 1.

95 -5 iy, C% HUIC ) pd =TT,

L 2 otherwise.

Folai S .. Sa) =7

Note that Fy is not actually a partition, but only a term which denotes a
partition in V[G[B]. Also, F is well-defined, for if it were not, then we could
get Yy, €GB, (C*: a2 p,aedd, (C" o> p,aeA) so that:

<d’17 <pqs sy pfﬂa 15+ ns gO:"'sg{ja H (ql)""aHﬂ(qrm
Cﬂ’ Hﬂ rcﬂ>7 <pﬂ: AR pal;a g%: "'vgfas Cz’ H“fca>z>p>“'(ﬂ
and
<w2: <p‘£:"'spf!q19‘“sqm g%:'-'agfsHﬁ(ql)a-“yHﬂ(qn)a

‘C,ﬂ: Hﬁ rclﬂ>=,_<l7‘i: ey pﬂm': g%)’ tey g‘ltus Cu’ H* rcm>a>ll> “— _I(P
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If we let  be a common extension of Y, and ¥,, then we get

that "he COIlditiOn <l// <[)1, - =plﬁ’ dis--+» qn: g‘é, s g? ? Hﬂ(q1)5 b Hﬁ(qn):
CPACP, BPICP O CPY, (B, nBly G G €N CR HUICT N Cinp)

forces both ¢ and ~1¢.

Now we know by the work of Levy and Solovay on mild Cohen
extensions [6] that f is still 87 supercompact in V' [G[f] (recall that P, has
been defined so that 13,, < f). Hence, by Menas’ theorem [11], let C* = B be
a measure 1 set which always denotes a homogeneous set. We may assume,
by the above mentioned work of Levy and Solovay on mild Cohen exten-

sions, that C*eU?, C* € V. We now claim that y = {p}, ..., P}, 9% ---» 9%, C%
H* Fca>ueA ”(P
If the claim is false, then let ¥ >y, ' > x be such that
l// = <qa{, LRRE} q;ua ha(‘)a ey h?nu: Dua Id)asA”-(p
and
‘// = <r‘i’>-~arﬁm> i?)a 'si‘;,x’ Ea7 Ja>meA”— —!(P,
and let us assume that |y —/| is minimal. We claim that |y—y| = |x—y¥] =

If not, let [y—y| # 0, and let B,,..., B, = B be a monotone enumeration of
the indices on which [y—|# 0. We will define a condition ' so that
[x—x1 <lx—¥| and ¥'|F-o.

Let t; S ... St, enumerate yz—yxz. Now =’ <y, and |7’ —x| = 0.
Hence, f is the last coordinate on which |z’ —1//| ;60 But by the choice
of n, (YIB, 0int(my, Y uzsrl-o, and for all «>p, Oint(m,, V)
< 0int (s, Yo)- Hence, <14, <0int (a> Yuddez g2l @550

YIBIE“Fp({ty S ... Sta}) =07,
Thus, by the homogeneity of C? for F,,, YIBl- “For every

01 S i SO 0150, 0,€CY, Fy({04,...,0,}) = 0". Therefore, assuming
veG, working in VI[Gg], for every oy,..., c,eC? we can find
Xoy..nsy€COp and measure 1 sets C*7t% for a = B such that

Ty = <Xa1,...,o',,1 <Pﬂ, (R Pf 5 O13+0050ps g(ﬂ], [ERE glﬂﬂ’ Hﬁ(al):

. H”(o‘,,), Cﬂ,ul,...,a',, ot rcﬂ.q....,d">’
P eens Pl 00
(the mapping oy,

vy O r—»C“ L is in V[G,]). Since each

¢*o1"nc P and since B is still BT supercompact in ¥ [Gg], by a theorem
of Menas (the analogue of the diagonal intersection property for measurables
for measures with the partition property) [11], T; = {t: te Chn for
0, S ... So, St} will denote a measure 1 set, and let T < T, be a measure 1
subset which is present in V. Let 8% = T/ n C’. Slmnlarly, for each a > B, we
can work in V[Gla] and define T,= () C* V"™ let T*<S T, be a

O8RS0y
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measure 1 set present in ¥, and define $* = T*nC" Then if we define
X”'_ <l!’ ﬁ <P1:~ ’pla g%’- ’gl )Su H* TS >z>/3> we claim that XH”"(P
(note that the class sequence (S"‘)l; 4 is definable in ¥, so y" is indeed a forcing
condition). =

If ¥ Je, then let y"=yx", " =<{s,..
K*%e4l- 1. Without loss of generality, we assume that m = |x;
~and we let gq,..., 0, enumerate ¥z —yxj.

Now we argue in V[G,], assuming that y"eG. Since V]
2B =YIB Zogrray 18 defined and is a particular member of G, and
(C™71 My 5 p is @ definable class sequence in V] 50 X,,,..,q, iS compatible
with "1 8; assume therefore that x,,,. ., <¥"[B. Hence, since

a k'3 10
-asza’]m" s]ﬂa N ’

— 5 >

BrG1ser0y,
{Ont1s..erOm} S {teSP: 0, St} = {teCV ™ 0,81},
8 C T for  a>p,

§*es for az=p,

{ng—luw--;

we get that =, . <y", a contradiction. Thus, Y|, and [x—y| =0.
Hence, by Lemma 5,

<0il’lt (Xaa l/ju)>ueA = X”— @.

Similarly, we can show that |y—|
contradiction, so Lemma 6 is proven. m

Armed with Lemmas 5 and 6, we are in a position to prove Theorem 1.
Let G be V-generic on P (G is of course a proper class). As in the previous
lemma, we know that for feA, G, is V-generic over P;. The full generic
extension of ¥, V[G] (which, by standard class forcing arguments ([2] or [5])
can be defined as U V[G,]) will not be our desired model; rather, a certain

submodel of V[G], whxch we shall call ¥,
Theorem 1.

Before defining ¥, we note that by arguments similar to those in [8], for
each feA (88: n <) is a generic w sequence through f. And, associated
with (84: n <) is a generic sequence <{F%: n <), where each F! is a
Levy generic collapsing function on Col(é" i 8. for n>1;for n=0, F}
is either Levy generic on Col(w,, 8;°), for o, the least element of A, or on
Col((U{ax < p: acAp***, 5f).

Let V= V[{{§% n<w), (Fi: n< w)}aeAnﬂ] ie, let V/ S V[G,] be
the least model of ZFC that contains, for xe A, the generic sequences
{83: n<w) and <{F;: n <w). Of necessity, ¥/ will also contain a generic
function f defined on AnpB so that for a<pB, f(a) =<5 n<wd,

(Fi: n<w)). V is then defined as |J V. To show that 7 is the desired
fed

=0 and that x| 71¢. This is a

7 will be the model which witnesses
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model, we have to show that V= “ZFC+ Every limit cardinal is a strong
limit cardinal + The wth successor of any cardinal violates GCH”.

LemMma 7. In W, the w-th successor of any cardinal is a strong limit
cardinal that violates GCH.

Proof. Let V=% is a cardinal”. Let 1 = | {aeA4: « <6}, and let § be
the least member of A > 5. We show that V=“6%° is a strong limit cardinal
that violates GCH” by showing that this is true in a certain submodel of ¥V
and that this behavior is preserved in V.

Consider the model V; = V[{§8: n<w), (Ff: n<w)} Using Magi-
dor’s arguments [8], the definition of P, and the Product Lemma, we know
that V,|=“A"? is a strong limit cardinal that violates GCH”. Further, we
know that V= “B = A"“". Hence, since A <8 <f, V}E“67°(=1"")is a
strong limit cardinal that violates GCH”.

Let B, be the least element of 4 > B, and let us define the model V* as
V* = U V8% n<w), <Fi: n<0)>,54,,y<«) We claim that in V¥,

aed,a >

the subsets of (BT )Y are precisely the same as in V. It is not too hard to see
this; one just uses a similar argument as in Prlkry forcing. Specifically, let ©
be a term, in the language appropriate for P*! such that for some o€ P’L,
|- “c € BT *”. Using Lemma 6, let, for « < f**, m,,; > 7, be such that

|y —Tesy) =0 and

For o <f** a limit, let n, = | n,; since o <7,
a<a

defined. Finally, let Ty = U++na. Tyt will completely determine 7, so T
a<f

will denote a set that is actually present in V¥ (this is another place where we
use fEeCol((U [yed: y<al)***, &).

Since there are no new subsets of (8**)" present in V*, we have that
V*E “Uf is a normal ultrafilter on P, (%) &2# = f**”. Thus, again using
the Product Lemma, {{é%: n < w), (F8: n <w)) is a V*-generic sequence,
so V=W*[{(h: n<w), (Fi: n<ad)]E“6%°(= p) is a strong limit car-
dinal that violates GCH”.

Consider now what happens when we force over ¥ with P;. By our
GCH assumptions in V and by definition of Py, P < (A1), so forcing over
7 with P, will not change the fact that (/1*“’)‘7 (5*“‘)’7 is a strong limit
cardinal that violates GCH, i.e., V[G Jk= 6% is a strong limit cardinal that
violates GCH”. Since P[{(8% n<w), (F& n<wd)yp] © VIG,1, we have
P[{K8% n<w), {F% n<wddeep]l= 0% is a strong limit cardinal that
violates GCH”. However, by the Product Lemma, this model is just ¥, so
PI=“6% is a strong limit cardinal that violates GCH".

CoRrOLLARY 8. In V, every limit cardinal is a strong limir cardinal.

Proof. Let A be a limit cardinal in ¥, and let § <1 be a cardinal.
VE=“5%® < 1", and by the above lemma, V= “P< gt m

Tyl 2 €T
7, is going to be
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To complete the proof of Theorem 1, we need only show that ¥V = ZFC.
As is usual when forcing with a proper class, the customary proofs will show
that all of the axioms of ZFC, with the exception of Power Set and
Replacement, will hold in ¥ (see [2] or [5]). The proof of Lemma 7 actually
shows that, in ¥, the power set of any cardinal is determined by forcing with
a set; specifically, using the notation of Lemma 7, the power set of , for B as
in Lemma 7, is determined by forcing with Py, Thus, V= Power §et Axiom,
and we need only show that the Replacement axioms hold in V.

The proof of Replgcemeng_»wi]l hinge on the fact that each R(x)" will
actually be an R(a) <" <>Fnn<u<gl for some suitable P,. It is not too
hard to show this fact; indeed, the proof of this is quite similar to the proof
given in the last lemma. Specifically, let « be an arbitrary ordinal, and let
B1€A be such that there is feA so that o < § < f,. f; has been chosen so
that given a sequence (m;: ¢ < f) of elements of P"* such that § < y implies
that =, is a O-length preserving extension of m;, there is one condition =
which is a O-length preserving extension of all of them. Thus, we can argue as
we did in the previous lemma and see that in V*, where V* has the same
meaning as it did in Lemma. 7, the subsets of § are the same as the ones in V.
Since f is thus still strongly inaccessible in V*, we have that R(8)"" = R(f)".
As previously, the sequence <{d}: n < 0}, (F}: n <o),y 1) is generic over
V*, and

)V

V*[{(8): n< o), (Fi: n<@)ye,0] =V,

so we have that the new subsets of R(x) present in“¥ are not present in V*,
but are present in

V*[{Kh: n< o), (Fi: n< @YDy <p, ] =V.
Thus, the new subsets of R(x) present in V are actually those present in

VI n< ), (FI: n< 0>y <py ]
and so form a set. :

The usual proof will show that Aussonderung holds in ¥. Hence, to
show that ¥'}= Replacement, all we need show is that the Bounding Principle
(Collection Schema) holds in ¥ since it is well known that Aussonderung +
Bounding Principle |- Replacement. So, suppressing unnecessary parameters,
we have to show that if V= Vx3yo(x, y), and if a bound u on x is given,
then there is some ve ¥V so that V= Vxeudyevo(x, y). To do this, let peP
be so that pl ¥x3yep(x, y).

Suppose a bound u on x is given; without loss of generality, suppose
that u is an R (xo) for some «y. As we have already observed, each R(a)" is in
V[{{82: n<w), (F&: n< ),<4] for some suitable §. Hence, we can- let
{ty: ¥ <n) be a set of terms such that each t, always denotes some element
of R(xy)’ and each element of R(a)Y is always denoted by some 7,. As
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pl- Vx3y o(x, y) for each t,pl-3ye(z,, y); let therefore o, be a term so
that p|l- ¢(t,, 6,). As o, will always denote an element of ¥, we can let §, be
so that for each term {({8%: n <), (F% n < w)),,q,y which appears in o,
B, > B.

Now, define p'= {J B,, and let y, be the least element of 4 > §'. By

r<n
definition of y,, the Product Lemma, and our previous remarks, each o, will
be interpretable in V[ (8% n < @), (F&: n < ®)),<,,]- Hence, if we let b
be the collection of the interpretations of the o,, b will be a set in V[ (6%
n<wd, (Fin<wdd,<,] so that V= VxeR(ao)Ayeb[p(x, y)]. Thus, we
will have the Bounding Principle true in ¥, and hence have Replacement true
in V. Thus, V= ZFC.

Lemma 7, Corollary 8, and the above complete the proof of Theorem 1.

Added in proof. We would like to.remark that although we have not shown them, the usual
lemmas about forcing (the Truth Lemma, etc.) remain true even though P is a proper class and
each 7€ P is a proper class. These lemmas are proven in the usual way for P a proper class; see, for
example, [2], [4], or [5].

Indeed, it is possible, by a strengthening of the hypotheses, to eliminate the class forcing
argument. If we assume, for example, the existence of a measurable cardinal » so that GCH holds
at all singular cardinals below x and so that x is the limit of cardinals d with the property that each
5 is 8* supercompact and 2° = §**, then Magidor’s arguments of [7] can be used to show that
V[G]k"*» is a measurable cardinal”; hence, 'V [{{d}: n<w), CFli n <@d)yau] =% is
inaccessible”. This will immediately imply that R () of this last model satisfies ZFC, so R (x) will be
the desired model.

In conclusion, we remark that Woodin and Foreman have dramatically improved the results
contained in this paper. Starting with a cardinal » which is 2* supercompact, they use Radin
forcing to construct a model in which for each cardinal 4, P =gtr,
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Relation entre le rang U et le poids
par

Daniel Lascar (Paris)

Abstract. Let T be a superstable theory; we prove, in T (see [S]) that a regular type is

~ non-orthogonal to a regular type whose U-rank is of the form o If U (p) = o T 4w n+ ...
k

...+w™n,, then its weight is at most Y 7.
i=1

L. Introduction. Dans tout cet article on supposera que T est une théorie
compléte et superstable.

La notion de poids (voir les rappels) semble étre trés importante
lorsqu'on essaie de classifier les modéles d'une théorie superstable, et indis-
pensable lorsqu'on gintéresse aux modéles dénombrables. Dans [L1] on
borne le poids w(p) du type p en fonction du developpement de Cantor de
son rang U: si

Up) =o' n+0n+ ... +o™*n
alors
w(p) <(ng+1)(ma+1) ... (m+1).

k
On va raffiner cette inégalité en montrant que w(p) < ¥ n;. En fait cette
i=1

relation est la meilleure possible. On verra aussi quelques relations entre le
developpement de Cantor, la régularité et Porthogonalité. Une autre motiva-
tion qui nous a poussé & écrire cet article est qu'on y fait usage du théoréme
de la base canonique (cf. [S], chapitre III) et qu'a notre connaissance, il n’en

existe nulle part, hors du livre de Shelah, d’application ou méme de référence.

On supposera que le lecteur posséde des connaissances générales sur la
stabilité (comme il peut les acquérir dans [LP] ou [S] par exemple). De plus
on utilisera le rang-U (voir [L1]), la notion de poids (chapitre V de [S], ou
[L2]), et les éléments imaginaires (chapitre ITI de [S]). Le paragraphe suivant
est consacré A rappeler les faits essentiels sur ces trois points. Les notations
sont celles qui sont habituelles (celles de [L2] par exemple). Par rang, nous
voulons toujours dire rang U.
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