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Maps of cotriples and a change of rings theorem
by

Charles Herlands (Pomona, N.J)

Abstract. A well-known theorem on “change of rings” asserts that a ring homomorphism
f: R—S induces an inequality dimg(M) < dims(M)+dimg(S) for each S-module M. We
generalize this result to a categorical setting and obtain an analogous “change of cotriples”
inequality induced by a map of cotriples.

Suppose that S is a ring and M is a left S-module; we denote by
dimg(M) the projective dimension of M as an S-module. A well-known
theorem on “change of rings” (see [5, p. 172]) asserts that if f: R—Sis a
ring homomorphism and M is an S-module, then M and § are R-modules in
a natural way, and one has the inequality

(%) dimg (M) < dimg (M) + dimg (S).

In this paper we obtain a similar inequality in a more general categorical
setting. If A and X are additive categories with finite limits and G = (G, &, )
and H =(H, ¢, &) are suitable cotriples on 4 and X, respectively, then one
can define dimg(4) and dimg(X) via resolutions for all objects 4 of A4 and
X of X (see [4]). We show that in this case a “nice” adjunction (U, F) from
A to X and morphisms of cotriples t: FH=GF and u: HU = UG induce
natural definitions of dimg(G) and dimg(H) and two “change of cotriples”
inequalities analogous to (x).

To see the relationship between the “change of rings” theorem and the
categorical situation described above, we begin by recalling the following
facts. It is well known that if E: B— A is a functor having a left adjoint
F: A - B, then the adjoint pair (E, F) induces a triple Ton A and a cotriple
G on B (see [7, p. 134]). It is also well known (see [1, p. 2907) that given a
triple T or a cotriple G on a category 4 one can construct resolutions in 4
which generalize resolutions of modules over a ring in the following way. If §
is a ring, Mod and Sets the categories of left S-modules and sets, respecti-
vely, Es: sMod — Sets the “underlying set” functor, and Fs: Sets —~sMod the
“free S-module” functor, then Fg is left adjoint to Es. If Gs=(Gs, &s, 05)
denotes the “free” cotriple on sMod induced by the adjoint pair (Eg, Fg),
then Gg-resolutions in sMod are just projective resolutions. Now suppose
that R and S are rings, so that we have “free” cotriples Gy = (Gg, &g, 0g) On
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xMod and Gs = (G, &5, 85) on sMod, and suppose that f: R— S is a ring
homomorphism. Then [ induces a “scalar restriction” functor U
= Homg (S, —): sMod — gMod (which ‘has a left adjoint F = S®g- and a
right adjoint K = Homg (S, —)), and for any S-module M we have dimgy (M)
= dimg(M) and dimg, (UM) = dimg (M). (Remark: Functors which have
both left and right adjoints have received special attention of late. For
exa}nple, see [2], proof of Theorem B, which uses Mikkelsen’s theorem that a
logical morphism between toposes has a left adjoint iff it has a right adjoint;
or consider Lawvere’s current work on “extra right adjoints” [6].) Further-
more, there are two canonical morphisms of cotriples u: Gg — Gg and
7. Gg — Gg: a natural transformation p: Gy U — UG (for which Ues p
=g U and Udg- i = uGg- Gy p-6g U), where for each S-module M the map
g x@u Rx — x@ﬂ Sx is naturally induced by f, and a natural transformation

1: FGg — GgF (for which ¢gF 7 = Feg and 05 F 7 =Ggt* :
5T 1Gg - Fdg), where
for each R-module N the map ty: S®R((—BN R)—> @ S, 1is 'Rnaturally
Yei xeSQOpN

induced by f Thus we are led to ask in the module case: Do U, F, K, t
a{‘ld U prov1de‘ us with definitions of dimg,(Gs) and dimg(Gy) such that
d1mf;R(Gs) = dimg (S) and dimgg(Gg) = dimg(R), and hence with “change of
cotriples” inequalities

48] dimgg (FN) < dimGR(N)+dimGS(GR),
and
R dimg, (UM) < dimgg (M) +dimgy (G5)?

We show in t-his paper that U, F, and t give us inequality (1) (we leave the
(dual} .derlvatlon of (2) from K, U, and u to the reader), and we determine
conditions under which a more general result may be obt;ined We gratefull
acknowl.edge the helpful suggestions of the referee with fegarc% to thz
appr;p?ate clot.riple maps and generalizations,
efore giving a specific. summary of the i
introduce some notation and conventizns. We sl(i:ﬁt:.rsl;sm(l)ef tthlfzupﬁge? tfv'e
paper that 4 and X are additive categories with finite limits, G i (Gu 1335
and H=(H, ¢, &) are cotriples on 4 and X, respectively. 1’7 : X_ﬁ/i F:;()
fupctor, and 7: H=G is a morphism of cotriples (ie, a na’tur;ﬂ transf -
ation v: FH = GF such that ¢F 't = F¢' and Ge-tH-F§' = oF 1) For ob.
Jf:gt; ,214 :;gdBB I(f)ffA,Awe };t»A(A, B) denote the abelian group of n'lorphi:m;
. : A— B is a morphism i i j
denote by f, the morphism A(C,}I;I:n;n(lcl?A[; _a:n’;i (g 1;)311 object of 4, we
_ In.§ 1 we dualize some of the results in [4]. We r‘ecal'l the notions of G
projective, G-exactne§s, and G-resolution. We note that in generall o (11 .
not have a comparison theorem for G-resolutions, but that if C? n:eﬂe(::i:
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isomorphisms (that is, Gf: GA - GB is an isomorphism iff f: A~ B is an
isomorphism), then the usual results about dimensions of modules in a short
exact sequence carry over to short G-exact sequences and G-projective dim-
ensions. If G does not reflect isomorphisms, we construct a category X714 and
a functor r: A—X 1A (as in [3]), obtain a cotriple G on Z~'A whose
functor reflects isomorphisms, and define dimg(A4) = dimg(rd) for every
object 4 of 4.

In §2 we consider the special case in which A=X and F=1, We
define dimg(H) = inf {n > 0/7"*1: H"*! = Gr*! is an isomorphism}, and we
show that dimg(A) < dimy(A4)+dimg(H) for every object 4 of 4.

In § 3 we consider the general case. We suppose that 4 and X are exact
categories (in the sense of [91) and that -F is a faithful, zero-preserving
functor having a right adjoint U, and we define dimg(H)= inf {n
> OfzU)"z: (FHUY'FH = (GFU)"GF is an isomorphism}. We show that if
G and H reflect isomorphisms and if H satisfies an additional identity
relating it to the adjoint pair (U, F), then dimg(FX) < dimg(X)+dimg(H)
for every X in X. If G and H do not reflect isomorphisms, we consider the
categories X' A4 and £~* X and cotriples G and H, as described in § 1. We
obtain a functor F: Z~'X —» X' 4 having a right adjoint U, and a map of
cotriples T: H = G. We define dimg(H) = dimg (H), and we obtain as before
the inequality dimg(FX)< dimg (X)+dimg(H) for every object X of
X

§ 1. Dimension with respect to a cotriple. In this section we dualize some
of the results in [4]. Let A be an additive category with finite limits and let
G = (G, ¢, §) be a cotriple on A. Following [1], we say that an object Aof A
is G-projective if there exists a morphism ks 4 —GA such that g4 -ky = I4-
A sequence A 5 A 44" in A is Gexact if qp= 0 and if
A(P, A) 5 A(P, A) 25 A(P,A") is exact in Ab for every G-projective P. A G-
resolution of an object A of A is a G-exact sequence ... = P, »P,—+A—0in
which Pg, Py, ... are G-projective. A morphism f: A~ B in Ais a G-
isomorphism if f,: A(P, A) —A(P, B)4s an isomorphism in Ab for every G-
projective P. We note that if0— A — B Z, Cis a G-exact sequence in A, then
the unique map s: A —ker(f) coming from the universal property of the
kernel is a G-isomorphism (equivalently, G(s) is an isomorphism). Hence if G
reflects isomorphisms, any G-exact sequence 0> A —B L,C—-... has A
=~ ker(f), and any short G-exact sequence 0 — A4 — B - P —0 with P a G-
projective is in fact split exact. Thus we obtain:

Lemma 1.1 (G-Schanuel Lemma). Suppose that G reflects isomorphims. If P

and P’ are G-projective and if
0-A—->P—B—=0 and 0—A —-P -B—0

are short G-exact sequences in A, then P®A = PpA. =
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If we then define the G-projective dimension of an object 4 of 4, denoted
by dimg(A4), to be <k if A has a G-resolution 0 = P, - P,_; —...— P,
= Py A -0, we get the usual comparison theorem for resolutions when G
reflects isomorphisms:

ProrosiTioN 1.2. Suppose that G reflects isomorphisms. Then for every
object A of A, the following statements are equivalent:

(a) dimg(4) < k.

O If...o (=Y LY, = =Y, > Y, = A0 is any G-resolution
of A, then ker(g) is G-projective. m )

We now define chain complex, chain homotopy, chain equivalence, and

mapping cylinder in the standard fashion (see {8, Ch. II]) and obtain the
following results:

ProposiTioN 1.3. Suppose that G reflects isomorphisms and that 0 — M’
~M—>M"—0is a short G-exact sequence in A. Then

(@) If dimg(M") > dimg(M), then dimg(M") = dimg(M)+1.

(b) dimg (M) < sup {dimg(M’), dime(M")}.

(c) For any positive integer n, if dimg(M) < n and dimg(M"y < n, then
dimg(M) < n. =

We refer the reader to [1] for the construction and properties of the
cohomology groups Hg (4, B) = Hg(A, A(—, B)) for every pair of objects A
and B of A. We define the G-cohomological dimension of an object A4 of 4,
denoted cohdg(4), to be <n if H&(A, B)=0 for all k> n and for every

object B of A. Then we have the following relationship between dimg and
cohdg:

THEOREM 1.4. If G reflects isomorphisms, then cohdg(4) < dimg(A) for
every ohject A of A; and if ey is the coequalizer of Gey and gy for every object
X of A, then cohdg(A) = dimg(A4) Jor every object A of A. w

If G does not reflect isomorphisms, we consider the class X of G-
isomorphisms and construct the “category of fractions” X-! A as in [3].

ProposiTiON 15. G, togerher with the canonical functor r: A X714,

induces a cotriple G on X' A whose Sunctor reflects isomorphisms. m
We then define dimg(4) = dimg(rA4) for every object 4 of A.
THEOREM 1.6. Suppose that for every object A of A the morphisms Ge 4 and
€4 have a coequalizer which is preserved by G. Then S-' A is equivalent to a
Jull reflective subcategory D of A, G is G restricted to D, and cohdg(A)
= cohdg (rA) = dimg(rA) = dimg(4) for every object A of A.

§ 2. Maps of cotriples on a category. Suppose that A is an additive
category with finite limits, G = (G, ¢, §) and H=(H, &', §') are cotriples on A,
and 0 H=G is a natural transformation for which ¢t =¢ and 61
= Gr tH-§'. (That is, consider the special case in which 4 = X and F: X
— 4 is the identity functor on 4; thus 7 is a morphism of cotriples.) Supl;ose
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further that G and H reflect isomorphisms. Then one easily verifies the
following two lemmas:

Lemma 2.1. If Ae|A| is H-projective, then A is G-projective.

In particular, HA is G-projective for every object A of A. m

LemMma 22. If B: ...~ B,—B,_; —...» By =By ~A—-01isa G-exact
sequence in A, then B is H-exact. m

For each object 4 of A and each integer n = 1, let (", H"A-G"4
denote the composition

H A Lo, H™1GA H 26 4 Hn——szA__'”__,HGn—lA_IQ";IAL,GnA’

and let

Y (—1 Gy, =)y G A G4
i=0

and

Y (— U H ey, = (@) BT A AL
i=0

" From the naturality of t, & and & we obtain:

Lemma 2.3. For every n> 0 and every object A of A, the diagram
H"1A U4, Hmy
@+ 1’:‘-.1- LMy
Gt A o 94

commutes. m L ‘ o n
We also observe that if for some n>0 t" is an isomorphism Wi

. o - D

inverse y,, then z"** is an isomorphism with Inverse y,i1 = Oyn—1"7n"Egn- By

induction we obtain: . .
LemMA 24. If " is an isomorphism for some n>0, then t° is an

isomorphism for all k> n. =
COROLLARY 2.5. If " is an isomorphism for some n > 0, then for all k > n

the diagram
Gkl 4 g G A
Okt1)a | L4
k+1 k
H*"*4 o1 H*A
commutes. m

We now define the dimension of H with respect t:)HG, cie:ioted nl:};
dimg (H), to be the smallest positive integer n for which t***: H"" ' =G
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is an isomorphism. If 7* is mever an isomorphism for k >0, we say that
dimg(H) = co. We now state the main result of this section:

THEOREM 2.6. For every object A of A,

dimg(4) < dimg(A4)+dimg(H).

For the proof of 2.6, we consider several cases. Clearly if dimg(H) = 0,
then t is an isomorphism and dimy(4) = dimg(4); and if dimg(H) = oo,
then the result is trivially true. So suppose that 1 < dimg(H) =k < 0.

Lemma 2.6.1. If dimp(d) = n> k, then dimg(4) < dimg(A).

Proof of 2.6.1. Suppose that

0 K =ker(d,_,), B4 pn g Gz ypm-1 4,
o H2 A gty g
is an H-projective resolution of 4 and consider the G-exact sequence
0K, = Ker(d,-,),~ 4" 420461 4
oGPPG,

From 23, 2.5, and the universal properties of K, and K,, we obtain K
=K,; then by 2.1 we have that K, is G-projective. m '
Lemma 2.62. If dimy(A) = n < k, then

dimg(A) < dimy(4)+dimg(H).

Proof of 2.6.2. If dimgz(4) =0, then dimg(4) =0 by 2.1; so assume

that dim 4 (A4) > 1. Since k > n, it follows from {4, Theorem 1.6] that the
sequence

O-ker(d), =Kjyy »H AR, e g, g2 g4 g en g g

is an H-projective resolution of A: in i k1 1 jecti
) ; particular, K is H-projec
_Consider the G-exact sequence o projective

O—ker(d)y =Ky » G 1 ADAGR 4, G2 408G 04,4 o

? 23, ?{?, andhthe }mjversal properties of K,., and K., we have that

. Kpry 2 Kjyy; then from 21 we see that K is G-projective. -
P 6(4) St  di )t dime, k1 projective. -Hence
This completes the proof of Theorem 2.6. &

If G and H do not reflect isomorphisms, we con i
cqtnples G and H, whose functors do reflect isomorph?stir‘lls(it\&: tllrller? (11)61:12:
dimg(4) = dimg(r4) and dimg(4) = dimg(r' 4) for all objects 4 of A, where
r and ' are the canonical functors from A into the “categories of fra’ctions”
b:ascd on the G-isomorphisms and H-isomorpbhisms, respectively, and !
dimg(H) = dimg(H). It follows easily from , et 2126

d thy i
extond to G ari B € construction that 2.1-2.6
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§ 3. Maps of cotriples on different categories. Suppose that 4 and X are
additive exact categories (in the sense of [9, Ch. I]), G =(G, ¢, ) and H
=(H', ¢, &) are cotriples on 4 and X, respectively, F: X — 4 is a faithful,
zero-preserving functor and t: H=>G is a morphism of cotriples (ie, a
patural transformation t: FH = GF such that ¢F -7 =F¢' and GttH-F¢'
= 0F-1). Then one easily proves:

" LemMma 3.1. If X is an H-projective object of X, then FX is G-projective.
In particular, FHX is G-projective for every X in X. m

Using 3.1 and a theorem of Freyd [9, Theorem 7.1] we obtain:

Lemma 32 If B: ...—BZ=LB,_ —.. LB 0B LX -0 is a
sequence in X for which the sequence

FB: ...FB,Zr=1,Fp _ -  Fi,pp O,FB - EL,FX 0

is G-exact in A, then B is H-exact inX. m

Suppose now that F has a right adjoint U. Let m: Iy=UF and
p: FU =1, denote the unit and counit, respectively, of the adjunction. For
each object A of A and each integer n> 1, let (zU): (FHU); ~(GFU),
denote the composition

(FHUY A-E2" "0 gyt GFU A2 werua,

(FHU)"2(GFU)*A —...—~(FHU)(GFU)y""! AM(GFU)"A,
and let

. n—i ! .
HUFHU) ~ 14 (FHUY'™' F'ypyi- 14

i (— 1} (FHUY " FHm
i=1
=(2)),: (FHUY'A —(FHUY"** 4;

define (8,),: (GFUY"A —(GFU)Y"*'A similarly. By a straightforward (al-
though messy) naturality argument we obtain:
LeMMa 3.3. For every n> 0 and every object A of A, the diagram

(FHUYy'A 54— (FHU)™* 4
@y | Jengt?

(GFUY A 224 (GFUY™** 4

commutes. m
We say that H intertwines with the adjoint pair (U, F) if the
composition . :

HUFHU A28, fHUFHU A "2 04, HHUFU A -"H0E0

HUFHUFAZ" %4 .HUFHU A
is the identity morphism on HUFHUA for every object A of A. (For
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example, if f: R— S is a ring homomorphism, then the “free” cotriple on
sMod intertwines with the adjoint pair (Hom(S, —), S®,-))
Lemma 3.4. Suppose that H intertwines with (U, F) and that (tU)" is an
isomorphism for some n> 0. Then (tUY* is an isomorphism for all k > n.
Proof. Let (yU), denote the inverse of (tU)", and let (yU),4q:
(FHUY™* = (GFU)"*! be defined on objects by ((yU),+,), = the composition

(GFUy+1 4S50 us, (GFUy FUASED 24, (GFUY 49204, (FHUY 4

RO L (pRyyt FHHU AT IR (gt 4,

Then (yU),, is the inverse of (zU)"**. The conclusion of the lemma follows
by induction. m
CoroLiAry 3.5. If H intertwines with (U, F) and (zU)" is an isomorphism
Jor some n> 0, then for every k >n and every object A of A, the diagram
(GFUY A 24, (GFUy*1 4
U g l l((vU),.-;- 14
(FHUYA g (FHUY'™"'4
commutes.
For +elach integer n>1 and for each object 4 of 4 and X of X, let
d)a: "1 A—>G"A and (d)y: H™' X — H"X be defined as in § 2 and let
(t)x: FH"X — G"FX denote the composition

FH"X B2, Gppn-1 x SB2, o ppn-2 g

aes n-1 _—Mn‘ 11:]( n
(Observe that 1, =1) -G FHX G FX.

LemMa 3.6. For every object X of X and every n> 0, the diagram
FH" 1y Fdux, ppny
Ent X | {enx
Gn‘HFX “_ﬂ(dnlrx G"FX
commutes.
v The proof is by induction, using naturality and the fact that 7 is a mor-
phism of cotriples. =
We observe that if 7 is an isomorphism, then 7, is an isomorphism for
all n>1, and we have the following:

CoroLLARY 3.7. If T is an isomorphism, then for every object X of X and
every nz 1, the diagram

G" 1 Fx Wory G'FX
e’ | Lot
FH""'X 75— FH'X

commutes. w Flrpx
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Assume (unless stated otherwise) for the remainder of this section that H
intertwines with (U, F) and that G and H reflect isomorphisms.

PRrOPOSITION 3.8. Suppose that t is an isomorphism and X is an object of
X for which dimg(X) < m. Then dimg(FX)< m.

Proof. Let

0"’K:,, i'm mx @m-1)x H™!'Xx dy—2)x . H*X (d’l)X___,HXiX—»X_»O

be an H-projective resolution of X, and consider the diagram
Py L ppe=1x | P2, pp x MO pyy T px 0

Lt |

0- FK, 2, ppm x

iyl Tomwx ! = Dx) T e 0X ! ey | Tyt

@ GFX g FX 0

OaKmTG“FXm—;*G"'"IFX - ...wGZFX
in which all the squares commute (by 3.6 and 3.7), the bottom row is G-
exact, and FHX, FH*X, ..., FH"X, FK,, are G-projective (by 3.1). From
3.6, 3.7, and the universal properties of K,, and FK,,, we obtain K, =F K;.;
hence K,, is G-projective and dimg(FX)<m. m

We now define the dimension of H with respect to G, denoted by
dimg(H), to be the smallest non-negative integer n for which
(TUYy't: (FHU)"FH =(GFU)"GF is an isomorphism. ((tU)"t = the compos-
ition (FHU)*FH-S Y (GFU)y'FH AGEU (GFU)*GF.) We note that this
definition coincides with the definition in § 2 for the special case 4 = X, U
= F = the identity functor on 4. If (tU)"t is never an isomorphism for any n
>0, we say that dimg(H) = <.

We now state the main result of this section:

TueoreM 3.12. For every object X of X,
dimg(FX) < dimy (X)+dimg (H).

The proof of 3.12 consists of several parts. We begin with:

LemMa 39. If dimg(H) = n, then 1,.; is an isomorphism.

Proof. By induction on n. For n=0, the result follows from the
definition of dimg(H). For n=1, let X be an object of X and consider the
commutative diagram

GFHX %X, G*FX

iGF'"HX M Q*’
GFUFHX e GFUGFX A%

FH®*X -HX, GFHX'
FHmHXl

FHUFHX wOiggpx

in which the bottom row is [(tU)r]y and the top row is (r;)y. Now if
{(zU)7]y is an isomorphism, we obtain from naturality and the cotriple
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identities that (t,)y is an isomorphism. For n=k > 1, we construct, simil-
arly, the commutative diagram:

FH* 'YX G+ 1)x GFHiFY

FHmHle TG"G"FX
) FHUFH*X (GFU)G*FX
FITUFHmH,‘-IXl 1
(FHURFH*'X
! lags
: (GFUY"*G°FX

k<2,
T(GFU) GpGZFX

!

(GFU) ' G*FX
‘ (FHU*~ LFHmyx | y 1 GFO*~ epgry
(FHUY FHX -S22X Y GRURF GFX

Now if (tUY 7 is an isomorphism, it follows from naturality and the cotriple
identities that ;. iS an isomorphism. m

TueoReM 3.10. Suppose that dimg(H) =k > 0 and suppose that X is an
object of X for which dimg(X)=n>k. Then dimg(FX)< dimy(X)+
+dimg (H).

Proof. If k =0, the result follows directly from 3.8. Suppose that k > 1.
Let ’

0 K, Te gy o=t ety g2y G,y fX, x 0

be an H-projective resolution of X and consider the diagram

0-FK, 28, ppry Bailt  ppe-1y o, | pg2x P90 py X Py L0

legx Le-x leay lex ”

0-K, = G'FX CG"TUIFX o .. G FX

@rx GFXW FX -0

n—1lrx
in which the bottom row is G-exact, all the squares commute (by 3.6), and
FHX,FH*X, ..., FH" X, FK, are G-projective (by 3.1). It follows from 3.9

(and from 3.4, if n > k+1) that (1,)y is an isomorphism, whence (by the same
argument as in 3.8)

dimg(FX) < n = dimg (X) < dimy(X)+dimg(H). w

) Tueorem 3.11. Suppose that dimg(H) =k > 0 and suppose that X is an
object of ‘X for which dimg(X)=n where 0<n<k. Then
dimg(FX) < dimg(X)+dimg(H).

Proof. If k =0 or n =0, then the result follows from 3.1. S
Leatt .1. So suppose

0 Kpyy SoH XX by L2 x A py v o
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be an H-projective resolution of X (not the shortest one, of course), and
consider the diagram
0= FKL,, S, prpevs x 290 gy o pH2 x 290, XX FX -0
Gyt Dx) T X Ly leax lex I

0 Kysy > G FX g G*FX — ...~ G*FX gz~ GFX 55+ FX 50

in which the squares commute, the bottom row is G-exact, and
FHX,FH*X, ..., FH**' X, and FK;,, are all G-projective. As before, we
have that K,,; is G-projective and hence that dimg(FX)< k+1. But
k+1 < dimg(H)+dimg(X). =

TueEOREM 3.12. For every object X of X,

dimg(FX) < dimg(X)+dimg(H).

Proof. 3.10 and 3.11. =

For the case in which G and H do not reflect isomorphisms, we
construct (dually to [4, § 3] categories Z™'4 and Z7'X and cotriples G
=(G,5 8) on 2714 and H=(H,#,8) on X™' X whose functors reflect
isomorphisms. The following proposition is the dual of [4, 3.7 and 3.8]:

PRrOPOSITION 3.13. Suppose that for every object A of A the morphisms Gey
and &, have a coequalizer k, which is preserved by G. Then X4 is
equivalent to a full reflective subcategory of A, G is G restricted to Z “14, and
dimg(A4) = dimg(rd) for every object A of A, where r: A—X"YA4 is the
reflector. Similarly, if for every object X of X the morphisms Hey and eyy have
a coequalizer k' which is preserved by H, then X ~1 X is equivalent to a full
reflective subcategory of X, H is H restricted to £™'X, and dimg(X)
= dimg (r' X) for every object X of X, where r': X — X7 X is the reflector. =

We refer the reader to [4] and [10] for examples of categories and
cotriples satisfying the hypotheses of 3.13. Assume for the remainder of this
section that the hypotheses of 3.13 are satisfied. Then we have the following
picture:

H

3
.r"AD r‘p
1 l R "
A : )

v
In order to extend 3.12 to this more general situation, we need to construct a
functor F: 5~ 1X X' A having the same properties as F and a righ

adjoint U: ™' 4 — X' X to F such that H intertwines with (U, F). That F
restricted to X~ !X is such an F is shown in the following:

2- ~ Fundamenta Mathematicae CXX. 2
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P;lOPOSITION 314. If X is an object of 27 X, then FX is an object
of ZTHA.

Proof. It follows from the proof of 3.13 that X is in X~ X iff ¢y is the
coequalizer of ¢y and Fey. Since F has a right adjoint, F preserves colimits;
so Fey is the coequalizer of Feyy and FHey. In order to show that ey is the
coequalizer _of egry and Gepy (and hence that FX is in ™' A), we let
q: GFX - A be the coequalizer of ¢5py and Gery and consider the diagram:

FHlx’fff* FHX-25FX
Hx | i

GFHX x s
Gix | 1(

{
G*FX =% GFX < 1
GB'FX

! 1
EN v
FX
in w}.ﬁch the rows are coequalizer diagrams and s and ¢ are the unique maps
(coming from the universal property of FX and A) for which the right hand

square and triangle commute. One easily shows that r+s = Iyy and st = I ;
- - . - . ’
hence r is an isomorphism and eyy is the desired coequalizer. m

It follows immediately from 3.14 that F =rFi' is a functor from X~1' X

to 7' A (namely, F restricted to X~ ' X) and that F, like F, is a faithful,
zero-preserving functor.

FPROPOSITION 315. Let U=r"Ui: £=* A~ 271 X. Then U is right adjoint
to

Proof. For all objects 4 of 2714 and X of £~ ! X we have

STLA(FX, A)=Z Y A(Fi' X, A)
= A(Fi' X, id)
= X(i' X, Uid)
= Z71X(X, ¥ Uid)
=I1X(X,U4). » .

Since F and H are restrictions of F and H, it is clea H i i
. nce . H are restric s r that H intertwines
with (U, F ): Let ©: FH = GF denote the morphism of cotriples induced by
the restrictions of F, G, and H, and define dimg(H) = dimg(H) = the

smallest non-negative integer n for which (F0)"7 i i i
T 18 an isomorphism.
have extended 3.12 to: phism. Then we
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THEOREM 3.16. Suppose that the hypotheses of 3.13 are sarisfied. Then for
every object X of X,

dimg(rFX) < dimg (r' X)+dimg(H). =
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