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On linear homogeneous functional equations
in the indeterminate case

by
Witold Jarczyk (Katowice)

Abstract. Let | be a compact real interval and let & be a point of I. Denote by F the set of
all continuous functions f: I — R such that 0 < (f (x)—&/(x—¢) < 1 for every xeI\{¢] and make
X denote the set of all continuous functions g: I — R such that g(x) #0 for every xel and
|g(&) = 1. Considering F and X as metric spaces with the uniform convergence metric (they are
Baire spaces), we prove that for almost all pairs ( f,9)eFxX (all in the sense of the Baire
category) the functional equation @of =ge has exactly one continuous solution ¢: I — R (just
the zero function).

In this paper we deal with the problem of the number of continuous
solutions ¢ of the functional equation

o)) pof=ge.

Let I be a real interval and let ¢ be a point of I. The theory of
continuous solutions of equation (1) has been developed under the following
hypotheses (cf. [1], [41-[6]):

(i) f: I - R is continuous and 0 <(f—Efx—& <1 for xel\[E).

(ii) f is strictly increasing in a neighbourhood of &.

(iii) g: I — R is continuous and g(x) # 0 for xel\{¢}.

Denote by f", neNgo(!), the nth iterate of f.

Remark 1. Under hypothesis (i) £ is the unique fixed point of f, and
the sequence |f"(X)}neng 15 monotonic for every xel and converges to ¢
(cf. [5], Th. 04).

Let us write

n—1

(2 G,= [l gosf*, neNo.
k=0

The following three cases are possible (cf. [5], Ch. II, § 2):
(A) There exists a continuous function G: I—R such that G(x)
= lim G,(x) and G(x) # 0 for every xel.

(Y) By Np wé denote the set of all non-negativé integers.
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(B) lim G, =0 uniformly on a subinterval of I.

(C) Neither (A) nor (B) occurs.

The above three cases determine the number of continuous solutions of
equation (1). Namely, Theorem 2.2 from [5] (cf. also [1]) states that:

If conditions (i), (iii) and (A) are fulfilled, then equation (1) has in I a
unique one-parameter family of continuous solutions. These solutions are
given by @(x) = c/G(x), where ¢ is an arbitrary real constant.

If conditions (i\(iii) and (B) are fulfilled, then equation (1) has in I a
continuous solution depending on an arbitrary function.

If conditions (i), (iii) and (C) are fulfilled, then the zero function is the
unique continuous solution of equation (1) in I.

Note that under assumptions (i) and (iii) case (A) may occur only if g (&)
=1 (otherwise the infinite product defining the sequence |G, neng di-
verges), but if g(£) = 1, then all the three cases (A), (B) and (C) can actually
occur (see Lemma 1). If |g(£)] < 1, then case (B) occurs (cf. [5], Th. 2.3). If
lg(&) > 1, then case (C) occurs (cf. [5], Th. 2.4). The case g (&) = 1 is called
indeterminante.

In this paper we shall show that in the indeterminate case for almost all
equations (all in the sense of the Baire category) of form (1) case (C) holds.
‘ Let I be a compact interval. In the sequel the space of all functions ¥
fulfilling (i) is denoted by F whereas X* denotes the space of all functions g
fulfilling (iii) and the condition g(¢) = 1. We may treat F and X™* as metric
spaces, endowing them with the uniform convergence metric. Observe that
they are Baire spaces. Namely, if we endow the space of all real functions
defined and continuous in I with the uniform convergence metric, then F and
X*, as is easy to show, are its G; subsets, and thus, by Theorem of
Alexandroff (cf. [8], Th. 12.1), they are topologically complete and con-
sequently (cf. [8], Th. 9.1) they are Baire spaces.

Let us define

A" = {(fig)eF xX™: the sequence {Guluen converges pointwise to a
function from X7},

BY = {(f,g)eFxX*: ,,h-.n3 G, = 0 uniformly on a subinterval on I},

C*=FxX*\(47 UB")
and, for every Ec FxX™ and feF, put E; = {geX*: (f, 9)eE}.

We start with the following lemma.

Lemma 1. If feF, then A}, B} and C} are non-empty sets.

Proof. We may assume without loss of generality that ¢ is the left

endpoint of I. Since the function identically equal to one belongs to 4}, we
have A7 # 0. f’

Let f be a strictly increasing function belonging to F and such that
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F<f(®. Choose a sequence {a,},.y of positive numbers such that {a,}.v

w
increases to ome and [[ a,=0. Further, fix an x,eI\{¢}. In virtue of
n=1 —
Remark 1 we can find a decreasing function ge X* such that g[/*(x,)]
=a, for keN. Since f is strictly increasing, so is f" and f"<f" for
every neNy. Thus, for every xe[f(xo), xo] and neN, we get

n-1 n—1 n—1 n
0< [Tglr* o< [1glr 1< [T g7 (ko] = I] -
k=0 k=0 k=0 k=1

Consequently, lim G, = 0 uniformly in [f(xo), xo] < I, and so geBj:
Finally, we shall show that C; is a non-void set. Indeed, let us take into
account the function g constructed above and observe that the function g,
=2—g is an element of X™. Since g <1 and [] g[f*(xo)] =0, we have
k=0

©

¥ l0: [ ol =11 = § (0L ol =1 = 3 (1=g L ()

k=0

= 3 g ()] —1] = .
k=0

Consequently, H g1 [f*(xo)] = o0 and g, ¢ 4} . Obviously, since g; > 1, g,
k=0

is not an element of B;. Thus it belongs to Cf.

LeMMA 2. Suppose that feF. Every two elements of X coinciding in a
neighbourhood of ¢ belong simultaneously to one of the sets Af, By, Cf.

Proof. Let g, ge X coincide in a neighbourhood ¥V of ¢. On account

of Lemma 1 from [3] we have f"(J)cV for an meN. Write G,
n—1
= [] gos* and note that

k=0

n—1 m—1 n—=1
Gyx) =Tl glf e =11 J[f"(X)]kH gLl
k=0 k=0 =m

n—1
=G (x) [T g [/*()] =[G (x)/ G (2)] G (%)
k=m
for xeI and n> m. Making use of this formula, we get our assertion.
Now we pass to our main results.
(3 We may take for instance

f’(x)=.f+%(x—§) (min {f(t): tel,t>x}—¢) for xel,

where d = sup {x—¢: xel}.
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Tueorem L. If feF, then the sets Af, Bf and C} are dense in X+,

Proof Fixa geX™ and a positive real number & < inf {g(x): xel}. In
view of Lemma 1 we can find a function g, belonging to Af . Since g and g1
are continuous and g (&) = g, (¢), we have |g(x)—g, (x)| <& for every x from
a closed neighbourhood ¥ of £. On account of Tietze's theorem there exists
a continuous function g: I — R such that.

€] gly = g1lv
and
4 lg(x)—g(x) <e for xel.

Observe that according to (3) and to the choice of ¢ we have g =g,(8
=1 and g(x) >g(x)—e > 0 for every xel, which shows that g belongs to
X*. By (3) and Lemma 2 the function g belongs to Af, which, jointly with

(4)+, gnds the proof of the density of Af in X™*. The reasoning for sets Bf and
Cf is analogous.

Treorem 2. If feF, then the set Cf is residual in X*.

‘ Proof. It is enough to show that the sets A and Bf are of the first
Baire ca.tegory. In order to prove that Af is of the first category let us define
a mapping T? X* - X* by the formula

Tp =9¢/pof for ¢peX™.

Since for every peX™ we have

n—1 n—1
k[[g Tpof* =k1:[0 Poff9of** = glpofr s o,

it follows that T(X*) < Af.

We shall show that T(X*)= 4
pen (X™)=A. For a fixed

let {G,},ey be defined by (2) and put G = lim G,. Thus Ge X* and, in

virtue of Theorem 2.2 from [5], G =gGof. Therefore TG = G/Gof=yg,

which proves that T(X*) =A;. Hence and from the continuity of T we

infer that A/ is an analytic set, whence it has the i
- : property of Baire (cf.
Ch. XIII, §1). Now, observe that Af A} = 47 and, as followg frE)Zn],

Theorem 1, int A = . Thus, recalling Lemma 9 f; i ¥
is of the first category. rom [2], we infer that A
Now we shall show that B} is also of the first i
. category. Let {I,},.y b
basis of open subsets of I. For ke N define Bf, as the set of ail "gu;IZti:nz
geX™ such that nh_{x; G, = 0 uniformly in I;. Obviously, B} = Cj Bf, and it
o ? 'k
k=1
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is enough to show that for every fixed positive integer k the set Bf, is of the
first category. To this end note that

Bi,=N U {gex*:

i=1m=1

VY G < 1},
xelgnzm

so B/, is an F,; subset of X" and therefore it has the Baire property.
Moreover, it is easily seen that B, - B/, = B, and it follows from Theorem
1 that int Bf, = &. Hence, making use of Lemma 9 from [2], we infer that
every set Bf, is of the first category and so is B} .

Applying Theorems 1 and 2, we obtain the following corollary.

THEOREM 3. The sets A*, B™ and C* are dense in F x X*. Moreover, the

-set C* is residual in FxX*.

Proof. The density of the sets A*, B* and C* follows immediately
from the density of all the sections 4, Bf, Cf . As in the proof of Theorem
2 we can show that the sets A" and B™ have the property of Baire. Then we
obtain our theorem via Theorem 15.4 from [8] and Theorem 2.

Remarks. In order to get similar results regarding the case where g (&)
= —1 write

X =-Xt,

A™ = {(f,g)eF x X~ : the sequence {G,}nen converges pointwise to a
function from X7},
{(fig)eFxX: 11;m G, =0 uniformly on a subinterval of I},

FxX \(4~UB).

i

B-
C =
In virtue of the remark made at the beginning of our considerations the sets
A~ and Ay for every feF are empty. Moreover, By = —Bf and C;
= —(Af U C{). In particular, the sets By, C; for feF, B~ and C~ have
exactly the same properties as those established for the sets B/, C/ for feF,
B* and C™, respectively.

Write X = X* U X~ and observe that in view of Theorem 2.2 from [5]
our results may be stated as follows:

In the indeterminate case almost all equations of the form (1) (which
may be identified with elements of FxX) have exactly one continuous
solution ¢: I — R (the zero function).
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Maps of cotriples and a change of rings theorem
by

Charles Herlands (Pomona, N.J)

Abstract. A well-known theorem on “change of rings” asserts that a ring homomorphism
f: R—S induces an inequality dimg(M) < dims(M)+dimg(S) for each S-module M. We
generalize this result to a categorical setting and obtain an analogous “change of cotriples”
inequality induced by a map of cotriples.

Suppose that S is a ring and M is a left S-module; we denote by
dimg(M) the projective dimension of M as an S-module. A well-known
theorem on “change of rings” (see [5, p. 172]) asserts that if f: R—Sis a
ring homomorphism and M is an S-module, then M and § are R-modules in
a natural way, and one has the inequality

(%) dimg (M) < dimg (M) + dimg (S).

In this paper we obtain a similar inequality in a more general categorical
setting. If A and X are additive categories with finite limits and G = (G, &, )
and H =(H, ¢, &) are suitable cotriples on 4 and X, respectively, then one
can define dimg(4) and dimg(X) via resolutions for all objects 4 of A4 and
X of X (see [4]). We show that in this case a “nice” adjunction (U, F) from
A to X and morphisms of cotriples t: FH=GF and u: HU = UG induce
natural definitions of dimg(G) and dimg(H) and two “change of cotriples”
inequalities analogous to (x).

To see the relationship between the “change of rings” theorem and the
categorical situation described above, we begin by recalling the following
facts. It is well known that if E: B— A is a functor having a left adjoint
F: A - B, then the adjoint pair (E, F) induces a triple Ton A and a cotriple
G on B (see [7, p. 134]). It is also well known (see [1, p. 2907) that given a
triple T or a cotriple G on a category 4 one can construct resolutions in 4
which generalize resolutions of modules over a ring in the following way. If §
is a ring, Mod and Sets the categories of left S-modules and sets, respecti-
vely, Es: sMod — Sets the “underlying set” functor, and Fs: Sets —~sMod the
“free S-module” functor, then Fg is left adjoint to Es. If Gs=(Gs, &s, 05)
denotes the “free” cotriple on sMod induced by the adjoint pair (Eg, Fg),
then Gg-resolutions in sMod are just projective resolutions. Now suppose
that R and S are rings, so that we have “free” cotriples Gy = (Gg, &g, 0g) On
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