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A generalization of Plonka sums
by
E. Graczyiska (Wroclaw) and F. Pastijn (Gent)

Abstract. In this note we shall consider a method of constructing algebras which is
a generalization of Plonka’s sum of a semilattice ordered family of algebras, We show that an
equational class is closed under the formation of generalized Plonka sums if and only if the
equational class under consideration is regular. We provide an example of a generalized Plonka
sum that is not equivalent to a Plonka sum.

We shall only consider algebras with finitary operations and without
nullary operations. i

A semilattice ordered family of sets is a triplet consisting of

(i) a meet semilattice I, with the semilattice order<,

(ii) a family of sets (4, iely,

(i) a family of mappings <oy, i,jel,i<j> where, for each
i,jel,i<j, ¢; maps A; into A;, such that the following conditions are
satisfied: for each iel, g; is the identity mapping on 4;, and for all
i,j, kel, with i <j<k, we have Qi = @y (see [1], § 21).

Let us now suppose that for each iel, U; = (4;; F;) is an algebra. We
shall hereby suppose that the algebras o;, iel, are all of type 7, and that the
carriers 4;, iel, are pairwise disjoint. For each icI we put F; = (F® teT).
The system

A= T; (W, iely; Loy, 1,jel, <)

is of course not a'Plonka system (a semilattice ordered family of algebras in
the sense of [1], § 21), because in generall the mappings ¢y, i, jel, i <j, do
not give rise to homomorphisms.

We define an algebra S(2), which we call the sum of the system 9, in
the obvious way: the carrier 4 =) 4; of S(?) is the disjoint union of the

iel
carriers of the algebras 2, iel, and the fundamental operations of S () are
defined by

Fiag, s ) = FO (010 (a), ..., 01;0(a))

for all te T, with g,e4; ,r=1,...,n=1(t), and i, = A i,. So far the only
. r=1
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interesting thing we can say about this sum § (W ={4; F, te T is that

S(2 is of type 7. N
For every te T, icl, ac4; and re{l, ..., 1(t)}, let F®  be the (t(r)—1)-
ary operation on 4; which is defined by

stt)-,a(bla LERE] bt(r)-l) = Fsi)(bl’ .

and let us put

vy br—la a, bn ares bt(r)—l)s

F9 = (Ff,, teTrell, ...t}
and
FO = (F9| aed}.
Let %, be an algebra with carrier F®, where the fundamental operations are
defined by
FA(‘“ (nga LR ng‘)(l)) = Fg:(al ..... (1))
for all te T, Obviously ¢;: U —%;, a— FP is a homomorphism of ¥, onto
9, which we shall call the canonical homomorphism of ¥; onto ;.
Remark 1. Let us note that the algebra %; can be defined as the
quotient algebra /6; where the congruence 6; is defined in the following

way: if iel and a, d'e4; then afd if and only if for each teT by, ..., byy-1€4;
and re'l, ..., (),
ng)(blv LERS] br—ls a, bn EERE] br(r)—l) = ng)(bla ooy br—h a’: bn ey bt(l)"l)'

Our first theorem compares the following conditions, (C1) and (C2), on
the sum S(20) of the system 2:

(C1) Let p be any n-ary polynomial of §(%) induced by an n-ary poly-
nomial symbol p of type ©. Let a,€4;,r =1, ..., nbeany n elements
of A, with p(ay,..., a)€4;, in S(U). Then

p(ala ey an) = p((P?;io(al)v RS (Pl‘*"io(an))7
where ¢ (a,) = @5, (a)if x, isa variable of p and where ¢7; (a,) is any
element of 4;, otherwise.
(C2) For any i, jel,i<j, the mapping -, a—»Fg;i(,,) is a
homomorphism.
TuroreM 1. Condition (C2) for the sum S(¥) of the system W implies
(C1). If there are no unary operations then (C1) and (C2) are equivalent.
Proof. Let us suppose that (C2) holds. Since, for all iel, ¢; is the
identity mapping on A4;, we immediately infer that (C1) holds if p is
a variable. Let us now suppose that p = F,(p,, ..., p,) for te T, m = z(t) and
n-ary polynomial symbols py, ..., p,, of type 7, and let us suppose that (Cl) is
satisfied for py, ..., pm. Let g,€4;,7=1,...,1n, be any n elements of A with
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play, ..., a)e 4 in S(A). If m=r1()=1, then both pilay, ..., a) and

play, ..., a,) belong to 44, and so

P(al’ CERT] an) = Ft(pl(ala LREE) an))
= F,(p(0h10(a1), -, 0 (an)
= p((pi*lio(al)’ LY (p?"io(au))'

If m=<(t)>1, and pi(a, ..., a)€ 4, then

play, ..., a) =F(pilay, ..., a), ..., pulay, ..., a,)
Fy(py (01, (@), s 0y (@) oo, (080 (1), - 0, (1)
F, ((pklio(pl (Pfy (@), -, 0, @), ...
oos Puio (PP (@1), -, B, (@)

g
= Fi Lok 10160715 @) w?‘,,kl(a,.m(‘/’kzio (p2(otisy (@), -..))- .

oes Bagy (Pl P ()

__ plig)
= F:,l,pl(wk1i°zp?1k1(al),...,w,‘l;nw,“"ki(n,,)) ((szio (Pz(¢i=';k2(a1)= ---,)),

ey (Pkmio (Pm( sy (Pl*"km (an)))
=F, (Pl (q’i*lio(al)a s @ (an), Pryig (Pz (Go?;kz (a1), )),
e ¢kmio (pm ( " (p::hm (an))))

= Fr (pl (qoi*;io (al)a (L) (P?:,io(an)a AR pm((a?;io(al)’ R ] (p:k,,(o(an))))
= P((P?;io(ax)’ e (0?,,:'0(“"))-

It follows by induction that (C2) implies (C1).

Let us now suppose that there are no unary operations and that (C1)
holds. Let s, teT, with n=1(t) >l and m=t(s) > 1, let i, jel, i <j, and let
ay,...,a,€A; and by, ..., b,_; €A;. Then for any re{l, ..., m} we have

(i)
Fsir.wﬁ(ﬂ("p-.-,ﬂ,,))(bh EREE] bm- 1)

= F(si)(bl: L] br-—l, (pji(F!(ali LA an)): bn RRRE] bm—l)
= Fs(bl» AR br—la Fr(ah ERRE] an)a br’ [RRE] bm—i)
= Fs(bla ey br—h Fx((Pji(al)s [ERR} (pﬁ(an))a br: crey bm—l)

— F®
- F-(‘ly"ng(le,‘(nl),...,wﬁ(a,,)) (bl EREEE] bm— 1)'
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Hence
(i) = Fi = FO (gD (i)
F«Pﬁ(F,(ul,...,a,,)) = FF.((pji(ale,wj,-(n,,)) - Ft (Fll’j{(”])’ ""Ftpj,'(a,,l)

always holds, and we may conclude that (C2) holds.

If the system U satisfies condition (C2) of the foregoing theorem, then
we shall call U a generalized Plonka system, and we shall call (%) the
generalized Plonka sum of the generalized Plonka system . It should be
obvious that a Plonka sum of a semilattice ordered family of algebras (in the
sense of [2], [4]) is a special case of a generalized Plonka sum.

If K is an equational class of algebras of type 1, let R(K) denote the
equational class of algebras defined by all the regular identities (in the sense
of [4]) holding in K. The equivalence of (i) and (ii) in the following corollary
is of course a result of [4].

CoroLLarY 1. The following are equivalent for the equational class K:

(i) R(K) =K,

(i) K is closed for taking Plonka sums,

(iii) K is closed for taking generalized Plonka sums.

If for every algebra % of an equational class K the canonical homomor-
phism % —% is an isomorphism, then of course Plonka sums coincide with
generalized Ptonka sums, and in this case Corollary 1 does not contain any
new information. The equational classes of lattices, monoids and idempotent
semigroups constitute examples for this situation. ‘

Let

U =I5 (W, iely; Loy, iy jel, i <D
and
W ={I; (W, iel); oy, i,jel, i <D

- be generalized Plonka systems. The sums S(¥) and S(A) will be called
equivalent if S(A)— S(A"), a —~a is an isomorphism. We shall now give an
example of a generalized Plonka sum which is not equivalent to a Plonka
sum.

ExampLe 1. Let the generalized Plonka sum S(20) be equivalent to the
Plonka sum S (), where the systems 9 and 2 are as above, and where for
each teT (t) > 1. Then for all i, jel, with i <j, all re T, all re{l, ..., t(n)},
all aed; and all by, ..., by, €4; we have

F,(fl‘q,ﬁ(,,)(bl, vees b= 1) =-F§i’(b1, e by, @;:(a), b,, ...., b,m_l)
=F,(by,....b,_1, a,b,, cees begy—q)
=F§i)(b1= v by, vji(a), b,, ..., b:(t)—l)

- R
- t:r,co-',-‘-(a) (bl EIRERE] bz(y)— 1);

icm

©

A generalization of Plonka sums 57

and therefore
(i) = F@
Fuwj,-(a) - Ft,r,wji(u!'

Thus, for all i,jel,i<j, we have
P Pji = @; Q-

If in particular ¢; @; is an isomorphism of A; onto U;, then the homomor-
phism ¢j; must be injective and () is a transversal in 2U; with respect to
the congruence which is induced on 9; by ¢;: ¥; splits over the congruence
which is induced on 2; by ¢;. Let us now turn to the equational class K of
semigroups. Let I = |0, 1} be the two-element semilattice, with 0 < I and let

A= <I; {Wo, Uy >; {Poos P10- (P11>>

be a generalized Plonka system of semigroups. Using the terminology of [3],
II1. 3 and II1. 4, we can say that S(?0) is a Plonka sum if and only if S(20) is
a retract extension of 2, and that S() is a generalized Plonka sum if and
only if S() is a strict extension of ,. In particular, let the multiplication of
A, and A, be given by

Ay |Po do a0 bo 0o A,

Po|{Po Po Go Qo Og
9o {90 9o bo by 0g
ag |09 0y 05 0y 0Og
bo |00 00 00 09 0o
0glog 09 09 0p 0p

Let ¢,, be given by
®10° P17 Pos 41 > qo, 81 — Ay, Oy = 0.

It is easy to see that @40, is an isomorphism of %, onto . Remark that
{ay, b} is the only non-trivial congruence class of the congruence which is
induced on A, by the canonical homomorphism ¢q: Wy — W,. Thus, A,
does not split over this congruence ¢g!@,. Consequently, S(2) is a gen-
eralized Plonka sum which is not equivalent to a Plonka sum.

We shall now establish a decomposition of generalized Plonka sums as
a subdirect product of special ones. Therefore we first have the following
theorem.

THEOREM 2. Let U be an algebra of type =, and let I be a semilattice with
least element 0. For all iel, i+ 0, let AP be a subalgebra of U such that for
all i, jel, with 0 #i<j, we have AV = ND, If ¢ is the canonical homomor-
phism ¢: W— U, let ¢’ be a mapping ¢': W— W such that ¢’ is the identity
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transformation on N. Let <'%’"L iel) be a family of pairwise disjoint algebras,
such that for all iel,i#0,;: &, —UD is an isomorphism, and By = U.
Then

#B=1; (B, iely; Qg i, jel, i<)H)
is a generalized Plonka system, where
'//ji=l//{-1‘/1j fo#i<j,
Voo is the identity transformation on %, = U,
Vio= (0/‘/71' if0<j.
Proof. It is clear that for each iel, ; is the identity mapping on 4,.
Let i,j, kel be such that i <j<k. If i #0, then

wjill’kj = ‘pfllpj!/?j_llpk = ‘Z;i_l‘pk =Yy
since AP = AP, If { = 0, then
‘ﬁjo ij = (P’Jj ‘17;_1 lpk =¢ '/7k = Yo,
for the same reason.

qu all i, jel, with 0%i<j, the mapping ¥ is an injective homo-
morphism of 4, into ;, and in this case the mapping &; — %, a > FJ . is
cliarly'a horpomorphism. If j>0, then the mapping %; - %, = ¢ ,‘a—>
Fa,j’om is precisely the injective homomorphism ;. We conclude that 4 is a
generalized Plonka system.

Remark 2. Remark that the generalized Plonka system # of Theorem
2has been constructed fr_om one single algebra A, a semilattice J and
injective homomorphisms ;, i€, i # 0. One can show that the generalized
Plonka sum S (#) does not depend on the choice of ¢'. Indeed, let ¢" be
':mother xr,xappmg _cp": 9 — U such that @@” is the identity transformation on
U, put ¥ =y if 07#i<j, Yoo =WYoo and Wjo = ¢"¥; if 0<j. Then

B =13 {AB, iel>; (P, 1, jel, i <jdd

is again a generalized Plonka system. We shall use the notations S (A)
={B; (F,, teT>), S(#)=<B; (F,, teT>>. For any teT a,eB;,

n
r=1,...,n=1(t) and ip = A i, we then have
r=1

1 Fo(ay, oos ) = F{O (50 (@), .oy g, ()
and
@ Fi(a1, ooy ) = F{ (W30 (a0), <.y W10 (@)-

Clearly, if iy > 0, then (1) = (2). Let us now suppose that ipb=0.If iy =0
then ’

(=FO ('/’i’lo(al)’ se llfxf,,o(an)) =F{® (Wflo(al), lﬁgzo (az), ..., lp,{"o (a..))
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and if i; > 0, then
(2) = F, gtap Wi50(02), -, ¥, 0(a,)
= Ff?f,wilo(al)(l//fzo(az), ceey ‘//fno(an))

=F{® (‘Pilo(ai)’ ’/’.{20(‘11): e 1/’;,,0(“;;))-

Thus, if n =1, then we have (1) = (2). If n > 2 we show by induction, using
the same method as before, that

2 =F? (l/’ilo(al), e ‘lfi,o(ar)a ‘/’n{,,ﬂo(arﬂ)s e W;,,o(an))

for all r. We conclude that (1) =(2) in all cases. Thus S(#) and S(#') are
equivalent.

Remark 3. Notice that the system # which has been constructed in
Theorem 2 is almost a Plonka system: all structure mappings ¥/, except
perhaps the structure mappings ¥jo, are injective homomorphisms. S() is
equivalent to a Plonka sum if and only if one can find a mapping ¢": A —
A whose restriction to AP is an isomorphism for all iel,i> 0.

If U is an algebra of type 7, and if ¢ is a one-clement algebra of type 1,
then we define A° to be the Plonka sum of the Plonka system

I (W, ieDy; <oy, el i<))

where I = {1, 0} is the two-element semilattice, ¥, = U and A, = O (see
also [2]). We shall say that a generalized Plonka sum s special if it is of the
form S(%) or S(#)°, where # is a generalized Plonka system which has been
constructed in Theorem 2.

THEOREM 3. Every genmeralized Plonka sum is a subdirect product of
special generalized Plonka sums.

Proof. Let us consider S(2), where U is the generalized Plonka system

U =I5 (W, ieD); Loy 1 el i<))).

Let i be any element of I, and let {&;, jel,j>i) be a family of pairwise
disjoint algebras such that for all jel, j> i, ¥;: #;— ¢;0;%; is an isomor-
phism, and # =%. For all jel, j>i we use the notation #;
= (By; {G?, teT)). Let ¢} be any mapping ¢;: %; — U, such that ¢; ¢} is
the identity transformation on %;. Let [i) be the principal filter generated by
i in I, and consider the generalized Plonka system

A9 = ([); <, jelil); Wy ko jeli),j<kdD
where
V=9 i i#j<k )
¥y is the identity transformation on %; = ,,
Vi = ¢} v; if i<j.
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Then S(#%) is a special generalized Plonka -sum. Let us consider the
mapping

o;: U 4;- U B,

iz iz
i Vitoople)  if aed;j>i,
a if aeA;.

This mapping is certainly surjective. We shall show that ¢; is a homomor-
phism of the subalgebra of S(?) whose carrier is U_ A; onto S(B9).

Therefore, let us consider teT] aed;, r=1, J,;'n =1(t), and I,
= /n\ i,>i We use the notation S(BY) = {B®; (G, teT)). We put
(p,-r,-'(=a1,) = Qii®ii0(a) = b, for all r. Let us first suppose that iy > i. Then
0:F(ay, .oy @) = Ui 01 01 Folay, -, a)

=0 @i i Fo (9140 (@1)s -5 @1 (an)

= ‘/Z'Blﬁfi)(% Pigi Piyig(@1)s ..os & Pigi Piig (an))

= ‘T’i_,,l FP (e @iila), - 9 q’i,,i(an))

= Gfio) (‘/7.‘:)1 @ (pili(al)s s 'I’i_ol @i (Pi,,i(an))

=G (Wi i, W5 o Poyifar)s - Ui O U 01 0;4(a,)

=Gt (Yiyi0 01(ar), -, i yo 03 (a)

= G(0:(ay), -.., 0;(a,)).
Next, suppose that iy =i. If i, =i, then 6:(a;) =a, =b;, and thus

G,(0:(ay), -, 6:(a,)) = Gi(by, 0:(ay), ..., 6;(a,). Let us now suppose that
iy >1i; then n=1(f) > 2 and

G, (o:(a1), ..., 0:(a)) = FP (!l/ili o), ..., Vi o:(ay)
=F?(o; ‘pil !Zx_ll @ 9, (ay), l/’izi 0:(a), ..., '/’i‘,,io'i(an))
= Fsi)(%{ @:(by)s ‘I/izi oi(a), ..., lﬁi,,i ai(an})
= st)l,ngal-(bl)(‘//izi oi(ay), ..., w.-,; o; (an))
= Fg’1,b1 (‘/’izi 0:(as), -, ‘l/i,,igi(an))
= F;"(bn '/’.'zi o(ay), ..., '//.',,io'i(an))-

We can now show by induction, using the same method as before, that

G, (6:(ay), ..., 0:(a)) =FO(b,, ..., b).

* ©
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Obviously

ng)(bli e bn) = G';Ffi)(bl, ey bn) = aiFr(ala ey an)'

We conclude that ¢; is a homomorphism.
Let ©; be a congruence on S(?) which is defined as follows:

a0;b if ae4, beA,, k,m¢[i) or
a, bed;, jeli) and o;(a) = o;(h).

Then S(W)/O; = S(#Y) if i is the least element of I and S(AY/G, = S (4V)°

otherwise. For each i, @; separates the elements of 4;, and thus ) @; is the
iel

identity. We conclude that S() is a subdirect product of the algebras

S(W/O; which are all special generalized Plonka sums.

The foregoing theorem implies that if a generalized Plonka sum is
subdirectly irreducible, then it must be a special generalized Plonka sum.
From [2] we know that a subdirectly irreducible Plonka sum of algebras
from the equational class K must be of the form U or NA° where U is
subdirectly irreducible in K. The situation is much more complex in the case
of generalized Plonka sums. We show this by the following example.

ExampLE 2. Let 1 = {1, 0} be the two-element semilattice. Let 2, and
A, be the groupoids with the following multiplication tables:

A, by dq

ag{co €o by €o
boleco ¢o by ¢o
co |Gy ay dg bg
dyleg ¢o ap ¢o

Let @;o: A, - U, be given by
P10: Gy = Gg, €4 = Co, dy — dy.
Let us consider the generalized Plonka system

A= <I; (Yo, Uy > {@g0, P10 (P11>>-

Then S() is a special generalized Plonka sum. One can show that every
non-trivial congruence on S(U) contains the pair (ay, by). Therefore S(?) is
subdirectly irreducible. From [2] it already follows that S(2) cannot be
equivalent to a Plonka sum. Let K be the equational class of groupoids
defined by the equation

(xz (xZ)z)z - (x2 (xz)z) (yz (yZ)Z).
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One can easily check that %, and 2, belong to K, whence S(%) belongs to
R(K). Theorem III of [5] guarantees that S() is a semilattice of groupoids
which belong to K, and one may check that the semilattice decomposition of
S(2) into Ay and A, is the only semilattice decomposition of S(A) into
groupoids which belong to K. Therefore S(2) cannot be a Plonka sum of
groupoids which belong to K. This also provides an example of an equ-
ational class K where R(K) properly contains the class of all algebras which
are Plonka sums of algebras in K.

References

[1] G. Gritzer, Universal Algebra, Princeton 1968.

[2] H. Lakser, R. Padmanabhan and C. R. Platt, Subdirect decompositions of Plonka sums,
Duke Math. J. 39 (1972), pp. 485-488.

[3] M. Petrich, Introduction to Semigroups, Columbus 1973.

[4] J. Plonka, On a method of construction of abstract algebras, Fund. Math. 61 (1967),
pp. 183-189.

[51 — On equational classes of abstract algebras defined by regular equations, Fund. Math. 64
(1969), pp. 241-247. ’

INSTYTUT MATEMATYCZNY DIENST HOGERE MEETKUNDE
UNIWERSYTET WROCEAWSKI RIJKSUNIVERSITEIT TE GENT

Krijgslaan 271
B-9000 Gent. Belgium

Plac Grunwaldzki 2/4
50-384 Wroclaw, Poland

Accepté par la Rédaction le 12. 10. 1981

icm

Fixed points and nonexpansive retracts in
locally convex spaces*

by

S. A. Naimpally, K. L. Singh and J. H. M. Whitfield
(Thunder Bay, Canada)

Abstract. Locally convex topological vector spaces can be normed over a topological
semifield. Using this norm, Banach operators and nonexpansive mappings are defined and
several fixed point theorems are proven. Also, it is shown for strictly convex spaces that, under
suitable conditions, the fixed point set of a nonexpansive map is a nonexpansive retract.

0. Introduction. The concept of a topological semifield was introduced
by Antonovskii, Boltyanskii and Sarymsakov [1]. They observed that it is
possible to define a semifield valued “norm” for certain topological vector
spaces ; in particular the class of Hausdorff locally convex spaces. The aim of
the present paper is to prove fixed point theorems in this class of spaces for
Banach operators and nonexpansive mappings. Also we show that for strictly
convex spaces, under suitable conditions, the fixed point set of a nonexpans-
ive mapping is a nonexpansive retract.

These results extend those of Bahtin [2], Cain and Nashed [5], Hicks
and Kubicek [9], Chandler and Faulkner [6], Bruck [3], [4] and others.

Let A be a nonempty set and R4 =[] R, be the product of the real line

aed

with the product topology. Addition and multiplications in R* are defined
pointwise. A partial ordering is defined by the cone R% ={f:f(2)
>0,xed}. A general introduction to the space R4 may be found in [1].

If E is a real locally convex space, whose topology is generated by
a family {g,: a4} of continuous seminorms, then the function g: E - R4
defined by [e()](x) = g,(x), x€E, a €4, satisfies

1 o(x) =0,
(2) o(dx) =14 e(x),
3 e(x+y)<ex)+e(

* This research supported in part by grants from NSERC (Canada).
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