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3. Let 4 denote the family of all open B-convex half-spaces. By the
preceding part of the theorem %j is the smallest family which satisfies con-
ditions (M), (U), (H) and the inclusion €5 > %. From Theorem 13 we get %,
=%ppu. Since ¥y =%, 9, is an.intersection basis of the family ;.
Consequently, we can repeat the proof of Theorem 18 in [9] for any natural
number n. We get the last conclusion of Theorem 26.

The proof is complete

The author would like to express his gratltude to Professor J. J.
Charatonik for valuable remarks concerning the final redaction of this and
of the preceding paper [10], which were both presented on December 10, 1979,
at the Topological Seminar in Wroctaw.
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Solenoids and inverse limits of sequences
of arcs with open bonding maps

by

P. Krupski (Wroctaw)

Abstract. The class " of inverse limits of sequences of arcs with open bonding maps is
characterized as the class of chainable continua with property K, with one or two end-points
and with arcs as proper subcontinua. Also it is proved that each monotone image of X, where X
is from A" or from the class of solenoids, is homeomorphic to X.

Introduction. Let us denote by " the class of inverse limits of sequences
of arcs with open bonding maps. '

In this paper we establish some analogies between solenoids and class
A, Next, we give a characterization of continua from %  as chainable
continua with property K, with one or two end-points and with arcs as
proper subcontinua. This answers Problem 2 in [7] and corresponds to the
characterization "of solenoids in [7]. Finally, it is shown that a monotone
image of X from X is homeomorphic to X and that the same holds for
solenoids. Thus both of these classes provide examples of the continua which
J. J. Charatonik asks about in [4].

Preliminaries. By a continuum we mean a compact, connected, metric
nondegenerate space. Denote by I the interval [0, 1]. For each integer 5 > 1
let w, denote the map of I onto I such that w,(i/s) = 0 if i is even, w,(i/s) = 1
if i is odd, where 0 < i < s and w is linear on each interval [i/s, (i+1)/s) for
0<i<s.

It is known from [9, Lemma 1, page 453 and Theorem 7, page 455] that
class o is topologically equal to the class of inverse limits of sequences
{I,f), where, for each i, f; =w, for some s. So, each continuum KeJ is
determined by a sequence of natural numbers (sy, S, ...) such that K
=invlim {I, w, }. We will denote such K by K(s;, 55, ..}

A chain (c1rcu1ar chain) is a finite collection of open sets {U,, ..., U,}
such that U;nU; # @ if and only if [i—j| < 1 (fi—jl <1 ori=1and j=m).
A subchain of a chain % between links U; and U; will be denoted by #(, j).

A chain %* ={U%, ..., U,%,} refines a chain %' = (U}, ..., U}} if there
is a function a: {1, ..., m}— , k} such that U? = Uy, for every i.

A chain %2 is of type s m a cham @ if U refines ¥ and if there is
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a sequence of integers
l=g<a, <...<ag=m

such that a(g) = 1 for even i, a(a)) = k for odd i and a is monotone on each
interval [a;, ¢;44], 0<i<s.

It is clear that a continuum X is homeomorphic to K (sy, s, ...) if and
only if there exist chains #*, %2, ... covering X such that mesh %" < 4,,
where 8,0 if n— o and #"** is of type s, in %" for each n.

Let a chain #?2 refine a chain %'. We say (see [7]) that a subchain
W2(i, k) is a fold in % if there exist numbers i <j <k and i, such that

U2, b =y @, j),
UfuUt UL, U?cUj,
U2, U U # .

Furthermore, we will consider only maximal folds %2 (i, k) for which the
subchains %2 (i, j) and %2(j, k) contain no fold in %*. The link U} will be
called extremal.

It is easy to see that a chainable continuum K belongs to the class " if
and only if there exists a sequence of chains %', %2 ... covering K, with
mesh %" tending to 0, such that #"** refines %" and the first and last links
of %"*! as well as the extremal links of each fold of #"*! in %" are
contained in the first or the last link of #".

By a solenoid Z{sy, 5,, ...) we mean the inverse limit of a sequence of
unit circles § of complex numbers z such that |z} = 1 with bonding maps
a(2) =2~

Each solenoid is a topological group; denote its identity by e.

Recall (see [10]) that X has property K at a point aeX if for each
subcontinuum A4 < X containing a and for each sequence of points a,eX
converging to a there exists a sequence of subcontinua 4, = X, converging to
A, such that a,e A4,. A continuum X has property K if it has property K at
each point.

A point x is an end-point of a chainable continuum X if for every £ >0
there exists an e-chain covering X, the first link of which contains x.
Equivalently (see [2, p. 661]), x is an end-point of X if, for each two
subcontinua of X containing x, one of the subcontinua contains the other.

Natural connections between solenoids and continua of class .#". For
a convenient description, let
S = {exp(rnit): te[—1,11}, A= {exp(nir): te[0, 1]}

and represent a continuum K (s, 55, ...) as the inverse limit of {4, ¢},
where ¢ (exp(nir)) = exp(miw,, (¢)) for 1[0, 1].
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Define a map f: S — A by f(exp(nit)) = exp(nilt]) for te[—1, 1]. Then
the following diagram commutes:

o

S« S

)| . e

A+ A

and we obtain a map B =pxfx... of Z(s;, 53, ...) onto K(sy, 53, .- (cf.
Bellamy [1] for the case of a diadic solenoid). Since all the maps in the
diagram are open, B is open. Moreover (cf. [1, p. 3147), we get

Lemma 1. B(x)=B(y) if and only if x=y or x =y,

From Lemma 1, since a solenoid is a topological group, it follows that if
x is of order greater than 2, then B is one-to-one in some open neigh-
bourhood of x. So, we have

Lemma 2. B is a local homeomorphism at each point different from e and
from an element of order 2.

Remark. It is easily seen that Z(sy, s, ...) has an element of order 2 if
and only if at most finitely many numbers in the sequence (515 83, ...) are
even and that Z(s;, s, ...) contains at most one such element.

Lemma 3. A point of K(sy, sz, ...) is an end-point if and only if it is the
image under B of e or of an element of order 2.

Proof. Since e has the coordinates (1, 1,...) in the inverse limit
3(sy, S35 -, Ble) has the coordinates (1,1,..) in the inverse limit
K(sy, 53, ... If € is of order 2, then ¢ has the coordinates (1,...,1, —1,
—1,..) in Z(sy, Sz, -.) and B(e) has the coordinates (1, ..., 1, =1, -1,..)
in K(sy, 83, --). In both cases, by the definition of an end-point, B(e) and
B(e) are end-points. However, if e # x # ¢ then, by Lemma 2, B(x) belongs
to the interior of an arc, and so B(x) is not an end-point.

Recall that a sequence of natural numbers (s, §,, ..) i called
a factorant of another sequence of natural numbers (p;, P2, ---) if there exists
an ip such that for every i>i, there is a natural number m such that
Sig Sig+1 e+ St is a factor of p;-py--.. Pm (se€ [5 P. 236)).

Lemma 4. The set of sequences of natural numbers such that none of them
is a factorant of another is uncountable.

Proof(). It suffices to show that there are uncountably many se-
quences of natural numbers such that every two of them have a finite
intersection. Indeed, assign to a sequence (a;, 42, ..), where g, =0, 1, the
sequence (d;, 618z, 318203, .-, where a,a,...q; denotes the natural number

(!) The author thanks Mr. W. Charatonik for the proof.
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written in a position system and observe that this correspondence is one-to-

. one.

H. Cook proved in [5] that X(s;, 55, ..) is a continuous image of
Z(pys py, -.) if and only if (s,, 55, ...) is a factorant of (p,, p,, ...). Hence,
Lemma 4 implies the following theorem.

THeOREM 1. There are uncountably many solenoids such that none of
them is a continuous image of another.

An essential difference between solenoids and class J is that each
member of .#7, with the exception of an arc, can be continuously mapped
onto each other one (see [9, p. 455]). However, W. Debski has recently
proved in [6]

THEOREM 2. There are uncountably many continua from class A such
that none of them is an open image of another.

A characterization.

Lemma 5. If X is a chainable continuum with property K, with one end-
point and with arcs as proper subcontinua, then there exists such a sequence of
chains ¥™ covering X, with mesh ¥™ tending to 0, that ¥ refines ¥™ and
the first and last links of #™*! are contained in the first link of ¥™ for each
n=1,2,...

Proof. Let a be the end-point of X. There exist. chains

— 1 —_
U =1Uy, .., UL), n=1,2, ..,

covering X and such that mesh %" —0, #"*! refines %", ac U™ < U"
for every n.

First, note that cl(Uy) tends to {a} if n— 0. In fact, suppose cl(U7)
tends to {b}, b # a. Take nondegenerate arcs bc and bd in X such that
bcnbd = {b}, and points b,eU;, b, # b. By property K, there exist se-
quences of arcs C, and D, in X converging to bc and bd, respectively, and
such that b,eC,nD,. But

CocU2Gyr) and D, U2k, )
for some j,, k, such that C,n U} # @, D, U, # 0.

Since, for every n,

U2 G 1) = U 2" (e 7,)
or conversely

U (ky, 1) = U 2,y 1)
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and
Lim cl(U X" (jy, 1)) = Lim C, = be,
Lim cl(U %" (k,, r,)) = Lim D, = bd,

we obtain bc « bd or bd = bc, a contradiction.

Further, consider, for each n, the family of subchains %"(1, i) for which
Uy < Uf for some m > n, and let %"(1, i,) be the maximal element of the
family with respect to inclusion.

Let ¥™ be a chain consisting of V"= |J#"(1, i,) and of links of #" if
they are not contained in V;". It is clear that ¥™*! refines ¥™ and the first
and last links of ¥™*! are contained in the first link of ¥™ Also mesh
#™ — 0. Indeed, if there is a sequence V;" tending to X, then, since V"' < V",
we have I'=X, n=1,2,..., whence, for each n, UP < U; and thus
X has two end-points. However, if there is a sequence ¥;" tending to
a nondegenerate arc ab, then

Lim cl( #"(1, i,)) = ab.

Since cl(Uy) tends to {a}, cl(Uj) tends to [a}. Thus there is
a sequence of points x, converging to b such that x,eUj, for 1 <j, <i,.
We have

E'BB ci(U "y, i) = ab.
By property K, there is such a sequence of arcs X, in X converging to an arc
bc, where cé¢ab, that x,€X,. But we can assume that X, intersects all the
links of #"(j,, i,). Hence bc > ab, a contradiction. The proof of Lemma 5 is
thus complete.

Let us observe that if a continuum X has two end-points a, b and
each proper subcontinuum of X is an arc, then X is irreducible between a
and b. Indeed, if Y is a proper subcontinuum of X containing a and b, Y
is an arc ab. Note that the composant of a in X is equal to ab and, since
it is dense in X, we have Y = ab = cl(ab) = X, a contradiction. Thus, using
Theorem 14 in [2, p. 6617 we get

LemMa 6. If X is a chainable continuum with two end-points a and b such
that each proper subcontinuum of X is an arc, then a and b are the opposite
end-points of X (ie. for each ¢ > 0 there is an e-chain {U,, ..., U,} covering X
and such that acU; and beU,).

Lemma 7. If X is a chainable continuum with property K, with one or two
end-points and with arcs as proper subcontinua, then there is such a sequence of
chains ¥ covering X, with mesh ¥™ tending to O, that ¥™*! irefines ¥™ and


GUEST


46 P. Krupski

the first and last links of #™*, as well as the extremal links of any fold of
¥ in ¥ are contained in the first or last links of ¥™

Proof. By Lemma 5 (in the case of one end-point) and by Lemma 6 (in
the case of two end-points), there exist chains %" = {U7, ..., U;‘n} covering X
such that mesh #"—0, if n— oo, and for each n> 1

Y+ refines U"

Un+1 - U

Urtl < U%, if X has one end-point or

Tt 1

S Ut < Up, if X has two end-points.

First of all, we will construct a sequence of chains #™ covering X such
that

mesh #™ -0, if n— oo,

HrtL refines W™,

the first and last links of #™*! are contained in the first or last links

of #™

in these chains there is no sequence of folds with diameters tending to 0
(by the diameter of a subchain we understand the diameter of the union of
its links).

For each n, consider the family 9, of subchains #"(i, j) for which there
is a fold %™ (s, ¢) in ™! for some m > n, with diam U™ (s, 1) < 1/n, inter-
secting all the links of #"(i, j). Order 2, by inclusion.

Next, define a family 4,:

the elements of 4, are the links of %" which are not contained in any
maximal element of 2, and the unions of links of maximal elements
from ¥U,.
It is easy to see that mesh #, —0 and #,,, refines B,. However, 4, need
not be a chain. But by a standard consolidation of 4, we can obtain the
desired chain #™. To this end, fix n and let 8, = {By, ..., B,} with a natural
order inherited from the order of links of the chain %" Deﬁne a sequence of
integers

I<Sp)<p@<...<pl)=k

such that
B, N By, # Q, Byiy+1 N By = Q,
Byay N Byty # D, Byayes NByyy = O,
Byyy N Bpg—yy # .
Put

W, =B, U...UBy),
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W, = Byiys1 U... UBya,

W = Byi—1)+1 u. qum.
Since %" is a chain, we have

W, =B, UBp(l)s

Wy = Byyy+4 U By,

Define #™ = {W,, ..., W,}. The properties of the chains #™ follow
easily from the properties of 4,. .

Now, for the sequence #™, there exists a positive number & such that
each fold in this sequence is of diameter greater than e.

Denote #™ = {Wy, ..., Wp}. Consider a family %, of subchains
#7(1, 1) and #™(j, s,) such that, for some m > n, there is a fold #™(s, t) in
#™~! which has an extremal link in W}" (W}" respectively) and which does
not meet J#™(1,i—1){U#™(j+1,s,) respectively). Denote the maximal
subchains from %" by #™(1, i,) and #™(j,, s,)-

Let us define a chain ¥™:

the elements of #™ are the unions U #™(1,i,), U #™(.. s,) and the
links of #™ which are not contained either in #™(1, i,) or in #™(j,, S,)-

We will show mesh ¥™— 0 if n— oo. Otherwise, we can assume that
there exists a sequence of ¥ e¥™ converging to a nondegenerate subcon-
tinuum of X. So,

= U w1, ln) or Vk: = U 'ﬂm(ins S,,),

and V; tends to X or to a nondegenerate arc 4 in X. It suffices to consider
only the case Vi, =U#"(1, 1, (the other case is analogous). This means
that V! is the first link in ¥ e k,=1.

1If Vl" tends to X, then, since ¥**'c V", we have V=2X, for

n=1,2,... Hence i, =s,. But, for large n, diam W’;<s, and thus W
contains no fold of diameter greater than ¢, contrary to the definition of
#m(L,s,).

If V" tends to A, then A4 is an arc ab, where a is the end-point of X
belonging to Wy, n=1, 2, ..., b # a. Observe that if X is not an arc, b is
not an end-point. By the deﬁmtlon of V7, there exists a fold w* "(i, ) in

""", k,>n, such that an extremal link W," is contained in W and

UG, J) = UW "G, 52)-
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We will show that W:" tends to {a} if n— co. Otherwise, W,,'f" tends to
{c}, ¢ # a. Note that ceab. Take points c,&W." such that ¢, # ¢ for every
n=1,2,...,¢,~¢ if n—> o0, and let xy be an arc of diameter less than
& CEXY, X #C # Y.

By property K, there exist arcs X,, ¥,, n=1, 2, ..., converging to the
arcs xc and cy respectively, such that ¢,e X, N Y,. We can assume diam X,
<¢ and diam ¥, <efor n=1, 2, ... Hence, by the definition of a fold and
since folds have diameters greater than &,

X, 0Y, cU#*G, j) = U WG, s,).

Let X, < | #™(i,, u), where u is between i, and s, and X, meets every link
of #™(i,, u). Similarly Y, < {J %™(i,, v), where v is between i, and s, and Y,
meets every link of #™(i,, v). Then cl({ #™(i,, ) converges to xc and
cl(U #™ (i, v)) converges to cy. But, for each n,

UH™ (i ) = U #7(s 0),
or conversely
U™, 0) = U #7 (i, ),

whence xc < ¢y or ¢y = xc, which is impossible in view of the choice of xy.
So, W," tends to {a}, and thus W tends to {a}. Therefore there exists
a sequence of points b,eWs, 1 <m, <i,, converging to b. We have

Lim (U#™(m,, i,)) = ab.

By property K, there is a sequence of arcs Z, converging to an arc bd, where
d¢ab, such that b,eZ,. But we can assume that Z, intersects all the links of
W"(m,, i,). Hence bd > ab; this contradiction completes the argumentation
that mesh ¥ —0 if n— co.

The remaining properties of the sequence ¥™ follow easily from its
definition. The proof of Lemma 7 is complete.

Lemma 8. Suppose that each proper subcontinuum of a continuum X is an
arc, Y is a chainable continuum and f is a continuous map of X onto Y. Then
each proper subcontinuum of Y is an arc.

Proof. Let Y’ be a proper subcontinuum of Y, Since the map f is
weakly confluent (see [8, Theorem 47), there exists a proper subcontinuum X’
of X such that f(X") =Y. Since X’ is an arc, ¥’ is locally connected ; observe
also that Y’ is chainable. Therefore Y’ is an arc.

THeOREM 3. A continuum X belongs to class A if and only if X is
a chainable continuum with property K, with one or two end-points and with
arcs as proper subcontinua.

Proof. If Xe ', then X is a chainable continuum which is, by Lemma
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2, an open image of a corresponding solenoid. Since solenoids are topolog-
ical groups, they have property K (see [10, 2.6 Corollary, page 2947). Hence,
since open maps preserve this property (see [10, 4.5 Corollary, page 297]),
X also has property K. Furthermore, each proper subcontinuum of
a solenoid is an arc, whence, by Lemma 8, proper subcontinua of X are arcs.
Finally, continua from class " have one or two end-points (Lemma 3). The
converse implication is an immediate consequence of Lemma 7.

Monotone images. It is easy to see, from Theorem 3, that a rhonotone
image of a continuum from %" belongs to . However, using an idea from
Bing’s proof that a monotone image of a ‘chainable continuum is chainable
[3, Theorem 3, p. 47], one can obtain a considerably stronger result.

Tueorem 4. If KeX™ and f is a monotone map of K, then f(K) is
homeomorphic to K.

- Proof. Following Bing, we first construct for every ¢ > 0 a chain ¥
covering f(K) with mesh ¥ < e So, let ¢ >0 and 6 >0 be such that if
e(x, x') < & then ¢'(f (x), S (x") < &/5, where ¢ and o’ are metrics in K and

J{K) respectively.

Let % = {Uy, ..., U,} be a chain covering K with mesh # <§. It is
easily seen that § can be chosen so small that there exists a sequence of
integers tq, ..., t; such that

(*) 1=t <t;<..<tj=k and for each i=1,...,j—1 the preimage
F7Y(y) of a point yef(K) intersects U, and U, but no preimage
intersects U, and U, .,

fi+1

(since otherwise, for each §, a preimage f~*(y) intersects all the links of %
and f(K) is degenerate). ’ :
Let V(i, /) = {yef(K): f~(y) = U%(, j)}. Then

V= {V(ts, ts), V(tas tg)s s Vltsas1, 1)}, where  j—4<3d+1<j-2,

is the required e-chain covering f(K).
Call the chains ¥ and % in this construction corresponding chains.
Since K €.f, there exists a sequence of natural numbers (s, ,, ...) such
that K = K(s,, s, ...). Hence, we can consider, for n =1, 2, ..., correspond-
ing chains ¥™ %" such that

mesh #™ < 1/n for each n,
mesh %" < 4,, where §, - 0if n— oo,
At s of type s, in &

" The chain #™*! need not refine #™ but we can replace it by a chain
%™+ which does refine ¥™ Namely, a link of #™*! is a link of ¥™*1 if it
is contained in a link of ¥™; or, if a link ¥ of ¥™*! is not contained in any

4 — Fundamenta Mathemat. 120.1
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link of ¥™ we take as links of #™** the nonempty intersections of V' with
links of ¥™; the links of #™*! are ordered in such a way that the first and
last links are contained in the first and last links of ¥™** respectively. So, we
assume further without loss of generality that ¥™*! refines #™ for every n.
To get the conclusion of our theorem, it suffices to show that ¥™** is of
type s, in ¥™ for every n.
Fix n and use the following notation:

4 2 — 71 11
gt = U, L, U, A= (UL, L, UL,

mi>
-~ 2 PRYA RN 73} 1
yrrl = (Y2 VR, =V L W

and let « be the function induced by the refinement #"** of #".

There exist integers 1 =ap <a; <...<g; =m such that a(a) =1 for
even i, a(a) = k for odd i and « increases (decreases) on [a;, 4;+1] for even
(odd) i.

Let

l=tl<ty<..<t=k and l=t<g<..<t,=m

be two sequences satisfying () for %" and #"*' respectively. For every i
there exist p; and r; such that
<t and Vi, th)ev™ .

tl

2<a

i i

It follows that
U, tl) for even i,

2 m+1 (.2 2
Ua = U (6 1y, C{U’?/"(t}l_b k) for odd i.

Hence V2(ty, t7) is contained in the first link ¥;' = Vi1, tl) of ¥™ for
even i: for odd i, it is contained in the union ¥!_, U V;} of the last two links
of ¥™ and hence in V!, since ¥ ™! refines ¥""

Denote by b; the number of V2(z7, ) in ¥™*!. We have

i
l=b <by<...<b, =m
and, in fact, this sequence is strictly increasing. Indeed, the equality b; = b;4,
yields
f<eg<t;, and f<ay <ty
whence

2 2
U"iu U"i+1

cUz™ (7, 1) = (U2, t3) U 27 (t], -4 K))
and hence
@ #EVAE, ) VN,

a contradiction for sufficiently large n.
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Finally, one easily verifies that the function « induced by the refinement
¥+ of #™ increases (decreases) on [b,, b;. 1] for even (odd) i. The proof of
Theorem 4 is thus complete.

We shall now prove an analogon of Theorem 4 for solenoids. Firstly, let
us observe that by a slight modification of the proof of Theorem 3 in [3, p.47]
and by applying it to circular chains instead of chains we obtain

LEMMA 9. A monotone image of a circularly chainable continuum is
circularly chainable.

THEOREM 5. A monotone image of a solencid X is homeomorphic to X.

Proof. Method I. We can proceed as if the proof of Theorem 4,
replacing chains by circular chains and a continuum K(s,, s, ...) by the
solenoid X (sy, s, ...).

Method II Recall the following theorems.

A. Z is a solenoid if and only if X is a circularly chainable continuum
with property K such that each point x of X belongs to an arc with ends
different from x (see [7, Theorem 1]).

B. Suppose that £, and Z, are two solenoids and there exist an upper
semi-continuous mapping f of X, onto X, such that, for each point x of
Zy,f(x) is a proper subcontinuum of X,, and an upper semi~continuous
mapping g of 2, onto Z; such that, for each point x of Z,, g(x) is a proper
subcontinuum of X,. Then Z; and X, are homeomorphic (see [5, Theorem 9,
p. 2397]). :

Since monotone maps preserve property K ([10, 4.4 Corollary, p. 296]), it
follows from Lemma 9 and from A that a monotone image of a solenoid is
a solenoid and from B we get the conclusion.

Open problems. Theorem 4 is of course not true for open maps.
Nevertheless, an open image of a chainable continuum is chainable, open
maps preserve property K and the property of being an end-point, and, since
each proper subcontinuum of a continuum from " is an arc, each proper
subcontinuum of an open image of the continuum is also an arc. So, the
following question arises:

1. Does each open image of any continuum from J belong to 4"?

Concerning solenoids we have shown that an open image of a solenoid
may belong to 2. Thus, we pose the following question.

2. Is it true that each open image of any solenoid is a solenoid or
belongs to class #°?
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A generalization of Plonka sums
by
E. Graczyiska (Wroclaw) and F. Pastijn (Gent)

Abstract. In this note we shall consider a method of constructing algebras which is
a generalization of Plonka’s sum of a semilattice ordered family of algebras, We show that an
equational class is closed under the formation of generalized Plonka sums if and only if the
equational class under consideration is regular. We provide an example of a generalized Plonka
sum that is not equivalent to a Plonka sum.

We shall only consider algebras with finitary operations and without
nullary operations. i

A semilattice ordered family of sets is a triplet consisting of

(i) a meet semilattice I, with the semilattice order<,

(ii) a family of sets (4, iely,

(i) a family of mappings <oy, i,jel,i<j> where, for each
i,jel,i<j, ¢; maps A; into A;, such that the following conditions are
satisfied: for each iel, g; is the identity mapping on 4;, and for all
i,j, kel, with i <j<k, we have Qi = @y (see [1], § 21).

Let us now suppose that for each iel, U; = (4;; F;) is an algebra. We
shall hereby suppose that the algebras o;, iel, are all of type 7, and that the
carriers 4;, iel, are pairwise disjoint. For each icI we put F; = (F® teT).
The system

A= T; (W, iely; Loy, 1,jel, <)

is of course not a'Plonka system (a semilattice ordered family of algebras in
the sense of [1], § 21), because in generall the mappings ¢y, i, jel, i <j, do
not give rise to homomorphisms.

We define an algebra S(2), which we call the sum of the system 9, in
the obvious way: the carrier 4 =) 4; of S(?) is the disjoint union of the

iel
carriers of the algebras 2, iel, and the fundamental operations of S () are
defined by

Fiag, s ) = FO (010 (a), ..., 01;0(a))

for all te T, with g,e4; ,r=1,...,n=1(t), and i, = A i,. So far the only
. r=1
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