Convex half-spaces

by

Marek Lassak (Bydgoszcz)

Abstract. We study convex half-spaces (i.e., convex set with convex complements) of Euclidean space \(\mathbb{R}^n \). It is proved that the family of all convex half-spaces of \(\mathbb{R}^n \) is a sequentially compact topological Fréchet space with respect to the set theoretical limit of sets \(\text{Lim} \).

Our results are applied in the next paper of this issue.

Our terminology follows [4]. Let \(\mathbb{R}^n \) denote the \(n \)-dimensional Euclidean space with the scalar product \(\langle v_1, v_2 \rangle \). The symbols \(K', K, \text{ rel } K, \text{ int } K \) denote, respectively, the complement of \(K \subset \mathbb{R}^n \), the closure of \(K \), the relative interior of \(K \), and the interior of \(K \). The vector with origin \(x \) and the end-point \(y \) is denoted by \(v_{xy} \). We use the following limits of sequences of sets: the inferior limit

\[
\liminf_{i \to \infty} A_i = \bigcup_{i=1}^{\infty} \bigcap_{j=i}^{\infty} A_j,
\]

the superior limit

\[
\limsup_{i \to \infty} A_i = \bigcap_{i=1}^{\infty} \bigcup_{j=i}^{\infty} A_j,
\]

and (if \(\liminf_{i \to \infty} A_i = A = \limsup_{i \to \infty} A_i \)) the limit \(\lim_{i \to \infty} A_i = A \). Obviously, if \(A_i, i = 1, 2, \ldots, \) are convex, then \(\liminf_{i \to \infty} A_i \) is convex and (if it exists) \(\lim_{i \to \infty} A_i \) is convex.

Definition 1. We call a set \(K \subset \mathbb{R}^n \) a convex half-space if both \(K \) and its complement \(K' \) are convex sets. We call \(K \) and \(K' \) complementary convex half-spaces.

Obviously, all open half-spaces and closed half-spaces (in the usual sense), the empty set \(\emptyset \) and the set \(\mathbb{R}^n \) are convex half-spaces of \(\mathbb{R}^n \). Also any semispaces at \(x \in \mathbb{R}^n \) (i.e., a maximal convex set which does not include \(x \)) is a convex half-space [1], [2].

For any \(x \in \mathbb{R}^n \) and for any unit perpendicular vectors \(v_1, \ldots, v_k \), where \(1 \leq k \leq n \), we define the following sets

\[
B_x(v_1, \ldots, v_k) = \bigcup_{i=1}^{k} \{ y \in \mathbb{R}^n; \langle v_j, v_{xy} \rangle = 0 \text{ for } j < i \text{ and } \langle v_i, v_{xy} \rangle > 0 \},
\]

\[
P_x(v_1, \ldots, v_k) = B_x(v_1, \ldots, v_k) \cup \{ y \in \mathbb{R}^n; \langle v_j, v_{xy} \rangle = 0 \text{ for } j = 1, \ldots, k \}.
\]
Writing \(B_n(v_1, \ldots, v_k) \) or \(P_n(v_1, \ldots, v_k) \) we shall tacitly assume that \(x \in \mathbb{R}^n \), \(1 \leq k \leq n \) and that \(v_1, \ldots, v_k \) are unit perpendicular vectors.

Let us recall that any cone excluding its vertex is called a blunt cone and any cone including its vertex is called a pointed cone.

The set \(B_n(v_1, \ldots, v_k) \) is a blunt cone with vertex \(x \) as the union of half-planes

\[
H_i = \{ y \in \mathbb{R}^n : \langle y, v_{i} \rangle = 0 \} \quad \text{for} \quad j < i \quad \text{and} \quad \langle y, v_{i} \rangle > 0,
\]

\(i = 1, \ldots, k \), which are blunt cones with vertex \(x \).

Let \(a \) and \(b \) be arbitrary points of \(B_n(v_1, \ldots, v_k) \). There exist numbers \(g < k \) and \(h < k \) such that \(a \in H_g \) and \(b \in H_h \). Let \(g \leq h \). Since \(b \in H_h \) and \(a \in H_g \) we have (see [4], Theorem 6.1, p. 45)

\[
((1-\lambda)a + \lambda b, 0 \leq \lambda < 1) \subseteq H_g \subseteq B_n(v_1, \ldots, v_k).
\]

Therefore \(B_n(v_1, \ldots, v_k) \) is convex. Similarly, \(P_n(v_1, \ldots, v_k) \) is a pointed convex cone with vertex \(x \).

From the obvious equalities

\[
(B_n(v_1, \ldots, v_k)) = P_n(-v_1, \ldots, -v_k)
\]

and

\[
(P_n(v_1, \ldots, v_k)) = B_n(-v_1, \ldots, -v_k)
\]

we infer that \(B_n(v_1, \ldots, v_k) \) and \(P_n(v_1, \ldots, v_k) \) are convex half-spaces.

The above considerations clarify the terms used in the next definition.

Definition 2. The sets \(B_n(v_1, \ldots, v_k) \) and the set \(\emptyset \) will be called blunt convex half-spaces with vertex \(x \). The sets \(P_n(v_1, \ldots, v_k) \) and the set \(\mathbb{R}^n \) will be called pointed convex half-spaces with vertex \(x \).

Theorem 1. Convex half-spaces of \(\mathbb{R}^n \) have the following properties

1. Any two complementary convex half-spaces have the forms

 \(B_n(v_1, \ldots, v_k) \) and \(P_n(-v_1, \ldots, -v_k) \), or the forms \(\emptyset \) and \(\mathbb{R}^n \).

2. \(B_n(v_1, \ldots, v_k) = B_n(v_1, \ldots, v_k) \) (respectively: \(P_n(v_1, \ldots, v_k) = P_n(v_1, \ldots, v_k) \)) if and only if \(\langle v_i, v_j \rangle = 0 \) for \(i = 1, \ldots, k \).

3. If \(K \) is a convex half-space, then any translate of \(K \) contains \(K \) or is contained in \(K \) (see [3]). More exactly: \(B_n(v_1, \ldots, v_k) \subset B_n(v_1, \ldots, v_k) \) (analogously: \(P_n(v_1, \ldots, v_k) \subset P_n(v_1, \ldots, v_k) \)) if and only if \(y \in B_n(v_1, \ldots, v_k) \).

4. Any arbitrary convex disjoint sets can be supplemented to complementary convex half-spaces [3].

5. If a convex set \(C \) is the union of two convex disjoint sets, then the sets have the forms \(C \cap B_n(v_1, \ldots, v_k) \) and \(C \cap P_n(-v_1, \ldots, -v_k) \), where \(x \in C \) or the forms \(\emptyset \) and \(C \).

6. A set \(K \) is a convex half-space if and only if one of the sets \(K, K^* \) is a maximal convex set disjoint with a plane. This plane is that of all vertices of the convex half-space \(K \).

7. The sets of the form \(B_n(v_1, \ldots, v_k) \) are the only semispaces at \(x \).

8. Any nonempty convex half-space is the convex hull of a sequence of points.

Proof. We show the first property. For \(n = 1 \) it is obvious. Assume it holds for \(\mathbb{R}^{n-1} \) and consider two complementary convex half-spaces \(A \) and \(A' \) of \(\mathbb{R}^n \). Since the cases \(A = \emptyset \) and \(A = \mathbb{R}^n \) are trivial, we assume \(A \neq \emptyset \) and \(A
eq \mathbb{R}^n \). Consequently, \(A \neq \mathbb{R}^n \) because \(r \bar{A} = \mathbb{R} \) (Theorem 6.3 of [4], p. 46).

We shall show that \(\bar{A} \) is a closed half-space. Assume the contrary. Since \(A \) is convex, \(\bar{A} \) is convex too. Being convex and closed, \(\bar{A} \) is the intersection of a family of closed half-spaces ([4], Theorem 11.5, p. 99). Since \(A \neq \mathbb{R}^n \) and \(\bar{A} \) is not a closed half-space, the family contains closed half-spaces \(Q_1 \) and \(Q_2 \) such that \(Q_1 \neq Q_2 \) is not a translate of \(Q_1 \). Hence \(A \cap Q_1 \cap Q_2
eq \emptyset \). Hence \(A \subset Q_1 \cap Q_2 \). Hence \(\bar{A} \cap Q_1 \cup Q_2 \). Since \(A \neq Q_1 \cup Q_2 \), there exists \(a_i \in Q_i \) and \(a_i \in A \) such that a lies in the segment joining \(a_i \) and \(a_j \). From \(a \in A \cap A \) we conclude that \(A \neq A \). The contradiction shows that \(\bar{A} \) is a closed half-space.

Similarly, \(\bar{A} \) is a closed half-space. Obviously, \(H = \bar{A} \cap \bar{A} \) is the bounding hyperplane of \(\bar{A} \) and of \(A' \). Consequently, \(A = C_1 \cup (A \cap H) \) and \(A' = C_2 \cup (A' \cap H) \) where \(C_1, C_2 \) are open half-spaces bounded by \(H \). From the inductive hypothesis we conclude that \(A \) and \(A' \) have the stipulated forms.

The other properties easily follow from the definition of sets \(B_n(v_1, \ldots, v_k) \) and \(P_n(v_1, \ldots, v_k) \), and from the first property. Properties 2 and 3 are obvious. Recurrently, with the help of the classic separation theorem, we get property 4. It implies properties 5-7. The last property holds because any convex half-space is the union of a finite number of half-planes, and since any half-plane is the convex hull of a sequence of points.

Theorem 2. The family \(\mathcal{F} \) of all convex half-spaces of \(\mathbb{R}^n \) is a sequentially compact topological Fréchet space with respect to the limit of sets \(\text{Lim} \).

Proof. Our theorem asserts that the following conditions hold:

1. If \(A_i \in \mathcal{F} \) for \(i = 1, 2, \ldots \), and \(\text{Lim} A_i = A \), then \(A \in \mathcal{F} \).
2. If \(A_i \in \mathcal{F} \) for \(i = 1, 2, \ldots \), then \(\text{Lim} A_i = A \).
3. If \(A_i \in \mathcal{F} \) for \(i = 1, 2, \ldots \), and \(\text{Lim} A_i = A \), then for any subsequence \(A_{i_j} \), \(j = 1, 2, \ldots \), we have \(\text{Lim} A_{i_j} = A \).
4. If the sequence \(A_i \in \mathcal{F} \), \(i = 1, 2, \ldots \), does not converge to \(A \in \mathcal{F} \), then there exists a subsequence such that no subsequence of it is convergent to \(A \).
(5) if \(A_j \in \mathcal{F} \) then \(\lim_{i \to \infty} A_{ij} = A_i \) and \(\lim_{j \to \infty} A_j = A \) for \(i, j = 1, 2, \ldots \), then there are subsequences \(i_n \) and \(j_n \) such that \(A_{i_n j_n} = A \).

(6) any sequence of sets from \(\mathcal{F} \) contains a convergent subsequence.

It can be easily shown that conditions (2), (3), and (4) hold for arbitrary sets.

We shall show (1). Let \(A_i, i = 1, 2, \ldots \), be convex half-spaces of \(\mathbb{R}^n \) and let the limit \(\lim_{i \to \infty} A_i = A \) exist. Hence the limit \(\lim_{i \to \infty} A_i' = (\lim_{i \to \infty} A_i)' = A' \) exists.

Since \(A_i \) and \(A_i' \), \(i = 1, 2, \ldots \), are convex, \(A \) and \(A' \) are also convex. Therefore, \(A \) is a convex half-space.

We shall prove (5). It results from (1) that the sets \(A_i, i = 1, 2, \ldots \), and the set \(A \) in (5) are convex half-spaces. Let \(A \neq \emptyset \) and \(A \neq \mathbb{R}^n \). By part 8 of Theorem 1 the set \(A \) is the convex hull of a sequence of points \(x_1, x_2, \ldots \). The complement \(A' \) is also the convex hull of a sequence of points \(y_1, y_2, \ldots \).

Since \(\lim_{i \to \infty} A_i = A \), there exists a number \(i_n \) such that \(A_{i_n} \) contains the points \(x_1, x_2, \ldots, x_n \) and does not contain \(y_1, y_2, \ldots, y_n \). Since \(\lim_{m \to \infty} A_{i_n m} = A_{i_n} \), there exists a number \(j_m \) such that \(A_{i_n j_m} \) contains the points \(x_1, x_2, \ldots, x_m \) and does not contain \(y_1, y_2, \ldots, y_m \). Therefore

\[
(x_1, x_2, \ldots) \in \lim_{m \to \infty} A_{i_n j_m}.
\]

\[
(y_1, y_2, \ldots) \in (\lim_{m \to \infty} A_{i_n j_m})'.
\]

Since \(\lim_{m \to \infty} A_{i_n m} \) and \((\lim_{m \to \infty} A_{i_n j_m})' \) are convex, the inclusions

\[
\lim_{m \to \infty} A_{i_n m} = \operatorname{conv} \{x_1, x_2, \ldots\} = A,
\]

\[
(\lim_{m \to \infty} A_{i_n j_m})' = \operatorname{conv} \{y_1, y_2, \ldots\} = A'.
\]

hold. Thus \(\lim_{m \to \infty} A_{i_n j_m} = A \). If \(A = \emptyset \) or \(A = \mathbb{R}^n \) the considerations are similar.

Finally, we recurrently show (6). For \(\mathbb{R}^1 \) it is obvious. Assume (6) holds in \(\mathbb{R}^{n-1} \) and consider the space \(\mathbb{R}^n \). The case where a sequence of convex half-spaces of \(\mathbb{R}^n \) contains infinitely many of sets \(\emptyset \) or \(\mathbb{R}^n \) is obvious. In the opposite case, select a subsequence \(A_i, i = 1, 2, \ldots \), of convex half-spaces different from \(\emptyset \) and \(\mathbb{R}^n \). Let \(x_i \) be a vertex of \(A_i, i = 1, 2, \ldots \). The space \(\mathbb{R}^n \) can be viewed as a hyperplane of an \((n+1)\)-dimensional space \(\mathbb{R}^{n+1} \), take a point \(x \in \mathbb{R}^{n+1} \setminus \mathbb{R}^n \). Let \(L_x \) be the line passing through \(x_i \) and \(x, i = 1, 2, \ldots \). Put

\[
C_i = A_i + L_x = \{a + b; a \in A_i, b \in L_x\}, \quad i = 1, 2, \ldots
\]

Obviously, \(A_i \subseteq C_i \cap \mathbb{R}^n, i = 1, 2, \ldots \). Note that \(C_i \) is a convex half-space of \(\mathbb{R}^{n+1} \) different both from \(\emptyset \) and \(\mathbb{R}^{n+1} \) and that x is a vertex of \(C_i, i = 1, 2, \ldots \).

Let \(u_i \) denote a unit vector of \(\mathbb{R}^{n+1} \) perpendicular to the hyperplane bounding \(C_i \) and directed towards \(C_i \). One can select a subsequence \(u_{i_j}, j = 1, 2, \ldots \), which converges (in the usual sense) to a unit vector \(u \).

Let \(G = B_k(u) \) in the notation of \(\mathbb{R}^{n+1} \). Obviously,

\[
G = \liminf_{j \to \infty} C_{i_j} = \limsup_{j \to \infty} C_{i_j} = G.
\]

Consequently,

\[
F \subseteq \liminf_{k \to \infty} A_{i_k} \subseteq \limsup_{k \to \infty} A_{i_k} \subseteq F \cup H,
\]

where \(F = G \cap \mathbb{R}^n \) and \(H \) is the bounding hyperplane of \(F \). By the inductive hypothesis, a subsequence \(A_{i_{k_j}}, j = 1, 2, \ldots \), can be selected in such a way that the limit \(\lim_{k \to \infty} (A_{i_{k_j}} \cap H) = K \) exist. Note that

\[
\liminf_{k \to \infty} A_{i_k} = \liminf_{k \to \infty} (A_{i_{k_j}} \cap F) \lor \liminf_{k \to \infty} (A_{i_{k_j}} \cap H) = F \lor K.
\]

Similarly, \(\limsup_{k \to \infty} A_{i_k} = F \lor K \). Thus the limit \(\lim_{k \to \infty} A_{i_k} \) exists.

Corollary 1. Let \(x \in \mathbb{R}^n \). any \(k \in \{1, \ldots, n\} \). The families

\[
[B_k(v_1, \ldots, v_m); k \leq m \leq n], \quad [P_s(v_1, \ldots, v_k); k \leq m \leq n]
\]

and the family of all convex half-spaces with the vertex \(x \) are sequentially compact topological Fréchet spaces with respect to the limit \(Lim \).

Corollary 2. For any convex set \(C \subseteq \mathbb{R}^n \), the family of all convex subsets \(D \) of \(C \) such that \(C \setminus D \) is also convex is a sequentially compact topological Fréchet space with respect to the limit \(Lim \).

Theorem 3. Let \(B_k(u) = B_k(v_1, \ldots, v_k) \) (analogously: \(P_s(u) = P_s(v_1, \ldots, v_k) \)) if and only if almost all vectors \(u_i \) are positive combinations \(u_i = \lambda_1 v_1 + \ldots + \lambda_k v_k \) and \(\lim_{i \to \infty} (A_{i+k+1} \lor A_i) = 0, j = 1, \ldots, k-1 \).

Proof. The equalities \(Lim B_k(u) = B_k(v_1, \ldots, v_k) \) and \(Lim P_s(u) = P_s(v_1, \ldots, v_k) \) are equivalent as the equalities of complementary sets. Therefore, we consider sequences of open half-spaces only. It is sufficient to consider only the case where \(x = 0 \).

For \(\mathbb{R}^1 \) the theorem is obvious. We assume that the theorem holds for \(\mathbb{R}^{n-1} \) and consider the space \(\mathbb{R}^n \).

1. Let \(\lim_{i \to \infty} B_k(u_i) = B_k(v_1, \ldots, v_k) \). Denote by \(R^{n-1} \) the hyperplane
Let \(2 \leq k \leq n \). Since \(u_i \) is a unit vector and \(v_1, \ldots, v_k \) are unit perpendicular vectors, \(\lambda_1^2 + \ldots + \lambda_k^2 = 1 \). Moreover, since \(\lim_{i \to \infty} (\lambda_{j+1}, \lambda_j) = 0 \) for \(j = 1, \ldots, k-1 \), we have \(\lim_{i \to \infty} \lambda_j = 0 \) for \(j = 2, \ldots, k \) and \(\lim_{i \to \infty} \lambda_1 = 1 \). Therefore \(\lim_{i \to \infty} u_i = v_1 \). Hence

\[
B_0(v_1) \subseteq \inf \sup B_0(u_i) \subseteq P_0(v_1).
\]

Let \(R^{n-1} \) denote the hyperplane bounding the half-space \(B_0(v_1) \). Since almost all combinations \(\lambda_1 v_1 + \ldots + \lambda_k v_k \) are positive, almost all combinations \(\lambda_2 v_2 + \ldots + \lambda_k v_k \) are also positive. Hence almost all sets \(R^{n-1} \cap B_0(u_i) \) are open half-planes of the plane \(R^{n-1} \). Since the vector \(\lambda_2 v_2 + \ldots + \lambda_k v_k \) is perpendicular to the hyperplane \(B_0(u_i) \) and since it is directed towards the side of \(B_0(u_i) \), the vector \(\lambda_2 v_2 + \ldots + \lambda_k v_k \) is perpendicular to the \((n-2)\)-dimensional plane \(K_i \) bounding the half-plane \(R^{n-1} \cap B_0(u_i) \) and directed towards it. Hence the vector \(u_i = \alpha_2 v_2 + \ldots + \alpha_{n-1} v_n \) is unit, perpendicular and directed towards the side of \(R^{n-1} \cap B_0(u_i) \). This is true for almost all numbers \(i = 1, 2, \ldots \). Obviously, almost all the combinations above are positive and \(\alpha_2 \lambda_2 v_2 + \ldots + \alpha_{n-1} v_n \) is unit, perpendicular and directed towards the side of \(R^{n-1} \cap B_0(u_i) \). Therefore, from the inductive hypothesis we conclude that the set \(\lim_{i \to \infty} B_0(u_i) \cap R^{n-1} \) is equal (in the notation of \(R^{n-1} \)) to

\[
B_0(v_2, v_3, \ldots, v_n) \cap R^{n-1}.
\]

This and (*) imply

\[
\inf \sup B_0(u_i) = B_0(v_1, v_2, \ldots, v_n) \subseteq \sup \inf B_0(u_i).
\]

Therefore the limit \(\lim_{i \to \infty} B_0(u_i) \) exists and equals \(B_0(v_1, v_2, \ldots, v_n) \).

The proof is complete.

It would be interesting to discuss decompositions of \(R^n \) onto \(m > 2 \) disjoint convex subsets.

References