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Varieties of idempotent commutative groupoids

by
J. Dudek (Wroclaw)

Abstract. In this paper we present several results about varieties of idempotent and
commutative groupoids. In particular, we characterize the varieties of such groupoids defined by
identities called strongly regular identities.

1. Introduction. The main purpose of this paper is to investigate strongly
regular and nonregular identities in idempotent commutative groupoids. We
prove that every idempotent commutative groupoid satisfying a strongly
regular (nontrivial) identity is medial (Theorem 4). In Theorem 5 we give a
characterization of strongly regular identities (for V(-)) which are nontrivial
We also prove that every medial idempotent commutative groupoid in which

a nonregular identity holds is a quasigroup (Theorem 6). Idempotent com-

mutative groupoids satisfying some strongly regular identities and some
nonregular identities are characterized in Theorem 7. We describe medial
groupoids as direct sums of reducts of abelian groups (Theorems 1-3) and we
establish the necessary and sufficient conditions for an idempotent groupoid
to be a semilattice (Theorem 8). Theorems 4-10 and some related result will,
as we hope, prove useful in finding all the atoms of the lattice of varieties of
idempotent commutative groupoids.

2. Preliminaries. We adopt here the definitions and notation given by
Griitzer [6] and Marczewski [8]. Two identical algebras, ie., algebras having
the same sets of polynomials, will be called polynomially equivalent.

An identity f =g where f and g are terms in an algebra will be called
regular if on both sides of it the same free variables occur (see [10]). A
regular identity is called strongly regular if each of its free variables occurs
only once. L

Let E be a set of identities with respect to a fixed type © and some
fundamental symbols. Then by E* we denote the variety of all algebras of
type t satisfying all identities of E. An identity f = g is called nontrivial with
respect to E* if the class (E U{f=g))* is properly contained in E and is
different from the class {x = y}*

Let f=f(%;, ..., X,) be a function on 4. We say that f admits a
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permutation a €S, of its variables if f=17, i€, f(Xq, ..., %) =L (Xp1s oers Xon)
for all xi,..., x,e4, where f7(xy, ..., Xp) =f(X1, ..e» Xow). By G(f) we
denote the group of all admissible permutations of f (see [7]).

Let E be a set of identities. Then an admissible permutation o of a given
polynomial f=f(x,, ..., x,) is said to be trivial. (with respect to E) if the
identity f(x;, ..., X,) =f(X,1, .:-, X5y) can be obtained from E, ie., if E*
=(Eu(f=f.

Let (G, -) be a groupoid. We write xy instead of x-y and xy" (n > 1) for
the polynomial (...(xy)...y)y where x appears once and y appears n times,
We also write x; ... x, instead of (... ((x; x,)x; ... X,-1)%,). If the groupoid is
written additively, we use the notation x+ny and x; + ... +x,, respectively.
The class of all idempotent and commutative groupoids (G, *) is denoted by
V(). By ¥,(-), for a fixed n> 1, we denote the subvariety of (-} of all
groupoids (G, -), which satisfies xy" = x.

A polynomial f=f(xy, ..., x,) over V() (or over (G, -)eV(-)) is said to
be a good one if f has no repetitions of its variables.

A variable x; (i =1, ..., n) is bound up with a variable x;(i=1,...,nin
a good polynomial f=f(x,, ..., x,) if the term X;x; appears in f.

If we have a strongly regular identity f= g in the groupoid (G, )e V()
with variables x; and x; bound up together in the polynomials f and g, then
by a couple reduction of the variables x, and X; in f=g we mean the
substitution of x; for x;x;, and the resulting identity f' = ¢’ will be called the
result of the reduction. Since - is idempotent, the identities f =g and fl=gq
are equivalent.

A groupoid (G, -) is said to be distributive if (xy)z = (xz)(yz) and x(yz)
= (xy)(xz) for all x, y, zeG. A groupoid (G, ) is medial if it satisfies the
medial law, ie., if (xy)(uv) = (xu)(yv) for all x, y, u, veG (for the above
definition see [1]). The class of all idempotent commutative and medial
groupoids (G, ) will be denoted by M(-). Further, we put M,(-)
=M(:)nV,(:) and we denote by M*(-) the subvariety of all groupoids
from M(-) which satisfy xy = xy"**. It turns out that, from our point of
view, the most important strongly regular identities in V(') are the medial
law and the following identity:

(n) XyX3 oot Xy 1 Xy = XX ... X, X, fOr some n>3.

For n 2 3, we denote by K} (+) the subvariety of V(-) of all groupoids which
satisfy the identity (n) and by K, (-) we denote the subvariety of K*(-) which
satisfies xy"" 2 =x (n 3> 3).

3. Theorems and comments. Here we present all the theorems with some
comments. The proofs of the theorems are given in the next section.
Let n be a natural number and let (G, +) be an abelian group of
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d+1 '
exponent d|2"—1. Denote by G(d, n) the groupoid (G, —:—(xﬁ- y)). Observe

d+1
that G(d, n) = (G, 2"~ * (x+)). Indeed, we have 2"~ *(x+y) =—-—;~(x+y) for

all x, yeG since
1 -
2"‘1(x+y)—£l-;—(x+y)=k—2ld(x+y) =0, where dk=2"—1.

In [3] a characterization theorem for groupoids from M, () is given. Let us
recall that theorem for the convenience of the reader and also Theorem 3
from [2] (here Theorem 2).

TueorEM 1 ([3], Characterization Theorem). A groupoid (G, -) belongs to
M, (-) iff there exists an abelian group G of exponent d|2"—1 such that (G, *)
= G(d, n).

TreoreM 2 ([2], Theorem 3). A groupoid (G, -) belongs to K,(*) iff it is
the sum of a direct system of groupoids from K, (-) (the sum of a direct system
of algebras is understood here in the sense of [10]).

THEOREM 3. For every n, M,(*) = K,,,(*) and M¥(-)=K*.,(").

As a corollary we obtain a characterization theorem for groupoids from
M3(0).

CororrAry (Characterization Theorem). A groupoid (G, *) belongs to the
variety M} () iff it is the sum of a direct system of groupoids from M, (+), i.e.
of groupoids of the form G(d, n).

TueoreM 4. If (G, -)e V(+) satisfies a nontrivial strongly regular identity,
then it is medial, ie, (G, -)eM(-).

THEOREM 5. A strongly regular identity f = g is nontrivial in the variety
V() if and only if after several steps of couple reductions of f =g we obtain
an identity f' = g’ such that there exist two variables x; and x; bound up with
each other in f’ and not bound up with each other in g'.

THEOREM 6. If (G, )€ M () satisfies a nonregular identity, then (G, ') is a
medial quasigroup.

Tueorem 7. If (G, *)eV(-) satisfies some nontrivial strongly regular
identities and some nonregular identities, then there exist an abelian group
(G, +) and an automorphism @ of (G, +) such that xy = @(x)+¢(y) and
2¢0(x) =x for all x,yeG.

Theorems 4, 6 and 7 are useful in investigating complete groupoids from
the variety V(-).

THEOREM 8. (A characterization of semilattices). For every idempotent
groupoid (G, -) the following conditions are equivalent :
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i) (G, *) is a semilattice.
(i) (G, *) is commutative and distributive, and xy = xy? for all x, yeG.
(i) (G, -) is commutative and the polynomial s(x, y, z) = (xz)(yz) admits a
nontrivial permutation of its variables.
(iv) (G, -) is commutative and distributive, and xy* = yx* for all x, yeG.
() (G, *) is commutative and medial, and xy* = xy* for all'x, yeG.
(vi) (G, ) satisfies the identity
X1Xg oo Xpo1Xp = XoX3 ... XXy fOr some n > 3.
(vii) the same as in (vi) for some left iteration of the polynomial xy, ie.,

%y (%2 (4o O 1 X)) = X2 (33 (- (%) ... ))
for some n=3.
(vii1) (G '} is commutative and some simple iteration s,(xy, ..., X,) =
X{ ... X, Of xy where n>=3 admits a transposition (k, k+1) of its variables
where 2<k<n—1, ie, the following identity holds in (G, *):

X1 oot Xgm 1 XX 1 oee Xipm 1% = Xq een X 1 X g 1 X o e X 1 X0

Theorem 8 is useful in estimating the number of essentially n-ary
polynomials over an idempotent commutative groupoid (see [5]).

THEOREM 9. A groupoid (G, ) is a quasigroup if at least one of the
following conditions holds:

@) (G, ")eV,(-) for some n>1.

(u) (G, ")e V(") and the polynomial xy" ist not essentially binary.

(1.11) (G, -)eV(-) and the polynomial (xy*)x is not essentially binary.

(iv) (G, -) satisfies the identities x = xy™ and x=y(y( (yx).. )) for
some m and n. ntimesy

Denote by @, ,(- ) the variety of all groupoids satisfying the above two

identities.

TaeoreM 10. If (G, -)€Q, ,(*) for some n > 2, then there exists a binary
commutative polynomial + over (G, ) such that the groupoids (G, ') and
(G, +) are polynomially equivalent and (G, +)eV,(+) in case (G, *) is idempotent.

This theorem shows that the investigation of some noncommutative
groupoids can be reduced to the commutative case. Such a reduction proves
useful for example in ﬁndmg the number of all essentially n-ary polynomials
over a groupoid and in deciding whether a given groupoid is equationally
" complete.

4. Lemmas and proofs of the theorems. Recall that the proofs of
Theorems 1 and 2 can be found in [3] and [2], respectively.

Proof of Theorem 3. Using Theorem 2 and Lemma 1 of [2], we
infer that if (G, -)€K,+ ("), then there exists an abelian group (G, +) of
exponent d such that d{2"—1 and (G, *) = G(d, n). Since, by Lemma 1 of [3],
G(d,neM,(), we have (G, )eM,(-). The inclusion M W) EKuia(9)
follows by the Characterization Theorem for groupoids from the variety
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M, () (see [3]) and the method used in the proof of Lemma 1 of [2]. Let us
now prove My¥(-)=K¥ ,(‘) for all n. Let (G, )eK} ,(-). Then, by

* Theorem 3 of [2], the groupoid (G, ‘) is the sum of a direct system of

groupoids (for the definition of the sum of a direct system of algebras see
[10]) from the class K,.,() and therefore using the Characterization
Theorem for groupoids from M, () (see [3]) and the fact M,(-) = K,42(")
we infer that G is the sum of groupoids which are medial. Since the medial
law is a regular identity and the sum of a direct system of algebras preserves
regular identities (see [107]), we infer that (G, -) is medial, ie, (G, -)eM(*).
We also have
xy" = (L ep) )y = () y)x = yx = xp
and thus (G, -)e M} (). Suppose now that (G, ‘)e M¥(-). We have to prove
that the identity (n+2) holds in (G, -). We have
X1X2 vos XpXpg 1 Xpp2 = ((xlxz s X)Xt 2)(xn+1xn+2)
= (((xlxz e X )X 2)(xnxn+ 1))(xn+ 1Xnt2) =
=( (((xlxn+2) (%2%y+ 2))(x3xn+2)) (xnxn+2))(xn+ 1%n+2)
( ((xlxn+2 xz xlxn+1)xn+2))(x3xn+2) (xnxn+2))(xn+ 1Xn42)
( ((xlxn+ 2)x2 (xlxn+2))(9°3xn+ 2) e (XXt 2))(xn+ 1%n+2)
= ( ((xlxn+2)x2 x3)(x1xn+ 2) - (XXt 2))(xn+ 1%+ 2) =
= (....(((((xlx,,”)x;)xs)... xn—1)xn)(x1x:+2))(xn+1xn+2)
= (X1 X4 2X2X3 .+ XpXp+ DX xnt3)
= (--'((X1xn+2)x2 xn)xn+ 1)(x1xn+ 2)

= Xt 2%X2 o0 XpXpt 1 X4

i

(the variables x;, and x,., can be interchanged), which proves that (G, -)
satisfies the identity (n+2). Hence M} (-) = K} ,(-). The theorem is proved.

Before proving Theorem 4 we need some lemmas.

LemMa 1. If g = g(xq, ..., X,) is @ good polynomial over (G, -)e V(*) and
g admits a transposition (i, j) where x; is bound with some variable x, and x, is -
not bound with any variable, then (G, ) is medial.

Proof. Let (G, *)€ V(+). Assume that n is the smallest number for which
there exists a polynomial g satisfying the assumption of the lemma. Of course,
we may assume that the polynomial has no other bound-up variables except
x; and x; (and n > 3) since in the opposite case by identifying the bound-up
variables other than x; and x, we get a contradiction with the minimality of
n. So we infer that g is of the form x; ... X, i.e, g(Xy, ..., Xp) = %41 ... X, for
some c€S,. Hence we infer that x, ... x, (n>3) admits a nontrivial trans-
position. Using Theorem 1 of [2] we deduce that (G, -) satisfies the identity
(n) for some n > 3, ie. (G, ) is in K¥(-). An application of Theorem 3 gives"
the mediality of (G, *). '


GUEST


198 J. Dudek

Lemma 2. If g =g(Xy, ..., X,) is a good polynomial over (G, )eV(G, )

and g admits a transposition (i, j), where none of variables X; and x; is bound

up, then (G, -) is medial.

Proof. As in the proof above, identifying all bound-up variables in g in
such a way that the resulting polynomial g* is again a good one, we infer
that the groupoid (G, -) again satisfies the identity (m) for some m > 3. The
proof then runs as in Lemma 1.

LemMa 3. If g =g(xy, ..., X,) is a good polynomial over (G, *)e V(') and
g admits a transposition (i, j), where x; and x; are not bound up with each other
but are both bound up with some variables, then (G, °) is medial.

Proof. Let g =g(x;, ..., X,) be the good polynomial over (G, -)e V(")
and let x, be bound up with x; and x, with x;. Without loss of generality one
can assume that n is the smallest number for which g satisfies the assumption
of our lemma. Thus we infer that the variables x,, X;, X, X; are the only ones
which are bound up in the polynomial g since in the opposite case we may
identify the remaining bound-up pairs of variables. By the commutativity of -
we infer that the polynomial g admits all permutations €S, with a fixed
k¢{a, b, i,j}, ie. permutes variables x,, X;, X, x;. Using the commutativity
of - and the minimality of n, we also infer that g starts from the term x,-x; or
from the term X,-x; and that there are no other terms of that form in the
polynomial g. Suppose that g starts from x,x;. Now to complete the proof
we have to consider two possibilities for the polynomial g:

(8) g(x1, ...s Xy) = hy (X4, ...)x, Where hy is an (n—1)-ary good poly-
nomial containing variables Xx,, X;, X, x; and starting from the expression
Xg X

(82) g(xy, --"s X) = ha(Xg, ...) (X%;) Where h, is an (n—2)-ary good poly-
nomial starting from x,x;.

Let (gy) hold in (G, -). Since g admits all permutations changing
variables x,, X;, X, X; with the variable x, fixed, we infer that g = h;x,
= hi'x, for any permutation o,&S,_, which changes the above-mentioned
variables and does not change others. Using the idempotency of xy and the
last identity, we get hy = hyhy = hi'h, = hhi = hi'h? = h{', which gives a
contradiction (hy; = h{1) with the minimality of n.

Let (g;). If n =4, then, of course, (G, -) is medial. Therefore, we may
further assume that n> 5 and h, is at least ternary starting from x,x;. We

may also assume that h, contains at least one variable which is not bound .

up with any other variable. Setting x'=x,=x and y=x, =x; in the
polynomial g, we get the (n—2)-ary good polynomial g* which admits a
transposition of variables x and y, with x bound up and y not bound up. An
application of Lemma 1 completes the proof of this lemma.

Lemma 4. If g(xy, ..., x,) is a good polynomial over (G; eV(:) admit-
ting a transposition of variables x; and x; which are not bound up with each
other, then (G, ) is medial, i

icm

Varieties of idempotent commutative groupoids 199

Proof. It follows from Lemmas 1, 2, 3.

Now let f(xy, ..., x,) =g(xy, ..., X,) be a nontrivial strongly regular
identity in (G, *)e V(). We can further assume without loss of generality
that f starts from x;x, in the identity f=g after a certain number of
parentheses. :

LemmAa 5. If f =g is a nontrivial strongly regular identity in (G, *)e V(*),
then the identity is equivalent to a strongly regular identity f' = g', where g'
starts from x,x, and x; and x, are not bound up with each other in g'.

Proof. Let x; and x; be bound up in the polynomial fin the identity f
=g¢. If x; and Xx; are also bound up in g, then putting x; = x; we get a new
nontrivial strongly regular identity equivalent to the identity f=g.
Continuing this process, we infer that f = g is equivalent to some nontrivial
strongly regular identity (f; = g;) in which on one side (say f;) there is a
bound-up pair of variables and on the other side this pair of variables is not
bound up. Renumbering the variables in the identity f; =g, we get the
required assertion.

Proof of Theorem 4. Let (G, -)eV(-) and let f=g be a nontrivial
strongly regular identity satisfied in (G, -). Applying Lemma 5, we may
assume that f starts from x,x, and x; and x, are not bound up with each
other in g. Using the commutativity of -, we infer that g admits a
transposition of variables x; and x,. To end the proof of the theorem we
apply Lemma 4. :

To prove the next theorem we need the following

LemMMA 6. There exist nonmedial groupoids in the variety V(-).

Proof. Let N be the set of all natural numbers (0 is excluded from N)
and let aeN. Consider the groupoids N, = (N, -} where -, is idempotent
and x-y = a+max(x, y) for x # y(x, yeN). It is easy to check that N, is
nonmedial (for all @) and N,eV(:). One can also see that the groupoids
satisfy the identity considered in Theorem 4 of [4], i.e., (x2y) 4wy = (¥ :aX) ux.

. Proof of Theorem 5. Let G(N,) denote a free groupoid in the variety
V(-) with countable free generators and let f=g be a strongly regular
identity in V(-). If the identity f = g is nontrivial in V(-), i.e, is nontrivial in
G (Xy), then, using Lemma 5 and the definition of a couple reduction, we get
the part "if”. To prove the converse we infer from the assumption that f' =g’
is satisfied in G (X,). And now, applying Lemma 4 to the good polynomial g,
we deduce that G(X,) is medial and therefore the variety V() consists only of
medial groupoids. This contradicts Lemma 6. The proof of the theorem is
completed.

In the sequel we shall use the following description of the set A" () of
all n-ary polynomial over an algebra U = (4, F) (see [8]):

A% = 40 = () 4p(,
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where
AP = AP = (e, .., &0}
and

AP = AQL () = AP O {f (o, fu): i€AD, feF and i =1, ..., m)

(Marczewski’s formula).
To prove Theorem 6 we need some more lemmas.

Lemma 7. If (G, )e M () and ax, = ax, for some a, Xy, X, €G, then for
every nontrivial feA®(G,:) we have f(a, x,) =f(a, x;) (and f(xy, a)
=f(x2’ a))

‘ Proof. By assumption, our assertion holds for every. nontrivial
feAP(G, -). Suppose that is holds for every nontrivial fe A% (G, *). Using
Lemma 1 of [4], we see that if ge AR, (G, '), then g = g,x or g = g,y where
91€4P(G, -) and gy(a, ;) = g1(a, X2), g1 (%1, @) = g1 (x2, @) and gy, g are
nontrivial. We have to prove that g(a, x,) = g(a, x,) and g(x,, a) = g(x,, a).
We shall check only the first of the above equations. If g = g, (x, y)y, then,
in view of the fact that T,(v) = uv is an endomorphism of (G, -)e M ("),

g(a, x1) = g1 (a, x1)x1 = g1 (a, X2)%; = gy (a%y, X2%1) = gy (@3, X1%,)

= g1 (a, x;)x; = gy (a, x2)%; = g(a, x,)-
If g(x, y) = g4 (x, y)x, then
g(a, x1) = g.(a, x;)a = g, (a, x;)a = g(a, x,).

This shows that g satisfies the assertion of the lemma, which, in view of
Marczewski’s formula, completes the proof.

LemMa 8.1f (G, -)e M(-) and there exists a nontrivial binary polynomi
over (G, *) such that f(x, y) = x for x, yeG, then (G, ) is a ;ul:zzi;rou;.alf

Proof. (1) G is cancellative. Indeed, assume that ax; = ax, for some
a, Xy, X, gG. From Lemma 7 we infer that if f is a nontrivial binary
polynomial over (G, ), then f(a, x,) = f(a, x;) and f(x,, a) = f(x,, a): Since
f(x, y) =X, we have x, =f(x;, @) =f(x,, a) = x,, which proves that G is
cancellative. )

(2) For every a, beG the equation ‘au = b has a solution. Indeed, by
Lemma 2 of [4] we infer that f(x, y) = x*1yf1 ... yfn~1x%npPn for sl)me
nonnegative  integers  a, f; (i,j=1,..,n." Hence b =f(b,a)
=b*1af1 . afr—1bnafn. If B, >0, then we put u = b1gf1 ., a”"-lb“‘"a”""1
'Let B, = 0. Without loss of generality we may assume that the remaininé
integers oy, B; are positive. Using the cancellation law and the idempotency
of (G, ), we infer that b= b*1af1 .., b*»—1aPn~1, 1t is clear that in this case u

~=b"1ak1 ... b1 gP—171 which completes the proof of the lemma,
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Proof of Theorem 6. Assume that (G, ) belongs to M(-) and
satisfies a nonregular identity

s s %) = GD1s s V)

If this identity is equivalent to the identity u = v, then of course (G, ) is a
one-element quasigroup. Therefore we can assume that at least one of the
polynomials f and g is not trivial (and at least binary), say f. Without loss of
generality one can assume that x; does not appear as a variable in
g(¥1, .--» ym) because the identity f=g is nonregular. Putting in this identity
x, =y and x for the remaining variables, we get a new identity h(x, y) = x
for some nontrivial he A® (G, -). An application of Lemma 8 completes the
proof.

Proof of Theorem 7. The proof follows from Theorems 4 and 6 and
from Theorem 2.10 of [1, pp. 33].

Proof of Theorem 8. Let (G, -) be an idempotent groupoid. It is easy
to see that condition (i) implies all the other conditions of the theorem. We
shall prove the converse implications. _

(ii) = (i). In this case we have to prove that xy is associative. Indeed, we
have '

()2 = (x2) (v2) = (x(¥2) (2 (2)) = (x (¥2)) (¥2)2)
= (x(v2)) 2) = % (y2)-

(i) = (). Let (G,-) be commutative and suppose the polynomial
s(x, ¥, 2) = (xz)(yz) admits a nontrivial permutation of its variables. Then
s(x, y, z) is a symmetric polynomial, whence we have (xz)(yz) = (xz)(xy)
= (xy)(zy). Setting in this identity z =y, we get Xy = (xy) (xy) = (xy) (yy)
= (xy)y = xy*. Putting xz for x in the identity (xz)(yz) = (xz)(xy) and using
xy = xy%, we get

(x2)(y2) = ((x2)2)(y2) = (x2)2)((x2)y) = (x2)(x2)y) = (¥ (x2))(x2) = y (x2) = x (y2)
since s(x, y, z) admits a transposition of* variables x, y.

(iv) = (). Suppose (G, ") is commutative and distributive, and xy*

= yx?. We have

xy? = (xy?) (o) = (xy?) () = ((xy)) (0)x)
= (x9)) ((x9)x) = () (¥x) = (xy) (xy) = xy.
Hence, applying (i), we get ().
(v) = (i). Let (G, -)eM(-) and xy? = xy®. Then we prove that (G, ') is
a semilattice. We have ‘
xy = (xy?)(yx?) = () x?)
= (9 (%) = (P 3) ) = (¥ ) ) (<)
= y(xy)® = y(xy)? = () (o3) = (xCex)) ) = () -
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And now

(ey)x = () = (x)x)x) ) = (72)° (xy) = (7%7) (xy)
= (x)x)(xy) = ((r)y) (ex) = ((xp)y)x = xy,
whence (G, -) satisfies condition (ii) and therefore it is a semilattice.
(vi) = (i). Assume now that (G, -) satisfies
) X4Xg oo Xpo1Xp = X3X3 ... Xp—1X; fOr sOme n>'3.
Observe that
xy={..(xx)... x)y =x""1y =x""lyx = ... = yx""!

and

and

‘ xy* = (ey?y = (x"" Yy = (" 2y)y = Oy)x""? = yx"7? = xy?
Hence we have xy* = xy*** for k=2, 3, ..., and yx = xy" ! = xy"~2 = yx?.
So we have xy=xy* for all k and xy=>xy""!'=(...(xp)... )y
=(...(9)... y)x =yx. Consider the polynomial (xy)z; we have (x))z
=(x""%y)z = (yz)x""2 = (yz)x = x(yz), which proves that (G,:) is &
semilattice.

Similarly, we prove (vii) => (i).

(viii) = (i). Assume that (G, -) is commutative and

(+) Xq eos X 1 X4 X b g oo X 1 X = Xg ver Xgm g X 1. Xg oo e Xy 1 Xy

for some n>3 and for some k, where 2<k <n—1. Without loss of
generality one can assume that n is the smallest number such that the
identity (+) holds in (G, -). If n =3, then it is clear that the groupoid is a
semilattice. Assume now that n> 4. If k > 3, then, putting x; = x, in (+),
we get a contradiction with the minimality of n. So-let k = 2. Then in the
identity (+) we put X, = x;X, ... X,—;. Using the commutativity and idem-
potency of xy, we have

X1Xg o Xy 2Xnm g = (X4X3% o0 Xo 2 X0 1) (X4 X oo Xpo 25— 1)
= (X2X2 or X 23— 1) (X1 X35 o0 X 5% 1)
= (X1X35 «o. X X 1) (X1 X3 X5 11 Xy 2%n=1)
= X1 X3Xg won Xy 2Xge = XyXgXg et Xy 3% 1
The last identity contradicts the minimality of .
" The proof of the theorem is completed.

We should mention here that the implication (vi) = (i) has been proved
by Padmanabhan for n =3 in [9].
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Proof of Theorem 9. To prove (i) see (3) of Theorem 2 of [4].
Condition (ii) follows from Theorem 1 and (3) of Theorem 2 of [4].

(iii). Let (G, -)eV(-) and suppose that the polynomial (xy?)x is not
essentially binary. Since - is idempotent, we have to consider two cases: (1)
(xyHx = x and (2) (xy¥)x = y. If (1), then

xy? = ((xy?)x?) (xy?) = (((xp*)x)x) (xy?)
= (xx) (xy?) = (xy?)x = x,
whence (G, ")eV,(*) and by (i), (G, ') is a quasigroup. Assume now that (2)
holds. Then
x = ((?)x?) (ey?) = ((ey)0x)(xy?) = (rx) (xy?)
= (y () (xy) = y (xy)?,
whence

x = (ey?) (x (xp?)* = (xp?) ((ey?)x) = (ey?)y® = xy*.

So (G, -)eV,(-) and therefore again, by (i), (G, ) is a quasigroup.
(iv). Assume that. (G, -)€Q,, (') for some m and n. This means that
(G, ') satisfies xy"=x and y™x=y(y(...(9x)...) =x. Using the same

- method as in the proof of (3) of Theorem 2 of [4], one can show that (G, ')
.is a quasigroup.

Proof of Theorem 10. Let (G, -)€Q, ,(-) for a certain n> 2. Then
(G, -) satisfies y(yx) = x = xy". Let x+y =xy"~!. We have

x =0y and y =00 (6 ) =G,
whence

n—1

x+y=xy""t = (xy"" Yx" = ((xy" Yx)x"t = yx" =y 4x.

Further, we have
x+2y = (x+y)+y =y Y= (P2 = xy" 2

In general, x+ky=xy" . Hence xy = x+(n—1)y and x+ny = (xy)y""*
=xy"=x. S0, A(G,:) < A(G, +). Since x+y=xy""! and xy=x+
+(n—1)y, we see that (G, ) and (G, +) are polynomially equivalent and in
addition (G, +)eV,(+) if (G, *) is idempotent. The proof of the theorem is
completed.
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On elementary cuts in recursively saturated
models of Peano Arithmetic

by

Henryk Kotlarski (Warszawa)

Abstract. If M is a model of Peano Arithmetic, let Y={N ¢ M: N <M}; we study this
family under the assumption that M is countable and recursively saturated.

§ 1. Introduction and notation. Let PA denote Peano Arithmetic in any of
its usual formalizations. For M= PA we set Y™ = {N ¢ M: N < M}; when
no confusion arises we omit the superscript M. Clearly the properties of this
family depend on M; we shall study this family under the assumption that
M is countable and recursively saturated. In § 2 we show that M has many
cuts which have some combinatorial properties introduced by Kirby and
Paris (see [1]), in § 3 we show many non-isomorphic elements of Y and in § 4
we study the connection between elementary cuts of M and antomorphisms
of M.

We use standard terminology and notation. We assume that the reader
knows the notion of recursive saturation (see Schlipf {9] and Smorynski [10]
for a survey of recursively saturated models of PA) and knows the notion of
a satisfaction class studied in some depth by Krajewski [6] and in several
more recent papers; also some knowledge of initial segments (= cuts) in
models of PA (see e.g. Kirby [3]) is required (however, we shall define the
combinatorial properties of cuts in the body of the paper). The present paper
has grown out from our earlier paper [4], where Theorem 1.1 below was
proved. The results of [4] and the present paper were annouced in abstract
[5].

Before we state the main result of [4], we need some more notation:
Y; ={NeY: N is not recursively saturated}.

For aeM we denote M(a)= {xeM: for some parameter-free term
t) M x < t(a)}. ’

The following notion is taken from [1]. Two families 4, B of cuts of
M= PA are symbiotic iff, for all ¢, be M

@ANeda<N<bh)=@ANeBa<N<bh).
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