

On binary polynomials in idempotent commutative groupoids

bν

J. Dudek (Wrocław)

Abstract. In this paper one estimates the number of essentially binary polynomials in idempotent and commutative groupoids (Theorem 3, 4 and 5).

- **1. Introduction.** Let $\mathfrak{A} = (A, F)$ be an algebra. We denote by $A^{(n)}(\mathfrak{A}) = \bigcup_{k=0}^{\infty} A_k^{(n)}(\mathfrak{A})$ the set of all *n*-ary polynomials in \mathfrak{A} , where $A_0^{(n)} = A_0^{(n)}(\mathfrak{A}) = \{e_1^{(n)}, \ldots, e_n^{(n)}\}$, and $A_{k+1}^{(n)} = A_{k+1}^{(n)}(\mathfrak{A}) = A_k^{(n)}(\mathfrak{A}) \cup \{f(f_1, \ldots, f_m) : f \in F, f_1, \ldots, f_m \in A_k^{(n)}(\mathfrak{A})\}$ (see [3]). By $p_n(\mathfrak{A})$ we denote the number of all essentially *n*-ary polynomials in \mathfrak{A} ([2]).
- If (G, \cdot) is a groupoid, then, xy^n stands for the expression $(\dots(xy)\cdot\dots\cdot y)y$ where x occurs once and y occurs n times.

The class of all idempotent and commutative groupoids (G, \cdot) is denoted by $V(\cdot)$. For a fixed $n \ge 1$ we denote by $V_n(\cdot)$ the subvariety of $V(\cdot)$ of all groupoids (G, \cdot) which satisfy $xy^n = x$.

A groupoid (G, \cdot) is called *medial* if it satisfies the medial law, i.e., (xy)(uv) = (xu)(yv) for all $x, y, u, v \in G$.

In this paper we prove the following theorems.

THEOREM 1. If $(G, \cdot) \in V(\cdot)$ and card $G \ge 2$, then $xy^n \ne y$ for all n.

THEOREM 2. If $(G, \cdot) \in V(\cdot)$ and $\operatorname{card} G \geq 2$ and xy^s is not essentially binary for a certain $s \geq 1$, then there exists an n such that $(1)(G, \cdot) \in V_n(\cdot)$, $(2)(G, \cdot) \notin V_k(\cdot)$ for all $1 \leq k \leq n-1$ and $(3)(G, \cdot)$ is a quasigroup.

THEOREM 3. Suppose $(G,\cdot) \in V_n(\cdot)$ for a certain $n \ge 2$ and $(G,\cdot) \notin V_k(\cdot)$ for all k < n. Then (G,\cdot) contains at least 2n-1 essentially binary polynomials if n is odd and at least n-1 essentially binary polynomials if n is even.

THEOREM 4. If $(G, \cdot) \in V(\cdot)$ and $xy^2 = yx^2$, then every essentially binary polynomial f over (G, \cdot) is symmetric (i.e., f(x, y) = f(y, x)), and it is of the form: $f(x, y) = xy^n$ for some $n \ge 1$.

THEOREM 5. If $(G, \cdot) \in V(\cdot)$, card $G \ge 2$ and (G, \cdot) is medial, then the number of all essentially binary polynomials over (G, \cdot) is odd or infinite.

2. Lemmas and proofs of theorems. The proof of Theorem 1 can be found in an earlier published paper [1]. Here we give the same proof for the sake of completeness.

Proof of Theorem 1. Assume that $xy^n = y$ for all $x, y \in G$ and that n is the smallest such number. Since xy is essentially binary, we have n > 1. Then we get

$$xy^{n-1} = y(xy^{n-1})^n = (y(xy^{n-1}))(xy^{n-1})^{n-1} = ((xy^{n-1})y)(xy^{n-1})^{n-1}$$

$$= (xy^n)(xy^{n-1})^{n-1} = y(xy^{n-1})^{n-1} = (y(xy^{n-1}))(xy^{n-1})^{n-2}$$

$$= ((xy^{n-1})y)(xy^{n-1})^{n-2} = (xy^n)(xy^{n-1})^{n-2} = y(xy^{n-1})^{n-2} = \dots$$

$$\dots = y(xy^{n-1}) = (xy^{n-1})y = xy^n = y.$$

So, we have a contradiction $xy^{n-1} = y$.

Proof of Theorem 2. By Theorem 1 there exists a smallest $n \ge 1$ such that $xy^n = x$ in (G, \cdot) , because xy is idempotent. Now, xy^k is essentially binary for all $1 \le k \le n-1$. Hence $(G, \cdot) \notin V_k(\cdot)$. We prove that the groupoid is a quasigroup. Indeed, if $x_1a = x_2a$, then $x_1 = x_1a^n = (x_1a)a^{n-1} = (x_2a)a^{n-1} = x_2a^n = x_2$. It is clear that $x = ba^{n-1}$ is a solution of the equation $x \cdot a = b$. This completes the proof.

Proof of Theorem 3. Let $(G, \cdot) \in V_n(\cdot)$ for a certain $n \ge 2$ and let $(G, \cdot) \notin V_k(\cdot)$ for every k < n. Observe that if at least one of the polynomials $x(xy)^k$, where k = 1, ..., n-1, is not essentially binary, then n is even. Indeed, let $x(xy)^k = x$ for some k. Then, putting yx^{n-1} for y, we get $x = x(x(yx^{n-1}))^k = x((yx^{n-1})x)^k = x(yx^n)^k = xy^k$, which proves that $(G, \cdot) \in V_k(\cdot)$, which is impossible. Let $x(xy)^k = y$ for a certain $1 \le k < n$. Then $x = x(xy)^n = (x(xy)^k)(xy)^{n-k} = y(xy)^{n-k}$ and $y = x(xy)^k = x(yx)^{n-k} = x(xy)^{n-k}$. If $n-k \ne k$, then from (3) of Theorem 2 we infer that (G, \cdot) is cancellative, whence $x(xy)^n = x$ for some $1 \le s \le n-1$, which gives a contradiction with the case considered above. We have thus proved that if $x(xy)^k$, for a certain $1 \le k < n$, is not essentially binary, then n is even. Moreover k = n/2.

Case 1. n is odd. From the above remark we see that the polynomials $x(xy)^k$ are essentially binary for all k = 1, ..., n-1.

By (3) of Theorem 2, (G, \cdot) is a quasigroup. Hence the polynomials $xy, x(xy), y(yx), x(xy)^2, y(yx)^2, ..., x(xy)^{n-1}, y(yx)^{n-1}$ are different, and so $p_2(G, \cdot) \ge 2n-1$.

Case 2. n is even. If the polynomials $x(xy)^k$ are essentially binary for $k=1,\ldots,n-1$, then, as in case 1, we have $p_2(G,\cdot) \ge 2n-1 > n-1$. Assume now that there exists a k such that $x(xy)^k$ is not essentially binary. Then, by the argument above, n is even, k=n/2 and $x(xy)^{n/2}=y$ holds in (G,\cdot) . Putting yx^{n-1} for y, we get $xy^{n/2}=yx^{n-1}$. It is clear that this identity is equivalent to the previous one. So, consider the polynomials $xy, x(xy), y(yx), x(xy)^2, y(yx)^2, \ldots, x(xy)^{n/2-1}, y(yx)^{n/2-1}$. From the minimality of n we infer that all these polynomials are different and essentially binary. Thus $p_2(G,\cdot) \ge 2(n/2-1)+1=n-1$. The proof is completed.

Proof of Theorem 4. Let (G, \cdot) be an idempotent commutative groupoid for which $xy^2 = yx^2$. Our aim is to prove that if f(x, y) is a nontrivial binary polynomial over (G, \cdot) , then f is symmetric and there exists a positive integer k such that $f(x, y) = xy^k$. To prove this assertion we use Marczewski's formula of [3] for a description of the set $A^{(n)}(\mathfrak{A})$ of a given

algebra $\mathfrak{A} = (A, F)$. In our case we have $A^{(2)}(G, \cdot) = \bigcup_{k=0}^{\infty} A_k^{(2)}(G, \cdot)$, where $A_0^{(2)} = \{x, y\}$ and $A_{k+1}^{(2)} = A_k^{(2)} \cup \{f_1 f_2; f_1, f_2 \in A_k^{(2)}\}.$

First of all let us prove that $f(x, y) = xy^k$ is commutative for every $k \ge 1$. For k = 1, 2 this follows immediately from the assumption of the theorem. Supposing that $xy^k = yx^k$ for $k \le n$, we have

$$xy^{n+1} = (xy^{n-1})y^2 = y(xy^{n-1})^2 = (y(xy^{n-1}))(xy^{n-1})$$

$$= (xy)^n(xy^{n-1}) = (yx^n)(yx^{n-1}) = ((yx^{n-1})x)(yx^{n-1})$$

$$= (x(yx^{n-1}))(yx^{n-1}) = x(yx^{n-1})^2 = (yx^{n-1})x^2 = yx^{n+1}.$$

Let us find the elements of the set $A_k^{(2)}$. We have

$$A_1^{(2)} = \{x, y, xy\}$$
 and $A_2^{(2)} = \{x, y, xy, xy^2\}.$

Assume that $A_k^{(2)} = \{x, y, xy, xy^2, ..., xy^k\}$ and consider $A_{k+1}^{(2)}$. Using Marczewski's formula, we have

$$A_{k+1}^{(2)} = A_k^{(2)} \cup \{f_1 f_2 : f_i \in A_k^{(2)}, i = 1, 2\}.$$

If at least one of the polynomials f_1, f_2 is trivial, then $f_1f_2 \in \{x, y, xy, ..., xy^{k+1}\}$. Indeed, if $f_1 = xy^r$ where $1 \le r \le k$ and $f_2 = x$ (the case $f_2 = y$ is obvious), then by the commutativity of xy^m for all $m \ge 1$ we have $f_1f_2 = (xy^r)x = (yx^r)x = yx^{r+1} = xy^{r+1}$. Let $f_1 = xy^r$ and $f_2 = xy^p$, where $1 \le r$, $p \le k$. Let p = r + q. Without loss of generality we can assume that $q \ge 1$. Then, using again the commutativity of xy^m , we get

$$f_1 f_2 = (xy^r)(xy^p) = (xy^r)((xy^r)y^q) = (xy^r)(y(xy^r)^q) = (y(xy^r)^q)(xy^r)$$

= $y(xy^r)^{q+1} = (xy^r)y^{q+1} = xy^{r+q+1} = xy^{p+1},$

where $p+1 \le k+1$, and thus f_1f_2 is either trivial or of the form xy^s , where $s \le k+1$. Hence

$$A_{k+1}^{(2)} = A_k^{(2)} \cup \{xy^s : s \le k+1\} = \{x, y, xy, \dots, xy^{k+1}\},$$

which completes the proof.

Before proving Theorem 5 we need some lemmas.

LEMMA 1. If (G, \cdot) is medial and $(G, \cdot) \in V(\cdot)$, then

$$A_k^{(2)}(G,\cdot) = A_{k-1}^{(2)}(G,\cdot) \cdot x \cup A_{k-1}^{(2)}(G,\cdot) \cdot y$$
 for all k,

where $A_0^{(2)}(G, \cdot) = \{x, y\}$ and $A_0^{(2)}(G, \cdot) \cdot u = \{fu: f \in A_0^{(2)}(G, \cdot), u \in \{x, y\}\}, j = 1, 2, ...$

Proof. We proceed by induction on k. For k = 1 we have

$$A_1^{(2)} = A_0^{(2)} \cup \{f_1 f_2 : f_i \in A_0^{(2)}, i = 1, 2\} = \{x, y\} \cup \{xy\}$$

$$= \{x, y, xy\} = \{x, xy\} \cup \{y, xy\} = \{xx, yx\} \cup \{xy, yy\}$$

$$= \{x, y\} \cdot x \cup \{x, y\} \cdot y = A_0^{(2)} \cdot x \cup A_0^{(2)} \cdot y.$$

We have $A_j^{(2)} \cdot x \cup A_j^{(2)} \cdot y \subset A_{j+1}^{(2)}$ for all j. Using Marczewski's formula of [3] for the description of $A^{(2)}(\mathfrak{A})$ and the inductive assumption, we get

$$A_{k+1}^{(2)} = A_{k-1}^{(2)} \cdot x \cup A_{k-1}^{(2)} \cdot y \cup U \subset A_k^{(2)} \cdot x \cup A_k^{(2)} \cdot y \cup U,$$

where $U = \{f_1 f_2 : f_1, f_2 \in A_k^{(2)}\}$. To finish the proof it is enough to show that $U \subset A_k^{(2)} \cdot x \cup A_k^{(2)} \cdot y$. Let $f \in U$. Then $f = f_1 f_2$ and $f_1, f_2 \in A_k^{(2)} = A_{k-1}^{(2)} \cdot x \cup A_{k-1}^{(2)} \cdot y$. If $f_1 = g_1 x$ and $f_2 = g_2 x$, then $f_1 f_2 = (g_1 x)(g_2 x) = (g_1 g_2)(xx) = (g_1 g_2)x = gx$, where $g = g_1 g_2 \in A_k^{(2)}$ since $g_i \in A_{k-1}^{(2)}$ (i = 1, 2). Therefore, $f \in A_k^{(2)} \cdot x$. The case where $f_1, f_2 \in A_{k-1}^{(2)} \cdot y$ is proved analogously. Now let $f_1 = g_1 x$ and $f_2 = g_2 y$, where $g_1, g_2 \in A_{k-1}^{(2)} \cdot T$ hen using the medial law, we have $f = f_1 f_2 = (g_1 x)(g_2 y) = (g_1 g_2)(xy) = g(xy)$, where $g = g_1 g_2 \in A_k^{(2)}$. If g = hx and $h \in A_{k-1}^{(2)}$, then

$$f = (hx)(xy) = (hy)(xx) = (hy)x \in (A_{k-1}^{(2)} \cdot y) \cdot x \subset A_k^{(2)} \cdot x.$$

The case where g = hy is proved analogously.

Lemma 2. If (G, \cdot) is medial and $(G, \cdot) \in V(\cdot)$, then for every $f \in A^{(2)}(G, \cdot)$ there exist nonnegative integers α_i , β_j (i, j = 1, 2, ..., n) such that $f(x, y) = x^{\alpha_1} y^{\beta_1} ... x^{\alpha_n} y^{\beta_n}$. (In this lemma we adopt the convention $uv^0 = u$).

Proof. The assertion easily follows from Lemma 1 and Marczewski's

formula for $A^{(2)} = \bigcup_{k=0}^{\infty} A_k^{(2)}$ (see the proof of the preceding lemma).

Proof of Theorem 5. Let (G, \cdot) be medial, $(G, \cdot) \in V(\cdot)$, and card $G \ge 2$, and let f(x, y) be an essentially binary polynomial over (G, \cdot) . By Lemma 2, we have $f(x, y) = x^{\alpha_1} y^{\beta_1} \dots x^{\alpha_n} y^{\beta_n}$. Observe that f(x, y) f(y, x) = xy, which easily follows from the identity (g(x, y)y)(g(y, x)x) = (g(x, y)g(y, x))(xy) and inductive arguments with respect to the length of f(x, y) = g(x, y)y. Hence f(x, y) = f(y, x) implies f(x, y) = xy.

Suppose $p_2 = p_2(G, \cdot)$ is finite. Since $\operatorname{card} G \ge 2$, we infer that $p_2 \ge 1$. We have to prove that p_2 is odd. Indeed, from the above consideration we conclude that the only commutative essentially binary polynomial over (G, \cdot) is xy, whence p_2 is odd since p_2-1 must be even as the number of all different essentially binary noncommutative polynomials over (G, \cdot) . Further, observe that there exists a medial groupoid from $V(\cdot)$ for which p_2 is infinite, for instance (R, (x+y)/2), where R is the set of all reals and x+y the usual addition of real numbers. The proof is completed.

- J. Düdek, Some remarks on distributive groupoids, Czech. Math. J. 31 (1981), pp. 451-456.
- [2] G. Gratzer, Universal Algebra, Springer-Verlag, 1979.
- [3] E. Marczewski, Independence and homomorphisms in abstract algebras, Fund. Math. 50 (1961), pp. 45-61.

Accepté par la Rédaction le 18.5.1981