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ding” introduced in Section 4 is not the correct replacement for “semilattice
monomorphism”, but the reasoning of Theorem 4.11 is quite general, and
should go through with other notions of strong embedding. We conclude
that Example 4.10 is a fundamental obstacle to finding a single concept of x-
distributivity which will extend both Theorem 1.5 and Theorem 4.1 to
arbitrary partially ordered sets. As a final remark, we note that if we restrict
ourselves to finite partially ordered sets, all the difficulties just mentioned
disappear.
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Axiomatization of the forcing relation with an
application to Peano Arithmetic

by

Zofia Adamowicz (Warszawa)

Abstract. In the paper we describe those formal properties of forcing which set theoretical
forcing and the method of indicators in Peano Arithmetic have in common.

Introduction. We describe a formal similarity between forcing in set
theory and the indicator method in Peano Arithmetic.

Let P be a set of forcing conditions, (%, @) a topological space in 14
which is V-codable, ie. such that there is a set <0, <) and an isomorphism
@ in V’ of <0, <> and <0, <) such that the relation “ye ()" for a ge0
is an absolute relation of y and g w.r.t. Vand V* (see [1]). We shall always
assume that q; 9,6 0& g, NG, # Y = g1 Nq2€0.

Let yeVF be an element of #. Let us identify in VP 0, <) with’

(0, . ‘

We formulate two systems of axioms characterizing, respectively, the
following relations:

R(p, q) defined as pl—(y€q)
and
R'(p, q) defined as p Allyedll # 9.

Then R satisfies the first system of axioms iff there is a ye V? such that R is
the relation p|i (y€g) and R’ satisfies the second system iff there is a ye V"
‘such that R’ is the relation p A ||lyeg]| # @. We call relations of the first type
forcing relations and those of the second type consistency relations.

" We show that the Kirby—Paris indicator for models of PA defined by
means of a game where questions are Godel numbers of formulas naturally
determines a relation satisfying the second group of axioms, ie., a consis-
tency relation.

We also show that there is a strict correspondence between consistency
and forcing relations.

A consistency relation canonically determines a forcing relation and
conversely. Thus the Kirby-Paris indicator determines a forcing relation. This
explains certain analogies between the forcing and the indicator method.

The forcing relation determined by the indicator is not definable within

x
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PA. The consistency relation in question is definable in PA like the indicator
itself. That is why it is more natural in PA to consider this consistency
relation or the indicator itself and not the corresponding forcing relation.

On the other hand, forcing in set theory can be defined game-
theoretically similarly to the way in which the Kirby-Paris indicator is
defined. This shows the similarity of forcing and indicator in the other
direction.

The paper is organized as follows:

Section 1 is devoted to forcing in set theory. We first introduce by
algebraical axioms the notion of a quasi-forcing relation. An illustration of
this notion is forcing in set theory and also a certain relation in recursion
theory.

Then we strengthen our axioms and we obtain a characterization of
relations of the form p|-(yeg) — we call them forcing relations.

Theorem 1 expresses the equivalence: R is a forcing relation iff there is a
yeV? such that R is the relation p{ (y€g).

We finish § 1 by defining forcing in set theory game-theoretically.

In § 2 we introduce the notion of a consistency relation. We show the.

one-one correspondence between forcing and consistency relations. We define
the consistency relation determined by the usual indicator for models of PA.
We define the corresponding forcing relation and show that it is not
definable in PA. Finally, using our notions, we give a proof, simpler than the

original one, of the independence of a sentence analogous to the Kirby—Paris
sentence.

Our sentence is very similar to the Kirby—Paris sentence; however, we
do not know whether it is equivalent to the Kirby-Paris sentence.

§1

Let us introduce the following notion of a quasi-forcing relation.

DeriniTion 1. Let' P be a partially ordered set. Let {¥,0ybeaT
topological space. Let R < Px (" be called a quasi-forcing relation iff
(1) <p.@>eR&P' <p = <, g)€R,

{p.9>eR&q 29 = {p.q)eR,
(2) <p.9>eR&{p,9%eR = gnq' # B&R(p, 4N q).

ExampLe 1. Notice first that the usual forcing relation in set theory
provides an example for this definition. Indeed, let M be an inner model. Let
PeM and let <%, () be a topological space such that ¢ is M-codable (see
[1]). Assume that % < w®. Let y be an element of M? denoting a real. Then

if we define R(p,q) = p| (v €q) where q codes an element of ¢, then R is a
quasi-forcing relation.
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Let us consider a less trivial example of a quasi-forcing relation.
ExampLE 2. Let P = »~° with the inverse inclusion. Consider the func-

tions {e}*ew® for a given e and x running over w®. Then there is a recursive

relation R, € 0<? x<® such that for te@™?, t < {e}* = (Es)c,R,(s, 1).
Let (%, ("> be the Baire space. Then if we define R(p, q) as

R(p, q) =(Ep)(Eq)(p = P &R.(P, 9)&q < q)

(note that we identify p, g with finite sequences determining them) then R is
quasi-forcing relation. In other symbols we have

R(s, 1) = (En)(E)(t S ¢ & R, (15 1)-

Let us make a few remarks.

Notice that (1) of Definition 1 corresponds to the Cohen “extension”
lemma and (2) to the “consistency lemma”. As we shall see, the third Cohen
lemma, ie., the “truth lemma”, in a suitably restricted form is a consequence
of (1), (2), ie,, of the extension lemma and the consistency lemma, no matter
what concrete quasi-forcing relation is considered.

Remark 1. Let {(Z, @ be a topological space with the basis € induced

by P, ie., there is an isomorphism ¢ of <P, <> and (€, =). For example,

(%, 0> can be the space of ultrafilters in P (see [2]) or if P = w<® it can be
the Baire space {o®, 0=®). Let {¥, (" be given, (¥, (") codable. Let
R <P x( be a quasi-forcing relation. Then there is a function f: & —% such
that for xeDom f, ge ¢' we have
(% f(x)eq = (Ep)(xep&R(p, 9)
and f is maximal among functions with the property ().

Before proving this remark let us refer again to set theory. Let M, P, ¥,
@, y be as before. Let (Z, ) be the space of ultrafilters in P. Then fis an
extension of f' defined as

f9=i0)

for x being generic over M, P.

Then we have

i,()eq = (Ep)(xep&(pl- yed),

which is an instance of the original Cohen truth lemma.
In the case of recursion we have

t<{ef = (Bs)(s S x&R(s, 1)
and we can define f(x) = {e}*.
Proof of Remark 1. Define f as

x, yyef = @e(veq < (Ep)(xep&R({p, )
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It suffices to show that f is a function, because (%) and the maximality is
immediate by the definition. Indeed, let {x, y), {x, y>€f. Let yeq, yeq.
Then there are p, p' such that xepnp’ and R(p, q), R(P, ¢)- Let p” be such
that p” < pnp'. Then by (1) of Definition 1 R(p", g), R(p", ¢'). Hence by (2)
gnq # @. Thus y =y because g, ¢ were arbitrary and (%, 0> is T,. =

Remark 2. If R is a quasi-forcing relation then the f satisfying () is
continuous in ¢ as a function from % to %.

Indeed, this follows directly from ().

Let us recall here that there is a possible approach to the axiomatization
of forcing starting from the “truth lemma” by means of purelly topological
notions, mainly the continuity. We did it in [3]. In fact, in [3] we dealt not
with quasi-forcing relations but with forcing relations defined below. We give
a full topological characterization of the relation p|- (y&g).

In § 2 we shall see another example of a quasi-forcing relation.

Now let us limit our definition in such a way as to preserve its
algebraical character but to characterize fully the usual forcing relation.

Dernuition 2. Let P, %, @ be as before. Let R < Px @ be a forcing
relation iff ‘

(1) <p,>eR&pP <p = {p, g€R,
{p,3>€eR&q 29 = {(p,q >R,

(2 <p,q>eR&{p,q>eR = qnqg #B&{p,qNq>eR,
() (P)<p(Ep")<p R(P", @) = R(p, 9),

@  (q) theset D, = [peP: (By)((¢g Sqorq ng=0)&R(p, q")} is dense
in P. . .

TueoReM 1. Let <%, &'> be a topological space V-codable in V'. Let
K%, ") have the centralization property, i.., any subfamily 0" < O' such that
all intersections of finite subsets of @" are non-empty, has a non-empty
intersection (0" (see [3]). Let RS Px . Then R is a forcing relation iff
there is a y in V' such that R(p, q) = (p| yeq). :

Proof. We shall first give a general proof of this lemma and then we
shall give a simpler proof in the case where (%, @'> is the Baire space,
because this is the most natural case.

To prove that for a y from V* the relation p| (yeg) is a forcing
relation it is enough to use standard properties of forcing and it is easy.

So let us assume that R is a forcing relation. Let (%, 0 be the space of
ultrafilters in P. Let f; be the function from & to % defined for R in' Remark
1. For simplicity work in a boolean extension of ¥ in which (p),(Ex) (x is
generic over ¥ P), but we can also work in V*. If x is generic over ¥, P (let
us say “P-generic”) then xeDom fy — we prove it as the last part of Fact 1
in [3]. Let us recall this proof.
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We have

&, yyefa = @eo(veq = (Ep)(xep&R(p, 9))-
Let x be P-generic. Let

0. ={ge®: (Ep)(xcp&R(p, 9)}.

First we shall show that intersection of finite subsets of ¢, are non
empty. So let q,...g,€ O, There are p;...p,eP such that xep, n...np, and
R(p;, q;)- Let p be such that xep<p,n...np,. By (1), R(p, q;). By a
consecutive application of (2) we infer g, N...Ng; # & and R(p, g, N...N g
for i < n. Hence g, N...Ng,# @, which is what we wanted to show.

Now by the fact that (%, ') has the centralization property, (\; # 9.
Let ye(\0;.

We shall show that {x, y>efz. So let yege . Consider

D,={peP: B)(d Sqvqng=2)&R({, q))}

By (4), D, is dense in P.

By the fact that x is P-generic, there is a p’ such that xep'&p'eD,. Let
4 be such that (7 € q v ¢ ng=©) and R(p, q). We have g’ because
xep’ and R(p, q). Thus yeq. Hence g'nq # & because yeqng. Thus
q' < q. Hence by (1), R(p!, g). Thus ge0;.

We have “shown that if ge¢”
(Ep)(xep&R(p, g)). Thus {x, y>efr-

Hence follows xeDom fz, which is what we wanted to show.

Define y to be'an element of V'F such that V|- (fx(x) = y), where x is
the canonical name for a generic filter. Let us show that R(p, g) = pl- (v€4).

We have: for every P-generic x, fg (%) = i,(y), by the definition of y. Let
us show that

R(p, q) = (x)(x P-generic & xep = fr(x}q).

This will suffice to prove that R is the relation p|(yeg) in view of the
above equality. Indeed, let R(p, g), x be P-generic, xep. Then, by the
definition. of fz, fa(x)€q. Assume conversely that (x) (x P-genetr@c &
xep = fr(x)eq). Suppose that “IR(p, g). Let p’ < p. By (4) of Definition 2
there is a ¢’ such that ¢' S g or ¢ ng =@ and a p" < p' such that R(p", p').
Two cases are possible:

(1) (P)<p(EP")<p (Eq)=, R(P", q) OF
@  (Ep)<,(Er)<y (Bq)(d ng = B&R(D", 7). 7 7 )
If (1) then by (1) of Definition 2 we have (P)<,(Ep)<y R(p", g)-and hence

and yeq then gel,, ie,

"by (3), R(p, g). Contradiction. Thus (2} holds.

" We have R(p", q) for a p"< p and a ¢ disjoint with ¢. Let x be P-
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generic, xep”. Then by the definition of fg, fz (x)eq’. But by our assumption,
Jfr(x)eq (note that xep). Contradiction. Hence R(p, g). m

Assume now that (%, ') is the Baire space {w® w=®). Again, if
there is a y in V? for which R is the relation p| (veq), then evidently
R is a forcing relation. Thus assume that we are given a forcing relation
R Pxw™®. Let y be defined as

Kn, my, pyey = R(p, {{n, my}).

Let us show that R(p, g) = pl (v€g).

Assume R (p, g). Then, by (1) of Definition 2, (Woms R (p, {<n, g(n)>}),
(we identify finite. sequences with neighbourhoods). Thus (n)domq(p”—(y(n)
=g(n))) by the definition of y. Hence pl- (yed). -

Conversely, let pii- (yeg). Let p' <p. By the density of D, there is a
p"<p and a ¢ such that ¢ ng = or ¢ =q and R(p", ¢). By what we
showed before, p”|I- (y€§). But hence g N ¢’ # @ because p” |}~ (y €§). Hence
9’ < q. Thus by (1) of Definition 2, R(p", g). Hence, by the fact that p' was
arbitrary and by (3), R(p, g). n

Theorem 1 shows that it is easy to characterize the family of relations

pl- (Xeq’)}ze,,r by very simple algebraic conditions. We are also able to

characterize the whole relation {p| @ (¥)},evr as a relation of p and ¢, by
algebraic conditions. T

Let M be an inner model (e.g. M = V). Let us consider the language

Lzx (M), ie., the language of set theory with elements of M as constants. Let

us admit long conjunctions of the form /\ o(r) where X < M is a definable
X

. N re.
cIa§s. Let us consider the following M-logic — as axioms we take the usual
logical axioms and the axiom ““1xe@”. As rules of inference we take the
usual rules and the following rules:
A (r"er = rer)

r'eM
rankr’’ <rank rr’

r=r
(r" 1 v rgr)

rér

r'’eM
rank »'* <rank r

and the following M-rule:

1G]

reM
= e
Let (P, <) be a partially ordered set.
DeriniTioN 3. Let F < Px L, (M) be called a forcing relation if:
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() F(p,9&p' <p = F(p, 0),

(2) It is not true that F(p, )& F(p, 1¢).

B P)<EP)<r F(0", 0) = F(p, 9).
(4 For every ¢ the set D, = {peP: F(p, ¢) v F(p, T1¢)} is dense in P.

(5) F(p, o)&F(p, ¥) = F(p, 0 &),
F(p, o(r)) for reX = F(p, /_><p(r)).

(6) Let us define the following topological space (%, ("): Let
¥=1{0,1}" gel=g=fcl0, M f@)=¢]

for a given reM, ¢€{0, 1} (then ¢ is a subbasis of a topology). Let
ReM, R< Px( be a forcing relation in the sense of Definition 2.
Then there is a constant 7 such that

R(p, ¢’y =F(p, reF),
R(p, g}y =F(p, re¢n.

Conversely, if Fe M and we define

R(p, %) = F(p, rer) &rankr < rank F,
R(p, g}) = F(p, r¢?) &rank r < rankF,

then Re M under a coding of €.

Remark 3. Notice that axiom (4) corresponds exactly to the famous
Cohen definition of forcing the negation. This is the main feature that
distinguishes a forcing relation from a quasi-forcing relation ((3) is purely
technical). Thus we can infer that this axiom is not the deepest point in the
definition of forcing, as has been sometimes thought. Indeed, as we have
already seen and as we shall still see in § 2, quasi-forcing relations are quite
interesting, i.e, we can do a lot without (4). The reason for axiom (4) is
mainly to permit finding “generic” filters in P, ie, filters deciding all the
sentences.

Let us prove now that Definition 2 really characterizes forcing in set
theory.

Remark 4. F € PxL,.(M) is a forcing relation iff there is a valuation
of constants v: M — M® such that v(@) = O, rankr’ <rankr = rankv(r)
<rankv(r), F(p, () = pl- ¢(v(r) and v is onto the class of those ye M®
which hereditarily have the property {p',y )€y = pl-(ey)-

Proof The “if” part of the remark is standard.
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Let us assume that & is a forcing relation and define v.
Let v(@) = 0. Assume that for reRY, v(r) has been defined. Let

reR¥ ;. Let v(r) < {v(): r'eR¥} x P be defined as
(), pyev(r) =F(p, r'er).
Assume that vjg, is onto N, where N, is the submodel of M consisting of
those y which hereditarily have the property:
&, yrey=(pl-yey

?;s;;me vméeM. Let us show that UiRsy g is onto N, ;. Indeed, let ye Ny, 4.

y={py>: pl- veyh YEN:xP, yeM.
Let R be defined as
R(p, ) =<p, v(r)ey,
R(p, 42) =<p, v(r)>¢y for r'eR,.

Then R is a forcing relation and R e M because g, Y€ M. Thus by (6) there
is a constant 7 such that -

R(p, 4oy=F(p, r'en),
R(p, q}) = F(p, r'¢7).

Let us show that () = y. Indeed, this follows from the fact that v
onto N,.

Let us show

IRg 18

0 F(p,7'er) = pllo(r)en(r),
b) F(p, r'¢n) = pll- () éo(r),
(3) F(p,” =1 =pllo() = v(r),
@ F(p,r' #1) = plk o(r) # o(r).

Let us first make the following remark: if F d Tr=p
tren R ) (P, 9(r) and F(p,r =r)
Indeed, by (6) we have F(p,r = r'&o(r). But

Lr=r&or=0r).

Hence by (1) F(p, ¢(r)).
Now let us assume that (1)+(4) hold for ', r’ from R;. Let TER,, .

1° If F(p,r'er) then (o(r), p> d th
If pl-v()ev(r) then pyev(r) and thus pl- v(r)ev(r).

()< (EP" )<y Br ), (p” I (0() = v(rY))
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and <v(r"), pdev(r). Thus F(p",r =r) and F(p”,r"er) by the inductive
assumption. Hence by the initial rémark F (p", r'er) and by (3) F(p,r' =71).
2° Let F(p, ¥ ¢r). Let p' < p. Then F(p/, ' ¢r). Hence by the preceding
point, which we have just shown, and by (1) p’ not | v(r)ev(r). Thus
pl-v(r)¢v(r). ,

Let pl-v(r)¢v(r). Let p’ < p. Then 1F(p';r'er) by 1°. By (4) there is a
p" < p' such that F(p”, r'¢r). Hence by (3), F(p, r'¢r).

Thus we have shown 1°, 2° for r'eR;, r€R,;. Now let us add this to
our inductive assumption and let FeR,.,.

3° Let us prove the implication “=".

Let F(p,7=r). Suppose that there is an r'eR,, p'<p such that
F(p, ¥ €M &F(p', r' ¢r). Hence, by the injtial remark, F(p, r'er) because
F(p', r = 7). But this together with F(p, r'¢r) contradicts (2). Thus, for every
r'eRg, p'<p 1(F(p, reN&F(p, r'¢r) Hence, for every r'eR, p'<p, p'
not |- (v(*)ev(P &v(*)¢v(r)) by the inductive assumption. The same holds
symmetrically for r interchanged with ¥. Thus pl (v(r) = »(P).

Let p| v(r) = v(F). Then for every r' such that rank r’ <rankr,F,

Pl ((u(r’) ev(r) =(v (r’)ev(F))).
Hence F{p, ('er =r'eF). By (5)

Flp, M\ (er=ren)
rankr";rankr
Then, by (1), F(p,r =7).

4 Let F(p,r#T7). Let p'<p. Then F(p/,r# 7. Then p' not |- v(r)
=v(F) by 3° Thus p|v(r) # v(P.

Let p| v(r) # v(). Let p’ < p. Then T1F(p,,r = 7) by (3). By (4) there is
a p” < p such that F(p",r# 7). Thus by (3) F(p,r #7).

It remains to prove (1), (2) under the assumption r, reReyy.

(2) Let F(p, r'¢r). Suppose that there is an r”, p’ < p such that rank »”
<rank r and p'JF v(r") = o(r)&v(r")ev(r). Thus p'| v(rYev(r). By the
inductive assumption F(p), r'er). But F(p, r'¢r) by (1). This contradicts (2).
Hence, for every r” with rank less: than rank r and for every p' < p, p’ not
o) =0 &v(r)ev(r). Thus pl-o(r)¢v().

Let plv()év(). Then, for every r” such that rank r” <rank r,
pl v # v(r) v v(r")¢v(r). Thus F o #rv r’¢r)) for every suitable
. By (5) ‘

Flp, N\ @"#rv r¢r)).
rank r'f; rank r
By (1), F(p, r'¢r). ) )
Thus we have proved the remark for atomic formulas and their

negations. )
Assume now that the remark is true for ¢, y. Let 0 be of the form @ &yr.
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Let F(p, 6). Then by (1), F(p, ») and F(p, ). Hence, by the inductive
assumption, pl- ¢ and p| ¥ and thus p|- 6.

Let pli- 6. Then pl~ ¢ and p|I . Hence, by the inductive assumption,
F(p, 9) and F(p, ). Thus by (5) F(p, ).

Let 8 be of the form (x) ¢ (x). Let F(p, 6). Then by (1), F(p, @ (1)) for an
r. Hence, by the inductive assumption, p| ¢(v(r)) and thus pl}- 0.

Let pll-6. Then pl- ¢(v(r)) for every r. Hence, by the inductive
assumption, F(p, ¢(r)) and by (1), (5), F(p, 0).

Let 0 be of the form ~1¢. Let F(p, 6). Suppose that p not |- 6. Then
there is a p’ < p such that p'|- ¢. By the inductive assumption, F (p', ¢). But
F(p', T1¢). Contradiction. Thus p|} 6.

Let p|l- 6. Suppose that ~IF(p, ). Then by (4) there is a p’ < p such
that F(p, ¢). By what we have just proved, P’ ¢. Contradiction. Thus
F(p,0). m

Let us close this section with a piece of discussion.

Remark 4 shows that the axioms (1)6) fully characterize the forcing
relation in set theory. In other words, if F satisfies (1)6) then this is the
forcing relation defined by Cohen. Let us consider the meaning of (1)~(6).

Suppose we are looking for a relation F < P x L, (M) which should say
the following: if we have the information p about the generic set G, then it
gives the information g about the generic model. Then (1) says: if we have
more information about G then we have not less information about M[G],
and if we want less information about M [G] then the former information
about G suffices.

(2) says that we do not obtain contradictory information.

(3) is rather technical but it is not important to prove the “<” part of
the equivalence pll- ¢ = F(p, ¢).

(5) says that we can join information.

(6) says that there are enough constants,

Axiom (4) has a different character — it permits easy finding of sets of
conditions deciding every sentence (i.., generic).

Remark 4 shows that if we put natural requirements about giving
information on a relation F then it is determined uniquely. To be precise, it
is also determined by the M-logic that we have defined but our requirements
put on the M-logic are also natural set-theoretical requirements.

ExampLe 3. Let M be an inner model. Let #M(P)x o, PeM. Let
L,z (M) be defined as before. Let L, (M) be the subset of L, (M) consisting of
sentences with constants of rank < ¢. Let us define the following game:
G¢(p). Let I ask questions and II — answers.

The possible questions are of the form “p” for p'eP or “p(r)” for
©(r)e L (M). Player II answers “yes” or “no”. Moreover, (a) i ¢ is of the
form (Ex)y (x) then II shows an r. (b) If ¢ is of the form r'er then II shows
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r" such that rank r” <rankr; (c) If @ is of the form ' # r then II shows r”
such that rankr” < rankr, r.
Player II fails if he has given the following answers:

(1) a. To the question “@(r)” he has said “yes” and ¢ is of the form
(Ex)¥ (x) and has shown r, and he has said “no” to the question ¥ (r).

b. He has said “yes” to the question “¥er” and has shown r”, and he has
said “no” to the question “r"er&r =r".

c. He has said “yes” to the question “r’ " and has shown r”, and he
has said “no” to the question “(r"er&r"¢r) v (r'er &r"¢r).

(2) He has said “yes” to “o(r)” and “no” to “y(r)" where I;{((p:ﬂl/).

(3) He has said “yes” to “¢(r)” and to “71¢(r)".

(4) He has said “yes” to “@(r)&y ()" but “no” to “@(r)” or “Y(r)".
Similar conditions concern other connectives.

(5) r = Px 0 is a forcing relation, re R, and {p', g®)er, and he has said
“no” to “r'¢r” and “yes” to “p” or {p,,q;r>er and he has said “no” to
“r'¢r” and “yes” to “p”.

(6) He has said “no” to “p”.

(7) He has said “yes” to “p"”

(8) He has said “yes” to “p” and to “p™ where p', p” are incompatible.

Let II win if he has not given wrong answers of the form (1)+(8) and if

he has answered every question “p'”, “@(r)” for @(r)eL:(M).

Let F{p, ¢(r)) be defined as (p))<, (there is a winning strategy for II in
G.(p’) saying “yes” to the question “op(r)” where §'= rank r).

Let us show that F is a forcing relation. Notice that (1), (5), (6) are
obvious. Let us show (4), which is the most difficult. We show it by induction
w.rt. the length of ¢(r) and the rank of r. Assume that for r, ' € R, (4) holds

f the form r'er or ¥ =r.
for ﬁ. Obet r'eR,, reR,,; and let ¢ be of the form r'er. Let peP. Let
r' € P x € be a forcing relation. Then there is a p’ < p such that '<p’, g2>eror
{p', qL> er. Then we have either “every strategy Winn‘ing for ’II in Gg“(p’) fays
“yes” to r'er” or “every strategy winning for II in G,(p) says “yes” to
“r'¢r". Thus F(p, r'er) or F(p', r'¢r).

b. Let r'eR,.;, reR,;; and ¢ be of the form r' #r. Let peP.

Assume that (r")g (for every strategy o winning for I in Gg (p), o says
“yes” to “(r"er’ =r"er)"). Then every winning strategy for IT in G,(p) says
“yes” to “r' =r". Hence F(p, ' =7). o '

Assume that (E’")R,, (Eo) (o is a winning strategy for II in G,(p) and ¢
says “no” to “("er =r"er)). i

Take ¢. Then o says “yes” to r’er, r"¢r or ¢ says y’es t? 1r ér,
r" €r)”. Assume the first case. Then we have (Ep')<, <P, ©®yer& (p, gy, Y Er.

and “no” to “p™ where p" < p'.
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Then every strategy 7 winning for II in Gg( ') says “yes” to “r"
Thus F(p, r' =r). Treat the second case similarly.
NOtICC that we have shown more than (4), namely the following
(%) (Ep)<, (every strategy ¢ winning for II in G (p)) says
or

er, r'é¢r”.

PR

(Ep), (every strategy ¢ winning for II in G,(p') says “yes” to “71¢”).

We show (#) similarly for other ¢.

As a corollary, from (*) we obtain

(*%) F(p, ) =(p)<,(Ep”)<, (every strategy winning for II in G:(p")
says “yes” to ¢).

Indeed, let F(p, qo) Let p’ <
IT in G,(p") says “yes” to “¢”)
G¢(p") says “no” to “¢”).

The second eventuality is impossible because F(p, ¢). Thus the first
holds.

The implication <= is obvious.

From (*%) we easily obtain properties (2), (3) of Definition 3.

Thus F is “the” forcing relation.

p- Then (Ep”)¢,, (every strategy winning for
or (Ep")¢,. (every strategy winning for II in

§2

Now we shall introduce a new notion.

DeFiNrTioN 4. Having a quasi-forcing relation R we can define another
relation, connected with R, R¥, which will be called a consistency relation.
Let {p, ¢>eR* =(Ep)<, R (P, 9).

ExampiE 4. Let P, R, y be as in Example 1, § 1. Let R'(p, g) =(p is
compatible with ||y e4l|). Then R’ = R*

ExampLe 5. Let R(p, g) be the quasiforcing relation of Example 2 of
§1 for a given ¢, RS w“°xw<®. Then R* is the relation:

R*(s, ) = (Es')(s' 25 &t < {e}).

Remark 5. Let R = P x (' be a quasi-forcing relation. Let (&', > be as
in Remark 1. For qe(, let I be defined as

xedy = (Ep)(xep&R(p, ) v (Ep)(Eq)(gnq' = O&xep&R(p, q)).
Then R* has the following properties:

(1) R(p,Q&p<p&g<q = R*(p,q),

@ [pna7#B&P),(P IR+ O = R*(p, D& R*(p, )]
= gngqg #J&R*(p, qnq).

Remark 6. 7 is the set of those xeZ that “decide” -about g In

icm°®
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Example 4 it is the set of those x that intersect an appropriate D, of
Definition 2 and in Example 5 it is {x: {e}* is defined at domg}.

If R is a forcing relation then & ,‘1‘ is dense in Z in ¢. In this case (2) is
equivalent to [(p)<, R*(P’, @& R(p, ¢]=>qng =, and (p)¢, R*(P, q)
= R(p, ). Thus (2) follows directly from (2) of Definition 2.

Proof of Remark 5. (1) is evident.

(2) Assume the hypothesis of (2). Let p’ < p be such that R(p, g’} (such
a p' exists because R*(p,q)). Then p'nZX+#@. Hence R*(p,q).
Then (Ep”)<, R(p”,q). But R(p", ¢') because R(p', q). Thus gng # O
& R*(p, g nq'). Contradiction. m

DEerFINITION 5. Let R < Px (' be called a consistency relation iff:
(1) Rp,g&p<p&g<q = R(p,q)
(2) Let for ge(”, Y be defined as

xeZ¥ =(p)(xep = (R'(p, 9) v (Eq) (¢ nq = O&R'(p, 7)))).

‘We assume
[P 27 # B&P)<, (0 " &7 # G = R (P, )& R (p, )]

= qnqg #O&R (p,qnq).

Remark 7. The above definition is an attempt to introduce the notion
of a consistency relation axiomatically. It can be proved that if R is of the
form R* for a quasi-forcing relation R then (1), (2) hold although #} defined
for R can be different from X" — the proof of (1), (2) is just a repetition of
the proof of Remark 5 with &‘” % in place of #F.

Remark 8. For ge(’, let —qe(. Let R" < Px{ be a consistency
relation. Then there is a P < P and a relation R = P x (' such that, for p such
that @+ pnZ¥, R*(p, ) =R'(p, q).

Moreover, &, R ZF and Ryp <o is a quasi-forcing relation for a P' < P
and Rip-xe is a forcing relation for a P' < P".

Proof. Define R as

R(p, ) =[PV, (P " 2] # O=R (¥, 9)&pn I + ]
Let Z'= m 2% Let "= () 2% Let P'={p: pnZ + O} Let
qe0’

P ={p: pn &’ o #* ).
Then Risa qu331-forc1ng relation in P, a forcing relation in P”.

Let us show R*(p, q)=R'(p, q).
Indeed, we have

R*(p, g) = (EP)<, RV, @) = (EP)<, (P 0 27 # O&

&Py (b 0 X5 # O=R (", 9)))-

Hence for p’ itself we have R'(p’; ). By (1) of Definition 5 we infer R'(p, g).

6 — Fundamenta Mathematicac CXX. 2
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Assume now R'(p, )& pn %Y # @. Let §= —q. Suppose that
)0 N IF # O)=(Ep")<, (b 0 IF # B&R (¢, 7).

- Then, by (1) of Definition 5, (p)<, (P " IX # B =R (p, 7). Hence, by (2) of
Definition 5, g ng # @. Contradiction. Thus

EP)<r(p 0 IF # &)<y, (0" N EX # B=R (", g))).

Hence (Ep))¢, R(p, ). Thus R*(p, g).

Let us show that 27 < Z¥'. Indeed, this follows directly from the fact
that R*(p, q)=R'(p, q) for every peP. u

Remark 9. Let us remark here that it can happen that 2% %" even
if R is a forcing relation. Indeed, let P =2<®, (&, O = {29 2<%, Let
yeV” be defined as

y=1{<{sm, &) [(e = 1& 2 min {medoms: s(m) = 0} v
V(e = 0& 2| min {medoms: s'(m) = 0})] & (EM)gory s (s (m) = 0)}.
Let R(:s, H=slrc Y where ||~ denotes the weak Cohen forcing. Then R is
a forcing relation. Let xe g” be such that x=1. Let = {1>. Then
G cx=Es)s' 2s&s'|-ic ))- Thus (s)(s < x = R*(s, t)). Hence xe 2%,
But
©)(ss x=(Bs) (s 25 &' || i< y)).
Indeed,_if sCSx, let 5’ be such that §'2 5&2/min{medoms': §'(m) = 0} (the
Jfirst 0 is at an odd place). Hence ()(s€ x=s not|}~f< y). Thus x¢ R~
Remark 10, If g = 27 and it is closed in <%, 0>, then IR = X
Indeed, we have ZF = 4% directly from the definition.
Remark 11. If &7 = &% then for xe %, ge ¢ we have

(Ep)(xep&R(p, 9) = (p)(xep' =(Ep')<, (xep” &R (¢, 9)).

The proof is straightforward.
Let us introduce one more definition.

DEFINITION 6. Let R < Px ¢ be called a weak consistency relation iff
(1) R(p,9&p<p'=R(p,q), ,,
@) i pn2T # B&P)<, (0N 2K % O=R(p, )&

&)< (P N 27 # B=R ¥, q)), then gng # B&R (p, ¢ " q).

Notice that (2) is weaker than (2) of Definition S, However, (2 suffices
to show that the relation R defined in Remark 8 is a quasi-forcing relation
when restricted to P'x ¢ and that for p in P we have R* ¢
Thus we have the following ¢ 9=K0. 9.

Remark 12. f R S Px{ is a weak consistency relation, then there is

e ©
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a relation R < Px @ such that R* < R'. Moreover, 2% € 2% and R p <o is
a quasi-forcing relation for a P' < P.

Notice that Remarks 10, 11 are still true if instead of R we put a weak
consistency relation R’ and R is defined for R’ as in Remark 8.

Now we are ready to show a weak consistency relation in Peano
Arithmetic PA.

ExampLE 6. Consider the language of arithmetic with relational symbols
+, , =, < and constants 0, 1.

Let M be a countable non-standard model for PA. Let us define P, Let
peP if p is a pair (a, b) of elements of M such that a <b. Let (a, b) = (a, b)
if a<a' <b' <b. Let us define (&, @). Let & be the collection of all initial
segments of M. Let @ be identified with P and let Ie(a, b) if acl and b¢l.

Let us define <%, ¢"). Let # = Z and let ge @' if there is a sentence ¢
which is Z; or II, such that g ={I: I= ¢}.

Assume that we are given an enumeration [~ ¢} of sentences that are
Xy or II,.

For a, b, ceM, let G,(a, b) be the Paris game of length c.

Let p=(a, b) and let g be determined by ¢. Let us define R'(p, q)
=there is a winning strategy for player IT ip Grp+3(a, b) such that he
always says “yes” to the question “¢”.

We shall show that R’ is a weak consistency relation.

First let us show the following

Remark 13. Let p, q be as above. If R'(p, q) then there is an 1€ ¥ such
that Iep and 1= @.

Proof. If ¢ is of the form (Ex)y (x) where ¥ is bounded, then let player
I ask “¢”. Then player II, following his strategy, answers “yes” and he has to
show an x that x <b and ¥(x). Let I={y: y<x}=<, if x>a and
I=<,if x<a

If ¢ is of the form (x)y (x) then let player I ask “¢”. Player II answers
“yes”. Now if player I asks “xel?” for any x < a then player II has to
answer “yes” because if he answers “no” and the next question is “ael?”
then he fails. Hence for every x <a we have Y (x). Let I=<,. =

Remark 14. R’ is a weak consistency relation.

Proof. Let us show (1) of Definition 6. Let a<a <b'<b and let
R'((@, b),q). Then R'((a,b), q) because player 1I can follow the same
strategy in the appropriate game Gr,-+3(a, b) as in G, 43(a), b).

Let us show (2') of Definition 6. Notice first that if Ie ZF then I has no
biggest element. Indeed, suppose that Ie 2y and I = <,. Then Ie(c, c+1).
By the definition of 2 we have R'((c, c+1), g) or R'{(c, c+1),q) for a ¢’
disjoint with g. Hence there is a winning strategy for player IT in the game
Gs((c, c+1), g) or in Gs((c, c+1), ¢'). Let player I ask the question “ceI?”.
Then player I has to answer “yes”. Now let player I ask “c+1€I?". Then
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player II has no answer. Thus for no g can there be a winning strategy for
player IT in Gs((c, ¢+1), q). Thus I has no biggest element.

Assume now pnZX # @ and

(P)<p (P 0 AT # B=R' (P, Q) & (P) (P’ N 27 # D= R (P, 9)-

Let Iep be such that IeZX . Let g be determined by ¢. Let Ie(a, b).
Then (a, b) n IX # @. Thus R'((a, b), q). Thus as in the proof of Remark 13
we can show that if ¢ is of the form (Ex)(x) then there is such an x less
than b and if ¢ is of the form (x)y (x) then for every x less than or equal to
a, Y (x). Let ¢ be of the form (Ex)y (x). Then for every b such that bé I there
is an x such that x <b and (x). Using underspill (note that I is not
definable in M because it has no biggest element) we have an x in I such
that ¥ (x). Thus I= @. If ¢ is of the form (x)y(x) then for every a in I we
have  (a). Thus Ik= ¢. Let ¢’ be determined by ¢'. As before, we show that
I=¢'. Thus gng' # @. Similarly we show R'(p, gnq). =

Let us show a few properties of the relation R’ that we have defined and
of the relation R definable by R’ as in Remark 11.

First consider the properties that resemble forcing in set-theory.

Remark 15. 2% = 27

Proof. Let xeZ¥. Suppose that x¢%y. Then

() (xep="IR(p, 9)& TR(p, 7).

Thus
(0)(xep=(Ep)<,(p' ¥ + B& IR (P, g))).
But
P 2f # B&(ED)<, (Bq)(R (7, ) &g g = Q).
Thus

(7)(xep=(Ep")<,(B4)(R (¢, ) &4 g = ).
Hence by Remark 14
(P)(xep=(EJ)(EQ)(Jep&J = o))

where ¢' is such that {I: Il= '} A {I: Tl= @} = @ where q is determined by
@. But I=¢'=IE o because if Il=¢' then I not = ¢. Thus

() (xep=(EDUep&IE T19p)).
Using “unfier'spill” if ¢ is Z; or directly if "¢ is II,, we infer that
x[= T1¢. Similarly we show that xk= ¢. Contradiction. Thus xe 4 ]
Remark 16. Let IeZX. Then
(Ep)(Iep&R(p, 9) =1k
where g is determined by ¢.
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Thus we have the truth lemma, in other words, fz =id.

Proof. Assume (Ep) (R(p, g&le p). Then, as in Remark 14, we show
that I'l= ¢. Let I|= ¢. Suppose that (p) 1 R(p, g). Then, as in the proof of
Remark 15, we show that I ~1¢. Hence (Ep)(Iep&R(p, q)). w

CoroLLARY 1. R is not PA-definable.

Proof. Indeed, suppose it is PA-definable. Let R(p, g). Let p'<p
be minimal such that R(p, g). Let Iep'n X, I}= . Let p' =(a, b). Then
Ie(a+1, b). By Remark 16, R((a+1, b), q). This contradicts the minimality
of p'. m

Remark 17. Let pn 2} + @. We have

R(p, 9) = (R (xep=xF 9),

where g is determined by .

Proof. R(p, q) implies (x)ﬁf(xep:’x}: @) by Remark 16. Thus assume
that (x)sR(xep=-x}= ¢). Suppose that T1R(p, q). But pn &y # 3. Let
xepn &Y. We have x|= “1¢ by the fact that xeZF and by Remark 16.
Contradiction. Thus R(p, g). m

Remark 18.
ey pnZ #B=R(p, 9) =(x)(xep=x0).

(2 IeZ'=Ep)(R(p, 9)&Iecp)=IkE ¢.

Indeed, we prove (1) exactly as Remark 16 and (2) follows from Remark
16.

The above remark shows that elements of 2" play the role of generic
filters in set theory. Let us mention that models of PA are in 2" and hence it
follows that Remark 18 holds also if we replace Z” by the family of models
of PA. Thus models of PA also play the role of generic filters.

Remark 19. Rp satisfies (4) of Definition 2 of a forcing relation.

Proof. Let us show that for every g the set

D,={peP": R(p,q) v (Eq)(¢ nqg = B&R(p, q))}

is dense in P'.

Indeed, let pe P’. Let Iepn %", Let g be determined by ¢. If I}= ¢ then,
by Remark 15, (Ep)(Iep & R(p, q))- Let p” be such that Iep”, p”" <p’, p.
Then p” < p, p"eD,, p"eP . T 1= 7 ¢, then (Bp")<,(p" € P’ & R(p", 7)). Thus
p'eD,.

All we have said up to now about R’ and R, except the facts that if
xeZF then x has no biggest element and that R is not PA-definable, and
except the observations following Remark 17, remains true if we define
G,(a, b) in a slightly different way. If player I plays “(Ex)6(x)” then in the
case where player II answers “yes” he is obliged to show an x such that §(x)
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not necessarily the least such x. Player II wins if he has not given
contradictory answers and answers contradicting the fact that he describes
an initial segment such that a is in it and b is not (we drop the requirements
about successor, addition and multiplication). This game would even be more
natural for our considerations so far, e.g,, we would be able to prove R'(p, q)
= (Ex),(x = @) where ¢ is determined by ¢. However, we would not be able
to obtain certain models of PA, which is important in our next
considerations.

Let us now show a few properties of R’ connected with the theory PA.

Remark 20. Let I|=PA, Iep. Then for every a, R'(p, q) or R'(p, ).
Thus IeZ'. Moreover, if peP’ then (EN(Jep&JE=PA). Thus &' and
{I: Il= PA} are symbiotic.

Proof. Let g be determined by ¢. Then 7 is determined by . If
I'= ¢ then we define the strategy for player IT in Gry-+3(p) so that player
11 tells the truth about I. This is a winning strategy. If 1= ¢ then the
reasoning is analogous. If pe P’ then for every g, R'(p, 9 v R'(p, 9). Hence
(EJ),(JE PA). u

Remark 21. Let Ie%y. Then (Ep)(Iep&R(p, 9) ie,
I= (a)(EB)(R' (@', b, T o 1) &b > a)
where g is determined by ¢ (we identify q with @)
Proof. Let (Ep)(Tep& R(p, ¢))- By Remark 11 and Remark 15 we infer
() (Iep'=(Ep)<, (Iep" &R (", g)).
Replacing elements of P by pairs and using “underspill”, we infer
I=(a)(Eb)((R'(a, b), T¢1)&b > a).
To prove “if” we use “overspill”. w

CoroLLARY 2. The Paris sentence (x)(Ea, b) (a>x&Y(a, b)> x) is valid
in N (the set of standard integers); Y is the Paris indicator.
Proof. We have N PA, thus Ne%’. Hence

NE o =(ED(R(P. 9&Nep)=(p)(Nep = R (¢, g))

where g is determined by ¢. We have Nl=¢ or Nj= o for every ¢. Thus
for every g

@)(Nep'=R'(p, g v R (p, ).
By Remark 21 hence follows
N (Ea, b)(a > o1 &(R (2, B), Fo1) v (Ri(a, b), ¢)
for every . But

R((@, ), "o7) v R (@, b, F19T)=Y(a, ) > .

icm
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Hence
NEX)ED) B> x&Y(x, b)_ >x). m

We shall use our technique also to prove the independence of the Paris
sentence; however, this will be only a translation of the Paris proof. Next we
shall show the independence of a sentence very close to the Paris sentence.
We do not know whether the two sentences are equivalent.

Assume that the enumeration ¢~ of X, and II, sentences is con-
sidered within M. Then the G&del numbers ¢~ correspond both to
standard and non-standard sentences. We can extend our definition of
R'(p, g) onto Px M as follows: .

let R'(p, x) = x is a number of a X, or a II, sentence and there is a
winning strategy for player II in G, ;(p) answering “yes” to the question x.

It is also reasonable to extend the definition of R onto P x M.

If x is non-standard then let us define R(p, x):

Rp,x) =[pn® # B&P)e,(pn X # F=R (¢, )]
=[peP &P (P <p=p nZ # a)].

Here 2" plays the role of ¥ . Indeed, it is reasonable to comsider points
IeZ that are “generic” w.r.t. standard sentences less than x and for a non-
standard x this means all standard sentences.

Let us show that the sentence

(x)(a) (Eb)(b > a& R'((a, b), x)) v (a)(Eb)(b > a & R’ ((a, D), %))

where X is the number of the negation of the sentence with the number x, is
independent of PA.

Our sentence says that arbitrarily large intervals (a, b) decide about the
sentence x. In particular, for arbitrarily large (a, b) the Paris game has length
at least x. Hence our sentence implies the Paris sentence. However, it is not
clear whether the converse implication holds. Indeed, if the Paris game at
(a, b) has length greater than x, then it means that there is a strategy for the
second player answering all sufficiently small sequences of questions; if a
sequence ends with “x”, then this strategy answers “yes” or “no”, but the
answer may depend on the sequence of questions. It is not necessarily true
that for every sentence ending with “x” the strategy answers “yes” or for
every such sequence it answers “no”, and this is what is stated in our
sentence.

Remark 22. If x is standard then both

(a)(Eb) (b > x, a& R'((a, b), x)) v (a)(Bb) (b > x, a& R'((a, b), %))
where x=1"¢ 1 and X=T"1¢1; and
(a)(EB)(b > x, a& Y(a, b) > x)
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are provable sentences of PA, and thus are equivalent. Indeed, if 1= PA and
Iep then R'(p, x) if I'= ¢ and R'(p, %) if Il= 71 ¢. Then, using underspill, we
show that I satisfies both sentences in question. By the fact that every model of
PA is an initial segment of another model we infer that our sentences are
provable in PA.

If x is non-standard we no longer know whether the sentence

“(a)(Eb)(b > x, a& R'((a, b), x)) v (a)(Eb) (b > x, a& R'((a, b), %))

is equivalent to (a)(Eb)(b > x, a& Y(a, b) > x). If it is nor equivalent, it is
another independent sentence.

Proof. We shall transform the Kirby-Paris proof. For peP, let p
=(a, b), (p)o = a, (p); =b. Assume that every a is a number of a X, or I,
sentence. We shall-show the following: the set D = {peP’: Y(p) <(p)o} is
dense in P’ (Y is the Kirby-Paris indicator). )

Indeed, ‘let peP’. We can assume that (p), is non-standard. Indeed,
suppose that (p), is standard. In [4] it is shown (Proposition 4.3) that if pe P’
then there are infinitely many I such that Iep, I= PA. Take a non-standard
I such that Iep. Let ael, a> N. Let p' =(a, (p);). Then p' < p, p'eP,
(o > N.

If Y(p) <(p)o then peD. Thus assume that Y(p) = (p)o. Let p’< p be
minimal such that Y(p') = (p)o. Then p'eP’ because Y(p') > N. Thus p
=((p)o+1, (p),)eP. By the minimality of p/, Y(P) < (p)o- Hence it follows
that D is dense.

Let Ie& be such that (Ep)p(I €p). Let (p)g = x. Then xel. Suppose that
Il= (a)(Eb){Y(a, b) = x). Then, by “overspill”, (Ep)(p' < p& Y (p) = x& I ep').
But Y(p) > Y(p'). Thus Y(p) = x contradicting the fact that pe D. Hence

I'= 71(x)(@)(Eb)(Y (a, b) > x).
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Thus
I= 1 () [(@)(Eb)(b > a, x&R'((a,b),x)) v (@)(EB)(b > a, x& R'((a, b), X))]. =

CoroLLARY 3. The negation of the Paris sentence is distinguished from
the Paris sentence by the fact that it is satisfied in all segments that are in
a certain sense “generic” (intersect D).
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