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On Polish spaces Lipschitz universal for
separable metric spaces

by

P. Mankiewicz (Warszawa)

Abstract. It is proved that a separable complete metric space which is Lipschitz universal
for all separable reflexive Banach spaces is Lipschitz universal for all separable metric spaces.

1. Introduction. 1. Aharoni [1] proved that the Banach space C(0, 1)
can be Lipschitz embedded into the Banach space ¢, (the space of all real-
valued sequences converging to zero). This, combined with the Kuratowski—
Wojdystawski Theorem [3], implies that the Banach space ¢, is Lipschitz
universal for all separable metric spaces [1]. In other words, a separable
metric space is Lipschitz universal for all separable metric spaces if and only
if it Lipschitz-contains ¢o. The aim of this note is to prove that if a complete

. separable metric space (M, ) is Lipschitz universal for all separable reflexive

Banach spaces then (M, g) Lipschitz contains ¢, and therefore is Lipschitz
universal for all separable metric spaces. This means that the class of
Lipschitz structures of separable reflexive Banach spaces is rich — “it spans”
all possible separable Lipschitz structures. But, on the other hand, the
Lipschitz structures of reflexive Banach spaces are “specific” — not every
metric space can be Lipschitz embedded into a reflexive Banach space. More
precisely, it is known [7] that if a Banach space X is Lipschitz embeddable
into a reflexive Banach space then X is reflexive as well.

The proof presented in this note is based on H. P. Rosenthal’s [9]
version of the proof of the following result due to J. Bourgain [4]: A
separable Banach space which is isomorphically universal for all separable
reflexive Banach spaces is isomorphically universal for all separable Banach
spaces.

2. Preliminaries. Let (M, o) and (N, h) be metric spaces. A map
t* M — N is said to be a Lipschitz embedding of M into N iff there are
positive constants K and k such that

(1 ko(x, y) < h(t(x), t()) < Ke(x,y)  for all x,yeM.
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We say that a metric space (M, ¢) is Lipschitz universal for a class of metric
spaces 4" iff every metric space from the class .4#" is Lipschitz embeddable
nto (M, o). ‘

Let < be an order relation on an arbitrary set T. The order relation <
is said to be well founded iff every subset A of T admits a maximal element in
A with respect to the order relation < restricted to A. The set of all such
elements will be denoted by Max(A4). Set Hy(T) = T and assume that H,(T)
for all ordinals « < f§ have been defined. Then, if § is a limit ordinal, we

define Hg(T) = () H,(T). Otherwise, i.e. if f =o,+1 for some ordinal a,,
a<fp

we define Hy(T) = H, (T)\Max(H,(T)). Since < is well founded we infer
that H,(T)s are strictly decreasing and therefore eventually are empty sets.
The smallest o« such that H,(T) is an empty set is called the index of the

wellfounded ordered set (7, <) and will be denoted by Ind(7, <). In the -

sequel we shall need the following well-known result, cf. [5].

THeOREM 1. (Kunen—Martin Theorem). The index of a well-founded ana-
Iytic order relation on a separable complete metric space is a countable ordinal.
Using standard transfinite induction, one can easily prove

ProrositioN 2. Let (T;, <;) and (T;, <,) be well-founded ordered sets

and let ¢: T, — T, be an order-preserving mapping. Then for each ordinal a we
have

@(H,(T) = H,(Ty)
and consequently Ind(T;, <) < Ind(T;, <,).
The smallest uncountable ordinal will be denoted by ;.

3. Lipschitz cy-indices of separable complete metric spaces. By ¢, we shall
mean the Banach space of all real-valued sequences converging to zero
endowed with its standard supremum norm. For every neN we set

Ay =)= €co: [4] < 2" for 1 <i<2" and 4 = 0 otherwise).

For every separable complete metric space (M, ¢) and every n;, me N we
define T, ,,(M, @) to be the set of all Lipschitz mappings ¢: 4, — M satisfying

0] lla—bll < o(t(a), t®) < mlla~bj| for a,bed,

endowed with the sup-metric. It is clear that for every n, meN, the space
T,.m(M, @) is a complete separable metric space. For every meN, let

T.(M,9)= & T,,(M, ),
n=1

be the discrete union of the corresponding T,,’s. Obviously, T,,(M, o) is a
separable complete-metrizable space. Now, for every .meN define the order
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relation <, on T, (M, @) in the following way: for t;, t,e T, (M, Q)_we say
that t; <t iff t; €T, w(M, 0), ty€ T,y m(M, 0} with ny < n, and t, is equal
to t, restricted to A, . Trivially, <, is a closed relation. In the sequel we
shall need

PrOPOSITION 3. A separable complete metric space (M, g) Lipschitz con-
tains ¢o if and only if for some meN the relation <, on T,,(M, @) is not well

Jounded. :

Proof. Let f be a Lipschitz embedding of ¢, into a separable complete
metric space (M, ¢) such that (1) holds for some O <_k§K. Then t(x)
=f(k~'x) is a Lipschitz embedding of ¢, into (M, ) satisfying (2) for every
positive integer m = k~'K. Fix such an m and set t, = |4, for ne_NA Su}:ce
the T, m(M, @) for every neN and t, <pt,, for every m < n,, we infer that
the set {t,: neN} = T, (M, @) has no maximal element. Thus (7,,(M, o), <L m)
i ell founded.
® nOCtorleerscly, if for some me N the ordered set (T,,(M, @), <) 1s not well
founded, then there is a sequence (t,);=; < T,(M, @) §uch 'that tay <mlng for
every n; < n,. Setting = 1im t,, we obtain a Lipschitz embedding of
O A, = ¢ into (M, ) satisfying (2). Since "L_jl A, is dense in ¢, the map t

n=1 .

admils a unique extension to a Lipschitz embedding t of ¢, into (M, @)
satisfying (2), which completes the proof. .

Note that for every separable complete metric space M, o), if my < my
then T, (M, o)< T, (M, ) and <, 'is equal to <, res.mcted 1 to
Ty (M, o). Thus, by Propositions 2 and 3, if (M, @) does not contain ¢o, then

1d(Tyy, (M, ), <my) < I0d(Tr, (M, ), <)
and therefore lim Ind T, (M, ¢, <) exists.

[adb s}

For every separable complete metric space (M, @) which does not
Lipschitz contain ¢,, we define .

ind(M, @) = lim Ind(T,(M, 0}, <,)-

If such a space Lipschitz contains ¢, we set
ind(M, @) = w;. ‘

PropOSITION 4. The function ind defined on the class of all separable
womplete metric spaces has the following properties: A
o (i) ind(M, ) < w, for every separable complete metric space (M, o),
(i) ind(M, o) = @y if and only if (M, @) Lipschit; contains Co, ’
(iii) if there is a Lipschitz embedding fof (M, @) into (N, hy such that

3) o(x, ») Sh(f(0, fO) S Kpelx, ) for  x,yeM,
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then

ind(M, ¢) < ind(N, h).

Proof. (i), (i) If (M, ¢) Lipschitz contains c,, then, by definition,
ind (M, g) = w,. If (M, @) does not contain c,, then for each me N, the order
relation <, on T, (M, g) is, by Proposition 3, well founded. Since <, is
closed, by the Kunen-Martin Theorem we conclude that Ind(T,, (M, g), <,)
< w, for every meN, and therefore hm Ind(T,(M, @), <) < wy.

(iti) If (N, h) Lipschitz contains co, then (iii) follows from (i) and (ii).
Assume that (N, h) does not Lipschitz contain ¢, and fix a positive integer
mq = K. Observe that, for every me N, the map ¢,,: T,,(M, g) — Toamg (N, h)
defined by ¢, (1) = for is order preserving. Thus, by Proposition 2,

Ind (7L, (M, @), <) < Ind(Toy (N, 1), <pumg)-
Consequently,

ind(M, ¢) = lim Ind(T;,(M, 9}, <,) < lim Ind(T,,,,, (N, ), <

mm 0)
m=o m= o

= ind(N, h).

4. Construction of separable reflexive Banach space with large Lipschitz
co-indices. ‘Since ¢, is not Lipschitz embeddable into a reflexive Banach space
[7], by Proposition 4 (ii) we infer that ind(R, || [|) < w, for every separable
reflexive Banach space (R, || |)). In the proof of the lemma below we shall
give, for every countable ordinal «, a construction of a separable reflexive
Banach space (R, | |l,) with ind(R,, || |l) >« To this end, let e,
=(1,0,0,..)ec, and let, for a Banach space (R, || |), let

4 S,(R) = {teT, (R, ]| ||): t(ley) = it(e,) for —1 <A< 1)

(i.e. let S,(R) be the set of isometric embeddings of 4, into (R, || ||) which are
“linear” on the interval [—ey, ;] = ¢;) and S(R) = ngl S, (R). Fina]ly,} let <
be the restriction of <, to the set S(R).

Lemma 5. For every o < w, there is a separable reflexive Banach space
(Res |l Iy with Ind (S(R,), <) > a.

Proof (by transfinite induction). Set (Ry, || ||;) =(R, || ||) and assume
that for every y <o a separable reflexive Banach space (R,, || ll,) with
Ind(S(R,), <) >y has been defined.

Case 1° o has a predecesor; ie. a=pf+1 for some . Define R,
= Ry x Ry and [i(x, y)ll, = max {|[x]ls, lIylls] for (x, Y)€Ry x Ry, It is clear that
(Ry I Il) is a separable reflexive Banach space. Since Ind(S(R,), <) > , by
definition, we have Hy(S(Ry))# @. Let roe Hy(S(Ry)). It follows from the
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definition of < that t; =to|4;eH,(S(Ry)). Now, for n=1,2,...
@n: Su(Rp) = 8,41 (R,) by the formulae

(pn([)(a) = ')7 2t(‘2La2: %a4a %aﬁa--')):

for a =(a;, ay,..)€A,,, and teS§,(Rp). It can easily be checked that the
mapping ¢ deﬁned by @(t) = ,(t) for teS,(R;) is an order-preserving
mapping  from  S(R;) into S(R,). Thus, by Proposition 2,
@(Hy(S(Ry)) = Hy(S(R,)) _and _ therefore t=¢(t,)eHy(S(R,). But
o(t;)eS, (R,). Hence t, —-tlA <f and this implies that tleHﬁH(S(R,))

define

(2[ (3ay, tas, $as,..

Thus H,(S(R,) = Hp.((S(R,) # @ and therefore Ind(S(R,), <) > &, which
completes the proof in case 1°.
Case 2°. o is a limit ordinal. By the induction hypothesis,

H,(S(R,) # @ for every y <a. For every y < select e H,(S(R,)) and set
t, = ,|4;. Obviously, t,eH, (S(R)) for every y < a. By (4), for every y <a
there is an x,€R, with ||x?||y = 1 such that t,(de;) = Ax, for —1 <A< 1. Let

R, = {(u(x,)y<a+(p)y<a)€ [T R,: peR, y,eR, and Y |ylIZ < w0}
y<a y<a

equipped with the norm
1/2
“H(xy))‘<a+(yv)y<m”m = max {Slip”“xv*'yy“ya %(Z ”,VyH'f) }
y<a y<a

Since (R,, || |l,) is a one-dimensional enlargement of the I,-sum of Ry’s_ it is
obvious that (R,, || ||, is a separable reflexive Banach space. Fix an arbitrary
B < a and, for neN, define

(5) (o (t)(d) = (a1 (xy)y<a+t(a)~alxﬂ)

for teS,(Ry) and @ =(ay, a,,..)€A,. Note that, for neN, reS,(Ry) and
a, be A, with a = (ay, a,,...), b =(by, b;,...) we have

llayx, —byxlly = lay —by| < lla—bl|
for y# f, y <a, and

@y x5+t (@)= ay xp) = (b x5+t (B)=b1%g)ls = (@) — t(B)lg = lla—bll,

and

1 @) = ay65) — (¢ (B) = byxp)lp < l1t(@) £ (Bl +1ay — bl < 2lla—bi.
Hence
(6) 194 ()(@) = @u(t) (Bl = lla—bll

for a, beA,, neN and t€S,(Ry). On the other hand, it follows from (4) and
(5) that @, (1) restricted to the interval [—ey, ;] is linear. This and (6) imply
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. that @, maps S,(Rg) into S,(R,) for neN. Define ¢(t) = ¢,(1) .for reS,,(B,,)
and neN. Tt easily follows from (5) that ¢ is an order-preservmg mapping
from (S(Rp), <) into (S(Ry), <). By Proposition ‘2, we infer that
@(tg)e Hg(R,). But

o(ty) (Leg) = Ap(tg)es) = Alxy)y<q  for

Since  was an arbitrary ordinal smaller than «, we conclude that for each
B <o the map f defined by

—-1<€isL

T(dey) = A(x,)y<e for —1<i<],

belongs to the set Hyz(S(R,) and therefore ?eﬂQ H,(S(R,) = Hy(S(R).

Thus Ind(S(R,), <) > @, which completes the proof.

TLemma 5 yields

ProposITION 6. For each o < w, there is a separable reflexive Banach
space (R, || |l.) with ind (R, || [l) > o

Proof. For each « < w;, let (R,, || |l) be the space constructed in
Lemma 5. Since S(R) < T; (R,, || |l,) and < is the restriction of <, to S(R,),
by Proposition 2, we have

o< Ind(S(Rz), ‘<) < Ind(Ti(Ra:’ H ”a)a <1)

On the other hand, Ind (T, (R, || Il <) 18 a nondecreasing function of m.
Thus

o <Ind(T; Rys |l llas <1) < lim Ind (T (R, || llar <o) = ind Re, 11 1)-

5. Main result and open problems. The main result of this note is the
following

TuroreM 7. For a separable complete metric space (M, o) the following
conditions are equivalent:

(i) (M, @) Lipschitz contains co,

(ii) (M, o) is Lipschitz universal for all separable metric spaces,

(iti) (M, @) is Lipschitz universal for all separable reflexive Banach spaces.

Proof. The implication (i)=>(ii) is due to Aharoni [1] and the impli-
cation (i) = (iii) is trivial. In order to prove that the implication (iii) = (i)

holds, let (M, @) be a separable complete metric space Lipschitz universal for .

all separable reflexive Banach spaces. Fix an arbitrary o < w; and let t be
the Lipschitz embedding of (R,, || |} from Proposition 6 into (M, @) satisfy-
ing (1) for some 0<k< K. Set f(x)= t(k"'x) for xeR,. Obviously, f
satisfies (3) with K, = k~'K. By Proposition 4 (i),

4
3

@ <ind(R,, || Il < ind(M, @).

" Since « was an arbitrary countable ordinal, by Proposition 4 (i), ind (M, o)
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= w,. Finally, by Proposition 4 (ii), the space (M, g) Lipschitz contains cq,
which completes the proof.

Remark. It follows from Aharoni’s result that if (M, g¢) Lipschitz
contains ¢, then there is a universal constant K,, such that for every
separable metric space (N, h) there is a Lipschitz embedding f of N into M
with

h(x, y) < o(f (), f() < Kpgh(x, y)

It follows from the argument presented above and from the construction
of H.P. Rosenthal [9] that the following version of the Kuratowski—
Wojdystawski Theorem holds:

THeEOREM 8. For a separable complete metric space (M, o) the following
conditions are equivalent :

(i) (M, @) contains C(0, 1) isometrically,

(i) (M, @) is isometrically universal for all separable metric spaces,

(i) (M, @) is isometrically universal for all separable reflexive Banach
spaces.

It would be interesting to know whether the corresponding version of
Theorems 7 and 8 holds for uniform embeddings. More precisely:

ProBLEM 1. Let a separable complete metric space (M, g be uniformly
universal for all separable reflexive Banach spaces (i.e. for each separable
reflexive Banach space (R, || ||) let there be an embedding f: R —+ M such
that both f and f~! are uniformly continuous). Is (M, g) uniformly universal
for all separable metric spaces?

On the other hand, from the point of view of the Banach space theory it
would be nice to know the answer to the following

ProBLEM 2. Let a separable Banach space (X, || ||) be Lipschitz univer-
sal for all separable reflexive Banach spaces. Does (X, || |[) contain ¢,
isomorphically?

In view of Theorem 7, Problem 2 reduces to the question whether every
separable Banach space (X, || ) Lipschitz containing ¢, contains ¢, isomor-
phically. It follows from Ribe’s theorem [8] (see also [6], Th. 5.1) that in
such a case X contains isomorphically I ’s uniformly. On the other hand, it
is known, [6], Th. 3.5, that if a conjugate Banach space (Y*, || |[) Lipschitz
contains ¢, then Y* contains ¢, isomorphically and therefore, by [2], it
contains [,,. :

for all x, yeN.
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Recursion theoretic operators and morphims
on numbered sets *

by
Henk Barendregt (Utrecht) and Giuseppe Longo** (Pisa)
Dedicated to Buffee Lys Nelson on her twelfth birthday

Abstract. An operator is a map ¢: Pw — Pe. By embedding Pw in two natural ways into
the A-calculus model Pow? (and T%) the computable maps on this Jatter structure induce classes
of recursion operators. :

§ 0. Introduction. With the notion of (pre complete) numbered set
Ershov [3] gave a general framework for certain results in classical recursion
theory. In his theory the notion of morphism is central. In [6] there is a
definition of enumeration operators and (implicitly) of Turing operators.
Although enumeration operators (restricted to the r.e. sets as numbered set)
are morphisms, Turing operators are not even partial morphisms.

There is a natural correspondence between these (and other) classes of
recursion theoretic operators and morphisms on an appropriate numbered
set, via the constructive part of the A-calculus models Po? and T®. The
different classes of operators on Pw are effective ¢ontinuous maps obtained
by embedding Pw into Pw? or T* in two natural ways, giving Po either the
Cantor or the Scott topology.

. In particular Turing operators work on Pw with the Cantor topology.
This is implicit in Nerode’s theorem, see [6], p. 154, relating tt-reducibility to
total Turing-operators. Also a different proof will be given of a theorem in

"[6], p. 151, relating enumeration and Turing reducibility. Finally an inter-

polation result, in the sense of algebra, will be proved for total Turing
opérators. )
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