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countably many subfamilies each of which is a hereditarily closure-preserving
family of subsets of X.

CoRroLLARY 1. If a hereditarily normal space X can be represented as the
union of a o-hereditarily closure-preserving family {A;}es of Fo-sets in X and
A, is A-wid. for each seS, then the space X is A-w.id.
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Some theorems on invariance of
infinite dimension under open and closed mappings

by

L. Polkowski (Warszawa)

Abstract. We discuss here the invariance and the inverse invariance of three classes of
spaces: A-weakly infinite-dimensional spaces, S-weakly infinite-dimensional spaces and spaces
which have the transfinite dimension trind under three classes of mappings: open mappings
with finite fibres, closed mappings with finite fibres and open-and-closed mappings with no
fibres dense-in-themselves ; finite-dimensional spaces, countable-dimensional spaces and strongly
countable-dimensional spaces also occasionally appear in our paper.

Our terminology and notation follow [7] and [8]. We shall quote from
[7] and [8] all the necessary theorems of general topology and dimension
theory. Similarly, we shall quote from [9] when the transfinite dimension
trInd is concerned.

1. Definitions. We start with the definitions of the most important
notions to be used in the sequel.

1.1. DeFiNiTION. Let X be a space and A, B a pair of disjoint closed
subsets of X ; a closed subset L of X is said to be a partition between A and
B if there exist open subsets U, V of X which satisfy the conditions

.AcU, BcV, UnV=0 and X\L=UulV.

1.2. DeriNITION. A normal space X is said to be A-weakly infinite-
dimensional (abbrev. A-wid) if for every sequence (4, By), (43, By),... of
pairs of disjoint closed subsets of X there exists a sequence L, L,,..., where
L; is a partition between 4; and B; for i =1, 2,..., with the property that

Y

- 1.3. DerivimioN. A Tychonoff spade X is said to be S-weakly infinite-
dimensional (abbrev. S-w.i.d) if for every sequence (A;, By), (41, Bs),... of
pairs of disjoint functionally closed subsets of X there exists-a sequence
Ly, L,,... where the functionally closed subset L; of X is a partition between
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A; and B; for i =1, 2,..., with the property that (") L; = @ for some integer
n o

14. Remark. If the space X in Definition 1.3 is normal, then one can
suppose that every sequence L;, L,,... of partitions, with the property that
(n) L; = @ for some integer n, consists of functionally closed sets (see [2],

i=1

Ch. 10, § 4, Lemma 2). This, along with the fact that in a normal space any
two disjoint closed sets are completely separated, implies that in the case
where X is a normal space in Definition 1.3 one can replace the words
“functionally closed” by the word “closed”.

1.5. DeFmniTioN. For a normal space X we let
(1)  trInd X = —1if the space X is empty;

(2) tIndX <a if for every pair A, B of disjoint closed subsets of X there
exists a partition L between 4 and B such that trInd L
<a;

if trInd X < a and there exists no ordinal number f<a
such that trInd X < b.

A normal space X is said to have trIndif trInd X = « for an ordinal
number a. .

1.6. DeFiniTioN. A -Tychonoff space X is said to be countable-
dimensional (abbrev. c.d.) (strongly countable-dimensional (abbrev. s.c.d.)) if the
space X can be represented as the union of a sequence A,, A,,... of
subspaces (closed subspaces) each of which is finite-dimensional in the sense
of the covering dimension dim.

@) trind Xi=o

. 2. .Preliminaries. In this section we state some basic facts about infinite-

dimensional spaces which will be frequently used in the sequel. )

We begin with a countable sum theorem and a countable addition

. theorem; the former has been established by van Douwen [6] and by

Levsenko [17] under the additional assumption that the space X is count-
ably paracompact, the latter by Levienko [17]1.

THEOREM A. If a normal space X can be represented as the union of a
sequence Fy, Fs,... of closed A-w.id. subspaces, then the space X is A-w.id.

Tueorem B. If a hereditarily normal space X can be represented as the
union of a sequence Ay, A,,... of A-w.id. subspaces, then the space X is A-
w.id.

2.'1. Rexpark. It is obvious that every closed subspace of an A-w.i.d.
space is A-w.i.d. Thus, Theorem A implies that every F, in a normal A-wid.
space is A-w.i.d. )

2.2 Remark. It should be remenibered that a subspace of an 4-w.i.d.
space need not be A-wid.; indeed, Pol [25] -defined an A-wid. compact
metric space which contains a dense subspace that is not A-w.id.
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We now state in a slightly modified form a theorem on §-w.i.d. spaces due
to Skljarenko [27].

TueoreM C. If a normal space X contains a closed S-w.id. subspace C
with the property that every closed subspace T of X contained in X\C is S-
w.id., then the space X is S-wid. If a normal space X is S-w.id. then the
closed subspace

8;(X)=X\U{Uc X: U is open in X and dim U < 0}

of X is countably compact and every closed subspace T of X contained in
X\S4(X) satisfies the inclusion

TcU{U<X: U is open in X and dimU < n}

for some integer n.

23. Remark. Let us observe that if we assume in addition that the
space X in Theorem C is weakly paracompact, then the subspace S,;(X) of X
is compact and every closed subspace T of X contained in X\ S,(X) satisfies
the inequality dim T < n for some integer n (see [7], Theorem 5.3.2 and [8],
Theorem 3.1.14 and Problem 3.1.D).

A similar theorem on spaces which have tr Ind also holds; the first part
can be obtained by introducing obvious modifications in Lemmas 3 and 8 in
[27] and applying Example 2.1 in [9], the second part is established by an
easy induction (cf. the proof of Theorem 3.16 in [9]). Let us add that if a
normal space X has trInd, then X is S-w.i.d. This was proved by Smirnov
[30] for hereditarily normal spaces. A slightly different proof given in [2]
(Ch. 10, § 6, Theorem 28) holds in normal spaces.

THeEOREM D. If a hereditarily normal space X contains a closed subspace
C with the property that trInd C is defined and every closed subspace T of X
contained in X\C satisfies the inequality Ind T < co, then the space X has
trInd. If a normal space X has trInd, then the closed subspace

S;(X)=X\U{U < X: is open in X and IndU < 0}

of X is countably compact and every closed subspace T of X contained in
X\S;(X) satisfies the inclusion

TcJ{UcX: U is open in X and IndU < n}

for some integer n.

24. Remark. Let us observe that if we assume in addition that the
space X in Theorem D is strongly hereditarily normal and weakly para-
compact, then the subspace S;(X) of X is compact and every closed subspace
T of X contained in X \S,(X) satisfies the inequality Ind T< n for some
integer n (see [8], Definition 2.1.2 and Theorem 2.3.14).
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. 2.5. Remark. Let us note that if X is a metrizable space, then S,(X)
= §;(X). Thus, we shall denote in the sequel both these sets by S(X)
whenever X is a metrizable space.

The following addition theorem for A-w.id. spaces is a strenghtened
version of a theorem proved in [2] (Ch. 10, § 5, Proposition 1).

2.6. THEOREM. If a normal and countably paracompact space X contains
an A-w.id. subspace A, the set A is an F ,-set in X and A has the property that
every closed subspace T of X contained in X\ A is A-w.i.d., then the space X is
A-w.id.

Proof. Let (4,, By), (4, By),... be a sequence of pairs of disjoint
closed subsets of the space X; we are going to show that there exists a
sequence Ly, L,,..., where L; is a partition between 4; and B, for i =1, 2,...,

©

such that ) L; = @. By the assumptions 4 = F;, where F; is closed in
i=1 1

i= i=
X for j=1,2,... We decompose the set of positive integers into infinitely
many disjoint infinite sets No, Ny,... (cf. LevSenko [17]). As F, is A-w.i.d. for
i=1,2,.., it follows from the normality and the countable paracompactness
of X that, for each positive integer j, there exists a sequence -{L,(}“Nj, where
L, is a partition between 4, and B, in X for each ke N, with the property
that F;n . L, =@ (see [2], Ch. 10, § 5, Lemma i). We let T= jﬂl le L.
keN - = €
Since T < Xi \4, it follows from the assumptions of the theorem that T iis A-
w.id., and thus there exists a sequence {Li}ken,, Where Ly is a partition
between A4, and B, in X for each ke Ny, with the property that Tn [} L,
keNg
o0
= (. In this way the sets L; are defined for i =1, 2,... Clearly, \ L; = Q.
i=1

This completes the proof.

We now state one more addition theorem for A-w.id. spaces, due to
Leibo [16].

TaeoreM E. If a hereditarily normal space X contains an A-w.id. sub-
space A and A has the property that every closed subspace T of X contained in
X\A is A-w.i.d., then the space X is A-w.id.

- The following sum theorem for A-w.i.d. spaces is due to Leibo [16]. It
should be observed, however, that the presence of weak paracompactness
permits us to reduce the case of locally countable families to the case of
countable families. .

TueoreM F. If a normal and weakly paracompact space X ‘can be
represented as the union of a locally countable family {F,},.s of closed A-w.id.
subspaces, then the space X is A-w.id.

Let us mention another sum theorem for 4-w.id. spaces (see [26]). Let
us recall that a family {4},.s of subsets of a space X is said to be
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hereditarily closure-preserving if for every family {B;}ses such that B, = A, for
every s€S we have | B, = | B;; a family [}, is c-hereditarily closure-

se8 seS
preserving if it can be represented as the countable union of hereditarily
closure-preserving families. Let us note that every locally finite family is
hereditarily closure-preserving. '

Tueorem G. If a hereditarily normal space X can be represented as the
union of a o-hereditarily closure-preserving family {A},s of A-w.id. subspaces
and A, is an F,-set in X for every seS, then the space X is A-w.id.

27. Remark. Let us add that if a normal and weakly paracompact
space X is locally A-w.id. ie. if for every xeX there exists an A-w.i.d.
neighbourhood U(x), then X is A4-w.id. Indeed, take an open point-finite
refinement #" = {¥,},.s of the cover % = {U (x)},x such that ¥, is an F-set
in X and thus is A-wi.d. for every seS (see Remark 2.1 and [7], Theorem
1.5.18). Since X is countably paracompact (see [7], Theorem 5.2.6), one can
apply Lemma 233 of [8] and Theorem 2.6 to verify that the sets F;
= {xeX: x belongs to at most i members of ¥} are all A-wid. It follows
from Theorem A that X is A-w.i.d.

We close this section by quoting a lemma which plays an important role
in the dimension-theoretic study of open mappings.

Lemma A ([8], Lemma 1.12.5). Let f: X — Y be an open mapping of a
metric space X onto a metric space Y. For every base B = {U,},s for the
space X there exists a family {A,}ss of subsets of X such that A, < U, for
each s€S and

(i) A, and f(A;) are F,-sets in X and Y, respectively,

(i) flAs: A, —f(Ay) is a homeomorphism,

() X=U 40U I~ 01

seS yeYy

3. Open mappings with finite fibres. The invariance of dimension under
open mappings was first studied by Alexandroff [1]; in that paper open
mappings with countable fibres between compact metric spaces were dis-
cussed. Section 5 below will be devoted to a natural generalization of that
class of mappings — open mappings with no fibres dense-in-themselves ; here
we discuss open mappings with finite fibres.

To begin with, we recall first a well-known lemma (see Nagami [20] and
Arhangel’skil [5]; cf. also Alexandroff [17), which plays an important role in
the dimension-theoretic study of open mappings with finite fibres, and then
comment briefly upon the situation in the finite-dimensional, countable-
dimensional and strongly countable-dimensional case.

) Lemma B. Let f1 X =Y be an open mapping of Hausdorff space X onto
a space Y and let Yy = {yeY: |[f71(y) =]} for j =1, 2,...; if all fibres of the
mapping f are finite, then
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k
() U Y, is a closed subset of Y for k=1,2,...;
2

(i) :‘he mapping fy o fTHY)—=Y; is a local homeomorphism for j
=1,2,...

The following theorem was proved by Nagami [20] under the assump-
tion that X, Y are paracompact in the case of the dimension dim and X, Y
are hereditarily paracompact in the case of the dimension Ind (announce-
ment in [197; cf. also [5]) and slightly generalized by Pears [23] to,
respectively, X, Y normal weakly paracompact and X, Y totally. normal
weakly paracompact. One can easily see that weak paracompactness is an
invariant of open mappings with finite fibres and thus in the first part of the
theorem the assumption that Y is weakly paracompact is redundant; the
second part of the theorem slightly generalizes the second part of Pears’s
theorem

3.1. THEOREM. If f: X — Y is an open mapping of a normal space X onto
a normal space Y and all fibres of the mapping f are finite, then

(i) if Y is weakly paracompact, then dim X = dimY; ‘

(i) if X and Y are strongly hereditarily normal and either X or Y i
hereditarily weakly paracompact, then Ind X =Ind Y.

Proof. It suffices to show that IndX;=IndY, where Y
={yeY: [f"'O) =j} and X;=f"(¥), for j=1, 2,..., (see [8], Theorem
2.3.1 and (i) in Lemma B). Let us fix an integer j and consider the mapping f;
= flX;: X;— Y. By wirtue of (ii) in Lemma B the mapping f; is a local
homeomorphism and thus locInd X; = locInd Y], where locInd stands for
the local dimension Ind. By the assumptions either X; or Y; is weakly
paracompact. The easily verified fact that the mapping f; is open-and-closed
implies that the spaces X; and ¥; are both weakly paracompact. Thus
locInd X; = Ind X; and locInd Y; = Ind Y] (see [7], Theorem 2.3.14), so that
Ind X; =1Ind Y}; thus the theorem is proved.

Arhangel’skil [5] proved that if f: X =Y is an open mapping of a
metrizable space X onto a normal space Y and all fibres of the mapping f
are finite, then the space X is c.d. if and only if the space Y is c.d.; further
information can be found in [10], Section 7. '

The following theorem on s.c.d. spaces was proved by Arhangelskii 31;
as the proof in [3] is indirect, we include a short and direct one.

3.2. Tueorem. If f: X — Y is an open mapping of a normal space X onto
a normal space Y, all fibres of the mapping f are finite and the space X is s.cd.,
then the space Y is s.c.d.

Proof. By the assumptions X = {J F;, where F; is closed in X and
ji=1

dimF;=m; <, for j=1,2,...; we can assume that F;< F;,, for j
=1, 2,... Since the mapping f is open, the subspace Z;= Y\f(X\F)) is
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closed in Y for j=1,2,... As all fibres of the mapping f are finite, Y

= |J Z;; thus it suffices to show that Z; is. s.cd. for j=1, 2,... It follows
j=1

k
from Lemma B that it suffices to prove that the subspace Z;, =2Z;n U Y,
n=1

is finite-dimensional for n=1, 2,... and j =1, 2,... Let us consider a sub-
space Z;,; let % ={U,, U,,...,U,} be an open cover of Z;,; the open
family £~ (%) = {f "1 (Uy), f " (Uy),....f "' (Un)} is a cover of the subspace
I M2 N Fy; as dimf "1 (Z;,) < my, there exists an open refinement v
={V,, Va,..., V,} of the cover f~* (%) of order < m;; one can easily check
that the family f(¥) = {f (), f(Va),....f (¥)} is an open refinement of the
cover % of order < k(m;+1)—1; thus dimZ;, < k(m+1)—1 and the
theorem is proved.

Now, we are going to establish a theorem on A-wi.d. spaces.

3.3 TueoreMm. If f: X — Y is an open mapping of a normal space X onto
a normal space Y and all fibres of the mapping f are finite, then:

(i) if the space Y is weakly paracompact and the space X is A-w.id., then
the space Y is A-wid.; .

(ii) if the space X is weakly paracompact and the space Y is A-w.id., then
the space X is A-w.id.;

(iii) if the space X is either hereditarily normal or countably paracompact
and the space Y is hereditarily normal, hereditarily weakly paracompact and A-
w.id., then the space X is A-w.id.

Proof. We first prove (i). It follows from the assumptions of (i) that Y
is countably paracompact. By Theorem A and (i) in Lemma B it suffices to

show that the subspace Z,, = ) Y, where ¥; = {yeY: [f () =j}, is 4-
j=1

wid. for m=1,2,...; this willl be done by induction with respect to the
integer m. Let us consider the subspace Z, = Y;. Since Z, is closed in Y, the
subspace X; =f"!(Y;) of X is closed and thus is A-w.id. The mapping f;
=f|X,: X, - Y being a homeomorphism, Z, is A-w.i.d. Let us assurme that
the subspace Z,, is A-wid. for m=1, 2,....,k and consider the subspace
Zyyy.

Now, Z,, is A-wid.; indeed, if Z,,; was not 4-wid, by Theorem 2.6
a closed subspace T of Y would exist such that T= Yy, and T is not A-
wid. Copsider the mapping fys:s =/f1Xxs1: Xirs = Yes1, Where X,y
=f~1(%.,,), and the restriction (fiy1)r: fizxi (T)—~ T By virtue of (i) in
Lemma B, there exists an open cover % = {U,}yes Of Xpsy with the property
that the mapping fi 4 1}Us: Us = firr (U is a homeomorphism for every seS.
By the normality of £, (T) we can assume that U;n fi:i(T) is an F,-set in
X and thus is A-wid. for every seS. Thus, the open -subspace

(s dr (Us 0fFA(T)) of T is  Awid, for every seS. As the family

2 — Fundamenta Mathematicae — CXIX. !
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(s D1 (G D) = (s )7 (Us 0 fiz 1 (T))}ses B8 2 cover of T, the weak
paracompactness of T implies that T is A-w.i.d. (see Remark 2.7), a contra-
diction. Thus Z,,, is A-w.i.d. and (i) is proved.

We now prove (ii). It follows from the assumptions of (ii) that X is
countably paracompact. By Theorem A and (i) in Lemma B it suffices to

show that the subspace T, = U X;, where X; =7"'(Y), is A-wid. for m

=1, 2,...; this will be done by 1nduct10n with respect to the integer m. Let
us cons1der the subspace T; = X. Since Y, is closed in Y and thus is A-w.i.d.
and the mapping f;: T} — Y, is a homeomorphism, T; is A-w.id. Let us
assume that the subspace T,, is A-w.id. for m =1, 2,...,k and consider the
subspace Tp.;.

Now, if T4, was not A -w.i.d, by Theorem 2.6 a closed subspace K of X

would exist such that K = X,.., and K would not be A-w.i.d. Consider the
mapping fy4y: Xgy1 — Yiry- By wirtue of (i) in Lemma B there exists an
open cover # = [Ugj.s of X,,, with the property that the mapping
SerddUs: U= fi1(Uy) is a homeomorphism for every seS; moreover, we
can assume, by the openness of X,., in T, that U, is an F,-set in X for
every seS. Similarly, by the openness of Y;,, in Z,,, = f(T,4,), there exists
an open refinement ¥ = {¥},or of the open cover fiy ; () = {fys 1 (Ug)}ses Of
Y;+, such that ¥, is an F_-set in Y for every teT; for each te T, choose an
‘index s,€S such that V| cka(U ) and let W, = U, nﬁ‘H(V) Clearly, the
mapping fi|W;: W,>V, is a homeomorphlsm and thus W, is A-w.id. for
every te T The family # = {W,nK},.r is an open cover of K by A-w.id.
subspaces and thus the weak paracompactness of K implies that K is A-
wid, a contradiction. Thus T, is A-w.id. and (ii) is proved.

Finally, we prove (iii). It follows from the assumptions of (iii) that Y is
strongly hereditarily normal (see [8], Theorem 2.1.5). Let us observe that
every open subset of a strongly hereditarily normal A-w.i.d. space is A-w.i.d.;
indeed, consider an open subset U of a strongly hereditarily normal A4-w.i.d.
space P and let 4, B be a pair of disjoint closed subsets of U. Since the sets
A and B are separated in P, there exist disjoint open sets U, W< P such that
A< U,Bc W and U, W can be represented as the union of a point-finite
family -of F,-sets in P; by the hereditary normality of U, W both these sets
are A-w.id. (see Theorem B, Theorem E and Lemma 2.3.3 in [8]). Take an
open subset H of P such that AcHc HnUcUnNV and an open subset
G of P such that A «G =GN V< H (cf. the proof of Lemma 2.3.5 in [8]).
Clearly, the boundary Fr G of the set G in the space V is a partition between
A and B in U; since FrG is A-w.i.d, the hereditary normality of U implies
that U is A-w.i.d. This implies in particular that by virtue of (i) in Lemma B
the subspace Y; of Y is A-wid. for j=1,2,...
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To prove that X is A-w.id. it suffices to show, by virtue of (i) in Lemma
B and Theorem A, that the subspace T,,= (J X;is A-wid.form=1,2,...;
j=t

this will be done by induction with respect to the integer m. Let us consider
the subspace T, = X, of X. Since Y; is closed in Y and thus is A-w.id. and
the mapping f;: T, — Y; is a homeomorphism, T; is A-wid. Let us assume
that the subspace T,, of X is A-wid. for m =1, 2,...,k and consider the
subspace T,.,. Now, T;., is A-w.id.; indeed, if T;,; was not A-w.i.d., then,
either by virtue of Theorem E or by virtue of Theorem 2.6, a closed subset K
of X would exist such that K < X, ,, and K would not be 4-w.i.d. Consider
the mapping fy+1: Xy4+3 — Yes1. The easily verified fact that f,, ; is a closed
mapping implies that the set f;,, (K) is closed in Y;,, and thus is A-w.id.;
moreover, f; ., (K) is weakly paracompact. Let us now consider the mapping
(fk+1f,,+1(m S o1 (K) = fie1 (K). The mapping  (fi+r)y,, 0 Dbeing
open, 1t follows from the already proved part (ii), by virtue of the closedness of
the mapping (fi+1)r, . ;a0 Which implies the weak paracompactness of K (see
[7], Problem 5.3.H(a)), that K is A-w.i.d., a contradiction. Thus T, ; is A-w.i.d.
and (iii) is proved. This completes the proof.

The next theorem describes the behaviour of S-w.i.d. spaces under open
mappings with finite fibres.

3.4. TueoreM. If f: X — Y is an open mapping of a weakly paracompact
normal space X onto a normal space Y, all fibres of the mapping f are finite and
the space X is S-w.id., then the space Y is S-w.id.

Proof. It follows from the assumptions of the theorem that the sub-
space S;(X) of X is compact (see Remark 2.3). Consider the mapping

F184(X): S4(X) - f(S4(X)). The mapping f|S,(X) being closed, it follows from

Theorem 4.5 below that the compact subspace f(S,(X)) of Y is 4-w.id. and
thus is S-wi.d. Consider now a closed subspace T of Y contained in
Y\f(S4(X)). Since f™!'(T) = X\S,(X), it follows from Theorem C that
dimf~!(T) < 0. The openness of the mapping fr: f~!(T) — T along with
(i) in Theorem 3.1 implies that dim T < co. Thus, by Theorem C, the space Y
is S-w.i.d. and the theorem is proved.

We now pass to a theorem on spaces which have trlnd.

3.5. TueoreM. If f: X = Y is an open mapping of a metrizable space X
onto a hereditarily normal space Y, all fibres of the mapping f are finite and the
space X has trInd, then the space Y has trInd.

Proof. It follows from the assumptions of the theorem that the sub-
space ‘S;(X) of X is compact (see Remark 2.4). Consider the mapping
f18:(X): Sy(X) = f(S,(X)). Since the subspace S;(X)< X is cd. (see [9],
Theorem 4.6), the subspace f(S;(X)) of Y is, by virtue of Theorem I below,
also c.d.; moreover, f(S;(X)) is metrizable (see [7], Theorem 4.4.15). Thus
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IS, (X))' has trInd (see [9], Theorem 4.2). Consider now a closed subspace T
of Y contained in Y\ f(S,;(X)). Since f™*(T) c:X\S,(X) it follows from

Theorem D that Ind [f~*(T)] < 0. Since T= U (TNY), where Y,

={yeY: |[f*(y)| =j} for each j, it follows from (1) m Lemma B that to
prove that Ind T'< o it suffices to show that Ind(Tn Y)) < Ind[f ~*(T)] for
j=1,2,... (see [8], Theorem 2.3.1). Let us fix an integer j and consider the
subspace T Y; of T. The easily verified fact that the mapping f; =f|X;: X;
— Y), where X; =f"1(Y), is open-and-closed, implies that Y; is metrizable
(see [7], Theorem  4.4.18). Consider now the  mapping
[ HUTAY): 71 (T Y)~ TnY; since the mapping flf "*(TnY) is
closed and |[fj[f YT Y)1"*(y)| = for every ye TN Y], we have Ind (T Y)
=Ind[f " (T )1 <Ind[f~*(T)] (see Remark 44, below). Thus Ind T
< o0 and we infer from Theorem D that the space Y has trInd; the theorem
is proved.
3.6. Remark. Let us observe that a space X which is the inverse image
of an S-wi.d. space Y (a space Y which has tr Ind) under an open mappmg
with finite fibres need not be S-w.id. (have tr Ind).

To give an example consider Z = (-D I", where I" is the n-cube for n

n=1
- =1,2,...,,Y=wZ, the one-point compactification of Z and X = Z®Y. Let
the mapping f: X — Y be defined as follows: f(x) = x if xe Y and f(x) = i(x)
if xeZ, where i: Z — Y is the embedding; f is open and has finite fibres, the
space Y is S-w.i.d. and has tr Ind, and yet the space X neither is S-wi.d. nor
has trInd.

However, we have the following two theorems on open-and-closed
mappings with finite fibres. -

3.7. Tueorem. If f1 X — Y is an open-and-closed mapping of a normal
space X onto a weakly paracompact space Y, all fibres of the mapping f are
finite and the space Y is S-w.id., then the space X is S-w.id.

Proof. It follows from the assumptions of the theorem that the sub-
space S,(Y) of Y is compact (see Remark 2.3) and so is f ~*(S,(Y)). By virtue
of (i) in Theorem 33, f~*(S,(Y))is A-w.id. and thus is S-w.i.d. Consider a
closed subspace T of X contained in X \f~*(S,(X)). Since f(T) = Y\S,(Y), it
follows from Theorem C that dim [f(T)] < co; by virtue of (i) in Theorem
3.1, dim[f~*'(f(T))] =dim[f(T)] (see [7], Problem S5.3.H(a)), so that
dim T < dim[f ™! (f(T))] < o and, by Theorem C, the space X is S-w.id.
Thus, the theorem is proved.

3.8. Tueorem. If f: X — Y is an open-and-closed mapping of a strongly
hereditarily normal space X onto a metrizable space Y, all fibres of the mapping
f are finite and the space Y has trInd, then the space X has trInd.

Proof. It follows from the assumptions of the theorem that the sub-
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space S(Y) of Y is compact and so is f~!(S(Y)). Since S(Y) is c.d. (see [8],
Theorem 4.6), S(Y) can be represented as the union of a sequence 4;, A,,...
of 0-dimensional subspaces (see [8], Theorem 4.1.17). By virtue of (iii) in
Theorem 3.1 we have Indf~'(4) =0 for i=1, 2,... It follows from the

equality f~1(S(Y)) = G f71(4,) that £~ 1(S(Y)) has trInd (to show this we
i=1

can use the argument applied to prove Theorem 4.1 in [9], employing
Theorem 2.2.4 of [8] instead of Theorem 4.1.13 of [8]). Consider now a
closed subspace T of X contained in X \f~*(S(Y)). Since f(T) = Y\S(Y), it
follows from Theorem D that Ind [f(T)] < co. By virtue of (ii) in Theorem
3.1 Ind[f ~*(f(T))] = Ind [f(T)] and thus Ind T< Ind [/~ (f(T))] < co. By
Theorem D the space X has trInd and the theorem is proved.

We conclude this section with some results having to do with more.
general classes of open mappings. '

It is known that open mappings with countable fibres can arbitrarily
raise dimension (see [8], Problems 1.12.E and 1.12.F). An example of an
open mapping with countable fibres of a complete separable metric space X
that is not c.d. onto the Cantor set is also known (see [10], Section 7). As
shown by Pol [24], open mappings with dlscretc fibres can arbitrarily raise
dimension.

Restricting ourselves to metrizable spaces, we obtain here some
theorems on the invariance of the classes of infinite-dimensional spaces
discussed in our paper under open mappings with separable fibres, no fibre
of which is dense-in-itself.

The dimension-theoretic study of this class of open mappings was
initiated by Pol [24]. That was the first paper in which the following lemma,
due to Hansell (see [12], Proposition 3.11), was exploited in dimension
theory.

Lemma C. If f: X - Y is an open mapping of a collectionwise normal
space X onto a metrizable space Y and all fibres of the mapping f are Lindeldf,
then for every family {A;}s, of subsets of X discrete in X, there exists a
sequence {B, 1 )ses, By 2)sess--- of discrete families, of subsets of Y, with the

property that f(A)= U B, for each seS.
n=1

The following theorem was proved in [24] by applying Lemma C.

TueoreM H. If f: X — Y is an open mapping of a metrizable space X
onto a metrizable space Y, all fibres of the mapping f are separable and no fibre
of the mapping f is dense-in-itself, then dimY < dim X.

We now pass to a theorem on A-w.id. spaces.

3.9. Taeorem. If f: X — Y is an open mapping of a metrizable space X
onto a metrizable space Y, all fibres of the mapping f are separable, no fibre of
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the mapping f is dense-in-itself and the space X is A-w.id, then the space Y is
A-wid.

Proof. Let us take a o-discrete base % = U 4, for the space X,

where 4, = ;welet §= U S, Let

the family {4,},s of subsets of X, where 4, < U, for each seS, satlsfy (1)—(iii)
in Lemma A. Let us fix an integer m and consider the family {4,},s,- By

Lemma C there exists a sequence {Bj }ses,,» {Bs,2}ses,y - Of discrete families
00
of subsets of Y such that f(4,) = U B, for each seS,. For each seS,,

enlarge the set B,, to an set G, open in Y in such a way that the famlly
{Gqnlses,, is discrete for n=1,2 (see [11], Lemma 4). By virtue ‘of (i) in

Lemma A the set ,,,—f(A)mG,,, is an F,set in Y and the set
A, [(f14) *(T,,)] is an F,-set in X and thus is A-w.id. for every SES,
and =1,2,... By virtue of (i) in Lemma A the mapplng

(flAdr,,: As r\[(fIAs)“l(’E =T, is a homeomorphlsm and thus T,
A-wid. for every seS,, and n=1, 2,... Since the famlly VT n)ses,, 1S dlscrete
the subspace T, = U is A—Wld for n=1,2,...; it follows from
seSy,

Theorem B that the subspace T,, = U Ton

{Ug)ses,, is discrete in X for m=1, 2,.

of Y is A-w.i.d. Now, it follows

from (iii) in Lemma A that Y= U T,, and thus Theorem B implies that the

space Y is A-w.id. This completes the proof.
We now prove a theorem on S-w.id. spaces.

3.10. TugorReM. If f: X — Y is an open mapping of a metrizable space X
onto a metrizable space Y, all fibres of the mapping f are separable, no fibre of
the mapping f is dense-in-itself and the space X is S-w.i.d., then the space Y is
S-w.id.

Proof. It follows from the assumptions of the theorem that ‘,fthe sub-
space S(X) of X is compact (see Remark 2.3) and so is the subspace f(S (X))
of Y. The subspace f~![f(S(X))] of X is S-w.id., hence A-w.id. and thus
Theorem 3.9 applied to the mapping fysxy: f 2 [f(S(X))] = /(S (X)) implies
that (S (X)) is A4-w.id., and so S-w.i.d. Consider now a closed subspace T of
Y contained in Y\f(S(X)). Since f~*(T) = X\S(X), it follows from Theorem
C that dim[f~!(T)] <. Now, Theorem H applied to the mapping
fr: f~YT)— T implies that dim T< co. Thus, by Theorem C, the space Yis
S-w.id. and the theorem is proved.

Finally, we prove a theorem on spaces which have trInd.
3.11. TueoreM. If f: X — Y is an open mapping of a metrizable space X
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onto a metrizable space Y, all fibres of the mapping f are separable, no fibre of

the mapping f is dense-in-itself and the space X has trInd, then the space Y has
tr Ind.

Proof. It follows from the assumptions of the theorem that the sub-
space S (X) of X is compact (see Remark 2.4) and so is the subspace f(S(X))
of Y. The subspace f ! [f(S(X))] of X has trInd, and hence is c.d. (see [9],
Theorem 4.6); thus f(S(X)) is c.d. (see Remark 3.12, below), and hence has
trInd (see [9], Theorem 4.2). Consider now a closed subset T of Y contained
in Y\f(S(X)). Since f~*(T) = X\S(X), it follows from Theorem D that
Ind [/~ *(T)] < 0. Now, Theorem H applied to the mapping fr: f~1(T)
— T implies that Ind T< co. Thus, by Theorem D, the space Y has trInd
and the theorem is proved.

3.12. Remark. Let us note that one can prove along the lines of
Theorem 3.9 that if f: X — Y is an open mapping of a metrizable space X
onto a metrizable space Y, all fibres of the mapping f are separable, no fibre
of the mapping f is dense-in-itself and the space X is c.d. (s.c.d.), then the
space Y is cd. (s.c.d.).

Let us add that it follows immediately from Lemma A that if f: X - Y
is an open mapping of a metrizable space X onto a metrizable space Y, all
fibres of the mapping f are discrete and the space Y is 4-w.id. (cd., s.c.d.),
then the space X is A-w.id. (cd, scd.).

4. Closed mappings with finite fibres. The theorems on the invariance of
dimension under closed mappings go back to Hurewicz [14], who proved
that if f: X — Y is a closed mapping of a separable metric space X onto a
separable metric space Y and there exists an integer k such that |f~*(y)| = k
for every yeY, then ind X = ind Y. Nagami [20] and Suzuki [31] proved
along these lines a more general result (announced in [19] and, for ind X
=0, in [18]), viz,, if f: X — Y is a closed mapping of a metrizable space X
onto a metrizable space Y and there exists an’ integer k such that |f ™! (y)|
=k for every yeVY, then IndX =1Ind Y (cf. Remark 4.4, below). The fol-
lowing theorem on c.d. spaces was proved by Nagami [21].

TueoreMm L. If f: X = Y is a perfect mapping of a metrizable space X
onto a metrizable space Y, no fibre of the mapping f is dense-in-itself and the
space X is cd., then the space Y is cd.

The first theorem on the behaviour of S-w.i.d. spaces under closed
mappings was established by Skljarenko [28], who proved that if f: X —» Y
is a closed mapping of a separable completely metrizable space X onto a
normal countably paracompact space Y, all fibres of the mapping f are of
cardinality less that ¢ and the space X is S-w.id., then the space Y is A-w.i.d.
Leibo [16] proved along these lines that if f: X — Y is a closed mapping of
a weakly paracompact Cech-complete normal space X onto a normal space
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¥, ali fibres of the mapping f are countable and the space X is S-w.i.d, then
the space Y is A-wid.

We are now going to establish some theorems on the behaviour of A4-
wid. spaces, S-wid. spaces and spaces which have trInd under closed
mappings with finite fibres.

We begin with the following two lemmas.

4.1. LemMa. Iff: X — Y is a closed mapping of a normal space X onto a
paracompact space Y, the diagonal A4 is a Gy-set in X x X and there exists a
positive integer k such that If ~1(y) =k for every yeY, then there exists a

@
closed cover I = ) T, with the following properties:

n=1

(a) the family 7, is locally finite in Y forn=1,2,...;

(b) for each TeJ, the inverse image f~Y(T) is the union of a sequence
T,, Ty,-... Ty of disjoint closed sets in X each of which is homeomorphic to T
by the restriction of the mapping f.

Proof. If follows from the assumptions of the lemma that the space X
is paracompact (see [7], Theorem 5.1.35) and thus there exists a continuous
one-to-one mapping g: X — Z of the space X onto a metrizable space Z (see
[7], Problem 5.5.7(a)). We choose an admissible metric ¢ in Z and let ¢
=go(gxg). Let us fix a positive integer n.

To define the family 7, consider the set 4, = {ye¥: g(xy, x3) = 1/n
whenever x;, x;€f ~*(y) and x; # x,}. Clearly, 4, is closed in Y. For

each yed,, with f71()) ={xy,, Xg,ps--Xyy), Choose open  subsets
Uy, Uz Upy of X with the properties:

1) x,,eU;, for i=1,2,..k;

@ S(U,) <13n for i=1,2,...k;

3) U,,nU;,, =@ whenever i#jfori,j=1,2,..k

Since the mapping f is closed, for each yeA, there exists an open
. k

neighbourhood W, in 4, such that f “Y(W,,) < U U, Consider now a
i=1

locally finite closed refinement 7, = {T,}.es, Of the open cover {W, },c4, of
A,. It is easy _to see that, for each T,,€7,, the sets T, T,

n,s,23 00 tms,ks
where T,,; = Ui, nf ™' (T, for i=1,2,....k, satisfy condition (b) with T
= T;I,S' ‘

8

As Y= |J A,, the family & = |J 7, is a cover of Y and thus the
n=1 1

proof is comgleted. "

4.2. LemMa. Iff: X — Y is a closed mapping of a normal space X onto a
paracompact space Y, the diagonal 4 is a Gy-set in X x X and all fibres of the
mapping f are finite, then {yeY: |f7'() =k} is an F,-set in Y for k
=1,2,..

icm

e

fyk+l:

Some theorems on invariance of infinite dimension 25

Proof. The proof will proceed along lines similar to those of Lemma
41. 1t is easy to see that F,=A,n{yeY: [f 'O =k} < {yeY: f 1)
= k) for n =1, 2,..., where the sets 4;, 4,,... were defined above. It follows

from the equality Y= {J 4, that {ye¥: F~t) =k} = U F, and thus the
n=1 n=1

lemma is proved.

We now prove a theorem on the inverse invariance of A-w.i.
dimensionality. )

4.3. TuroreM. If f: X — Y is a closed mapping of a normal space X onto
a paracompact space Y, the diagonal 4 is a Gg-set in X x X, there exists an
integer k such that |f~* () <k for every yeY and the space Y is A-wid.,
then the space X is A-w.id.

Proof. We first consider the special case where If () = k for every
yeY. It follows from the assumptions of the theorem that the space X is

o0

paracompact. By Lemma 4.1 there exists a closed cover 7 = (J 7, of ¥

n=1
such that the family 7, is locally finite for n =1, 2,... and, for each Te 7,
the inverse image f~!(7T) is the union of a sequence T, T,..., T of closed
sets in X each of which is homeomorphic to T by the restriction of the
mapping f.

Since Y is A-w.id, every TeJ is A-wid. and thus the subspace T; of X
is A-wid. for every TeZ and i=1,2,..,k The family {T}rer,, Where i
=1, 2,...,k, being locally finite for n = 1, 2,..., it follows from Theorems A
and F that X is A-wid.

' We are now going to prove the theorem in the general case ; this will be
done by induction with respect to the integer k.

For k = 1 the theorem is true. Let us assume that if |f~*(y) <k for
every yeY, then the theorem is true and let us consider a mapping f: X =Y
such that [f~*(y)| < k+1 for every yeY. By Lemma 4.2 the set )
=lyeY: |71y =k+1} is an F,-set in ¥, and hence is A-wid. By the
already established special case of our theorem applied to the restriction
Xyo1— Yiwr1, where X; iy =f~!(Y,4,), the subspace X, of X is A-
w.i.d. Suppose that 'X is not A-wid. Since Xy, is an F,set in X, by
Theorem 2.6 there exists a closed subspace T of X contained in X\ X1
which is not A-w.id. Consider the restriction f|T: T—f(T); since
I(F1T)~* (»)l < k for every yef(T), it follows from the inductive assumption
that the closed subspace f(T) of Y is not A-w.id., a contradiction. Thus X is
A-wid. and the theorem is proved.

44. Remark. Let us observe first that the argument used in the first
part of the proof of Theorem 4.3 can be applied to show that if f: X—-Yis
a closed mapping of a normal space X onto a paracompact space Y, the
diagonal 4 is a Gyset in X x X and there exists a positive integer k such that
If ~1(y)| = k for every ye¥, then dim X = dim Y (as proved by Nagami [22],
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the inequality dim Y< dim X holds in the case where f: X — Y is a closed
mapping of a paracompact g-space X onto a paracompact o-space Y and
If ") = k for every yeY; let us note that if X is a paracompact o-space
and thus there exists in X a o-discrete closed network, then the diagonal 4 is
a Gysetin X % X. Let us add that the same argument shows that if f: X —» Y
is a closed mapping of a strongly hereditarily normal space X onto a
bereditarily paracompact space Y, the diagonal 4 is a G,-set in X x X and all
fibres of the mapping f are finite, then the space X is c.d. if and only if the
space Y is c.d. Indeed, represent Y as the union of the subspaces Y;, Ys,...,
where ¥; = {ye¥: |f7!(y) =i} and consider the mapping Jri S H(Y) - Y,
fori=1,2,...; it follows from Lemma 4.1 and the locally finite sum theorem
for c.d. spaces (see [10], Section 3) that, for each positive integer i, Y is cd. if
and only if f~*(X) is cd, and thus our result follows from the subspace
theorem for c.d. spaces (see [10], Section 2) and the countable sum theorem
for c.d. spaces (see [10], Section 3). Let us finally observe that a strongly
hereditarily normal space X with the property that the diagonal 4 is a G,-set
in X x X need not be perfectly normal. Indeed, the Michael line Ry (see [7],
Examples 5.1.22 and 5.1.32) is a hereditarily paracompact, and hence strongly
hereditarily normal space, the diagonal 4 is a G,-set in Ry x Ry and yet Ry is
not perfectly normal.

We now pass to a theorem on the invariance of A-w.i. dimensionality
under closed mappings. We begin with a lemma.

4.5. LeMMA. Let f: X - Y be a closed mapping of a normal countably

paracompact A-w.i.d. space X onto a normal space Y. If the space Y is not A-

w.i.d., then there exist disjoint closed subsets X,, X, of X and a closed subset
Yo of Y such that f(Xo)=f(X,)=Y, and Y, is not A-w.id.

Proof. Let (Ey, Fy), (E;, F5),... be a sequence of pairs of disjoint
closed subsets of Y such that if L, is a partition between E; and F; in Y

o0
fori=1,2,..., then _ﬂ L# @. For each positive integer i, consider the sets

i=1
A;=f""(E;) and B; =f"'(F). As X is A-w.id, for i=1, 2,... there exist
closed subsets M,;, N,; of X such that

m X =Mj3UNy, Ay < My\Ny  and By = Ny \My;;

@ 0 (M0 N,) = 0;

’ 1 o
Moreover, we can assume that X\M, = U P,; and X\N, = |J Ry,
i=1 j=1

where the sets Py, R, are closed in X for j = 1, 2,... (see [2], Ch. 10, § 4,
Lemma 2).

By virtue of (1) the subset K, =f(M,,) Nf(Ny) of Y is a partition
between Ey; and Fy; in Y fori=1, 2,... and thus the subset K = ﬁ Ky of
' i=1
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Y is not A-wi.d. It follows from (2) that for each ye K there exists a positive
integer i such that f~'(y) & My N N, and this implies that

K = 91 (K f(P,)) v Q (K Af(R,,).

By Theorem A there exists a set, say P; such that the subspace

0jo?

. Kof(Pigy,) of Y is mot A-wid. Tt is easy to see that the sets X,
| =fm1(K)m Plo:]o: X, = M2io nf! (K r\'f(Pl'o-!o)) and Yo =K mf(P"oJo) sat-

isfy our requirements. Thus the lemma is proved.

4.6. THeoREM. If f1 X =Y is a closed mapping of a Cgch-complete
weakly paracompact normal space X onto a normal space Y, all fibres of the
mappings [ are scattered and the space X is A-wid., then the space Y is A-
w.id.

Proof, It follows from the assumptions of the theorem that the space Y
can be represented as the union of the sequence Yo, Yi, ¥y,... of §ul?spaces
such that Y, is discrete in Y for i=1,2,... and - the restriction f.0
=fry: S ~1(Y,) = Y, is perfect (see [4], Theorem 1.1). Since the space X is
countably paracompact (see [7], Theorem 5.2.6), by Tl}eorex_ns 2.6_ and A it
suffices to show that each closed subset T of ¥ contained in Y, is A-w.id.

Thus consider a closed subset T, of Y contained in Y, and the
restriction (fo)r,: S (Ty)— T, As Tq is Cech-complete (see [7], T}}eorem
3.9.10), there exists in T, a sequence %, 9212,:.. of open covers with .the
propefty that any family of closed sets in T, which has t!ae finite intersection
property and contains sets of diameter less than %; for i =1, 2,... has non-

- empty intersection (see [7], Theorem 3.9.2); we can assume that %, = {Tp}-

Suppose now that Tp is not A-w.id. For each positive integer k and for
each sequence (i, iz,..., i), where i; =0 or i; = 1forj=1,2,...k we define
.a closed subset S, ., Of (,/}))7701('1‘0) and a closed subset T, of T such that

() Siyigeiy O Siyigidy = @ whenever (iy, iz, > i) # (1> J2s--sJi) 5

(2 Siige g0 USiiyigt © Siyigendy s

@) S Siyipen) =T

(4 T is not A-w.id. and (7)< U

of. the proofs of Theorems 1, 1" in [28]).

( Thepexistence of the sets Sq, $, and T follows from L.emma 45 Assume
that the sets S;;,.; and Ty, Ths..., T, are defined. Since T, is weakly
paracompact (see:1 f7], Theorem 5.3.7), we can assume that tl.xe open cover
Upsi| T = {U O Blyen,, Of Tk consists of F,-sets in T,. As T, is not A-wid,
there exists a set U ef/}l;kﬂm that is not A-w.id. (see Remark 2.7) and thus,

by Theorem A, there exists a closed subset Z of Ty c.ontained in U wh_i<1:h is
not A-w.id. By applying Lemma 4.5 to the restriction [(fo)r )z: (o)r, (2Z)
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—Z we can define the sets S;

.

tigeigry 30d Tpyy which satisfy conditions (1)~

0 o
It follows from (2), (3), and (4) that () T # @; let ye () T;. By virtue
k=1

k=1

of (2) the subspaces S, 4 NS ~1(y) of f1(y) form an inverse sequence
whose limit is, by virtue of (1), a non-empty dense-in-itself subspace of
f~1(»), a contradiction. Thus Ty is A-w.i.d. and the theorem is proved.

4.7. Remark. Following Skljarenko’s proof of his Theorem 1 in [28],
one shows that if f: X — Y is a closed mapping of a normal space X onto a
normal space ¥, there exists an integer k such that |[f~!(y)| < k for every
ye€Y and the space X is S-w.i.d., then the space Y is S-w.i.d. It is well known
that the image of an S-w.i.d. space (a space which has tr Ind) under a closed
mapping with finite fibres need not be S-w.i.d. (have trInd). Indeed, since the
n~cube I" is the image of the Cantor set C under a closed mapping with finite

fibres, to give an example it suffices to let X = @ C,, where C, is homeo-
. n=1

morphic to C for n=1,2,....Y= @& I" and f= @ f,.
n=1 n=1
As with A-w.i. dimensionality, we only have the following theorem on
the inverse invariance of S-w.. dimensionality under closed mappings.

4.8. THEOREM. If f: X — Y is a closed mapping of a normal space X onto
a paracompact space Y, the diagonal A is a Gg-set in X x X, there exists an
integer k such that |f " (y)| < k for every ye Y and the space Y is S-w.i.d.,, then
the space X is S-w.id.

Proof. It follows from the assumptions of the theorem that the sub-
space S,;(Y) of Y is compact and so is the subspace f ! (S,(Y)) of X (see [7],
Theorem 3.7.2). By Theorem 4.3, f ~*(S,(Y)) is A-w.id. and thus is S-w.id.
Consider now a closed subspace T of X contained in X\f~*(S,(Y)). Since
f(T) = Y\S;(Y), it follows from Theorem C that dim[f(T)] < oo (see
Remark 2.3). By a theorem due to Skljarenko [29] applied to the mapping
Jreny: STHA(D) = f(T) we have dim[f~*(f(T))] < oo, so that dim T< co.
Thus, by Theorem C, the space X is S-w.id. and the theorem is proved.

We conclude this section with two theorems on spaces which have
tr Ind.

4.9. TueoreM. If f: X — Y is a closed mapping of a metrizable space X
onto a metrizable space Y, there exists an integer k such that |f~'(y)| < k for
every yeY and the space X has trInd, then the space Y has trInd.

Proof. It follows from the assumptions of the theorem that the sub-
space S(X) of X is compact and so is the subspace f(S(X)) of Y. The
subspace S (X) of X is c.d. (see [9], Theorem 4.6) and thus f(S (X)) is c.d. (see
Remark 4.4.), so that f(S(X)) has trInd (see [9], Theorem 4.2). Consider now
a closed subspace T of Y contained in Y\f(S(X)). Since £~ (T) = X\ S(X), it
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follows from Theorem D that Ind[f~*(T)] < oo (see Remark 24). Thus
Ind T< oo (see [8], Theorem 4.3.3) and by Theorem D the space Y has
trInd. Thus the theorem is proved.

The theorem on inverse invariance of the existence of tr Ind holds under
much weaker assumptions than the finiteness of fibres.

4.10. TaeoreM. If f: X — Y is a closed mapping of a metrizable space X
onto a metrizable space Y, there exists an integer k such that Ind[f "' ()1 < k
Jor every yeY and the space Y has trInd, then the space X has trInd.

Proof. It follows from the assumptions of the theorem that the sub-
space S(Y) of Y is compact and that S(Y) is c.d. (see [9], Theorem 4.6). It
follows from a theorem due to Arhangel’skii [4] that the subspace f~*(S(Y))
is c.d. Now, the VainStefn Lemma (see [7], 4.4.16) implies that £ ~*(S(Y)) can
be represented as the union of a compact subspace C and the union of the
family {Int ™! ())}yesr); @s C is cd., C has trInd (see [9], Theorem 4.2). Let
K be a closed subset of f~* (S(Y)) contained in f ~* (S (¥))\ C. It follows from
the inclusion K = (J Intf~'(y) and the fact that Ind [Intf~*(3)] < k for

eS(Y,
every yeS(Y) thatylrid) K < k. Thus, by Theorem D, the subspace f~*(S(Y))
of X has trInd. Consider now a closed subset T of X contained in
X\f~Y(S(Y)). Since f(T)<= Y\S(Y), it follows from Theorem D that
Ind [f(T)] < oo and thus.Ind [/~ (f(T))] < co (see [7], Theorem 4.3.6); this
implies that Ind T< co. It follows from Theorem D that the space X has
trInd and thus our theorem is proved.

4.11. Remark. Let us note that in Theorem 4.10 the assumption that
Ind[f~*(y)] < k for every yeY cannot be weakened to the assumption that

Ind[f~1(y)] < o for every ye?; indeed, it suffices to let X = @ I" and

n=1

shrink each cube I" to a point.

5. Open-and-closed mappings with no fibres dense-in-themselves. This
class of spaces can be considered as a generalization of open mappings with
countable fibres, defined on compact metric spaces (cf. Alexandroff [1],
Hodel [13] and Vainstein [32]; cf. also Arhangel'skii [5]). Hodel [13]
proved that if f2 X — Y is an open-and-closed mapping of a metrizable space
X onto a metrizable space Y and no fibre of the mapping f is dense-in-itself,
then dim Y< dim X. More general is the following theorem due to Keesling
[15]. Let us recall that a mapping f: X =Y is said to be o-closed if the
space X can be represented as the union of a sequence Fy, Fy,... of closed
subspaces such that the restriction f|F;: F;—f(F) is closed and f(F) is
closed in Y for i = 1, 2,...; clearly, every closed mapping is o-closed. We let
X, ={xeX: x is open in f ™' (f(x))}.

TreoreMm J. If f: X — Y is an open-and-o-closed mapping of a metrizable
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space X onto a metrizable space Y and the subspace K of X, is closed in X,,
then dimK = dim f(K).

We are now going to establish some theorems on the behaviour of the
classes of infinite-dimensional spaces discussed here under open-and-closed
mappings with no fibres dense-in-themselves. We begin with a theorem on A-
w.id. spaces. )

5.1. TuEOREM. If f: X — Y is an open-and-closed mapping of a metrizable
space X onto a metrizable space Y and no fibre of the mapping [ is dense-in-
itself, then

(i) if the space X is A-wid, then the space Y is A-w.i.

(i) the space Y is A-w.id. if and only if the space X, is A-wid.

Proof. Let us take a g-discrete base # = |J £, where the family 4,
m=1

oy
= {U,)yes,, is discrete for m =1, 2,..., for the space X; we let S= U Sp-
m =1

Let the family {4}, Where A, = U, for each se§, satisfy (i)—_(ii'i) in Lemma
A. It follows from (iii) in Lemma A that X, = |J 4, and thus (i) in Lemma A
S

implies that X, is an F,-set in X. This implies that it suffices to prove (ii).

We suppose first that X, is A-w.id. By the VainStein Lemma (see [7],
4.4.16) the boundary Fr f~!(y) is compact for every ye Y. The openness of
the mapping f implies that each omne-point subset of the set Yo
={yeY: Intf~'(y) # @} is open in Y; thus, by Theorem B, it suffices to
prove that Y\Y, is A-wid. Consider ‘the perfect mapping
=frwg £ 1(Y\Y,) = Y\ Y,. It follows from (ii) in Lemma A that the map-
ping fl4,nf~*(Y\Yy) is a homeomorphism and thus FlA,nf YN\ Y] is
A-wid. for every seS. Thus the family {fTA; nf ™Y\ YolI}ses is @ o-locally
finite cover of Y\ Y, by closed 4-w.id. subspaces. It follows from Theorem F
that Y\ Y, is A-wid. ~

We suppose now that ¥ is A-w.id. It follows from (i) in Lemma A that
F(4;) is A-w.i.d. for every se§ and thus we infer from (i) in Lemma A that
A, is A-w.id. for every seS. Since the family {A,}s is a o-discrete cover of
X, by closed A-w.i.d. subspaces, it follows from Theorem F that X, is A-
w.id. Thus our theorem is proved.

5.2. Remark. The same argument, employing Theorem G instéad of
Theorem F and the Vainstein Lemma, proves a more general result, viz, if
f: X - Y is an open-and-o-closed mapping of a metrizable space X onto a
metrizable space Y and the subspace K of X, is closed in X,, then K is A-
w.id. if and only if f(K) is A-w.id.

The next theorem is a partial counterpart for S-w.i.d. spaces.

5.3. Tueorem. If f: X — Y is an open-and-closed mapping of a metrizable
space X onto a metrizable space Y and no fibre of the mapping f is dense-in-
itself, then:
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(i) if the space X is S—vlv.i.d., then the space Y is S-w.id.;

(1) if the space X, is S-w.id., then the space Y is S-w.id.

Proof. We prove first (i). It follows from the openness of the mapping f
that the set Y, = {ye ¥: Int f~!(y) # @) is open discrete and the Vainstein
Lemma (see [7], 4.4.16) implies that the mapping [ = fy\yor STHY\Yy)
- Y\Y, is open-and-perfect. We let X, =f~1(Y\Y,). It follows from the
assumptions of the theorem that the subspace S(X,) of X, is compact (see
Remark 2.3) and so is the subspace (S(Xo)) of Y\Y,. It follows from
Theorem 5.1 applied to the restriction fyswxgy: /™" [F(S(Xo))] =7(S(Xo)
that f (S(X o)) is A-w.i.d. and thus is S-w.i.d. Consider now a closed subspace
T of Y\Y, contained in (Y\Y,) \(S(Xo). Since f~1(T) = X,\S(X,), it
follows from Theorem C that dim[f~!(T)] < co. It follows from Theorem J
applied to the restriction f7: f~!(T) - T that dim T < co. By Theorem C the
subspace Y\ Y, of Y is S-wid. The set Y, being discrete, one easily checks
that Y is S-wid. and thus (i) is proved.

We now prove (ii). Consider the mapping f, =f| |1 X,: X, —Y,. It fol-
lows from the assumption of the theorem that the subspace S(X,) of X £ 1S
compact and so is the subspace f, (S(X,)) of Y. Since every fibre of the
mapping f, is discrete, it is finite. It follows from Theorem 4.5 applied to the
restriction f,IS(X,): S(X,) - f, (S(X,)) that £, (S(X,)) is A-wid, and hence
S-w.id. Consider now a closed subspace T of Y contained in Y\f, (S(X.0)
Since f ' (T) = X, \S(X,), it follows from Theorem C that dim[f 1 (T)]
< 00. It follows from Theorem J that dim T< oo. From Theorem C we infer
that Y is S-w.i.d.; thus our theorem is proved.

54. Remark. As with Theorem 5.1, Theorem 5.3 can be generalized as
follows: if f: X — Y is an open-and-s-closed mapping of a metrizable space
X onto a metrizable space Y, the subspace K of X, is closed in X, and K is
S-w.id, then f(K) is S-w.i.d.

A counterpart for spaces which have trInd also holds.

5.5. Tueorem. If f: X — Y is an open-and-closed mapping ofa metrizable
space X onto a metrizable space Y and no fibre of the mapping f is dense-in-
itself, then:

(i) if the space X has trInd, then the space Y has trind;

(ii) if the space X, has trind, then the space Y has trInd.

Proof. We follow the proof of Theorem 5.3. To prove (i) we decompose
Y into two disjoint sets Y, and Y; such that Y, is open discrete and the
mapping f'=fy,: f7*(Y;) = Y, is open-and-perfect. We let X, =f"1(¥;). It
follows from the assumptions of the theorem that the subspace S(X;) of X,
is compact and so is the subspace J (S(Xy)) of Y,. The space S(X,) is c.d. (see
[9], Theorem 4.6). It follows from Theorem 1 applied to the restriction

Frscoy: TS (X)) —F(S(Xy)  that f(8(xy)) is cd. and thus


GUEST


32 L. Polkowski

tr Ind f(S(X,)) is defined (see [9], Theorem 4.2). Consider now a closed
subspace T of Y contained in ¥; \f(S(X,)). Since T UT) = X, \S(Xy), it
follows from Theorem D that Ind[f~*(T)] < co. It follows from Theorem J
applied to the restriction fri f74(T)= T that Ind T< co. From Theorem D
we infer that Y; has tr Ind. The set Y, being discrete, one easily checks that ¥
has trInd; thus (i) is proved.

We now prove (ii). Consider the mapping f, = fIX,: X, — Y It follows
from the assumptions of the theorem that the subspace S(X,) of X, is
compact and so is the subspace f, (S(X .)) of Y. The space S(X,) is cd. (see
[9], Theorem 4.6). The finiteness of the fibres of ' the restriction
HIS(X): S(X) (X .)) implies that £, (S (X ,)) is cd. (see Remark 4.4).
Thus f,(S(X,)) has trInd (see [9], Theorem 4.2). Consider now a closed
subspace T of Y contained in Y\ £ (S(X,). Since f31(T) = X\S(X,), it
follows from Theorem D that Ind[f 3! (T)] < co. It follows from Theorem J
that Ind T< co. From Theorem D we infer that Y has tr Ind and thus our
theorem is proved.

5.6. Remark. Arguing as in the above proof, one can prove that if
f: X - Y is an open-and-o-closed mapping of a metrizable space X onto a
metrizable space Y, the subspace K of X, is closed in X, and K has trInd,
then f(K) has trInd.

5.7. Remark. The converses of Theorems 5.3 (i) and 5.5 (ii) do not
hold: the subspace X, of X need not be S-wid. (have trInd) in the case

)

where the space Y is S-wid. (has trInd). Indeed, let Z= @ I" and Y

n=1
= Z U{a} be the one-point compactification of Z; consider the space X,
which is the Cartesian product Yx(I U {2, 2}) with the points (a, 1) and
(a, 2) identified, and the mapping f: X — Y, which corresponds to the projec-
tion of Yx(I U {2, 3}) onto Y. Clearly, the mapping f is open-and-closed, no
fibre of the mapping f is dense-in-itself, the space Yis S-w.id. and has trInd,
but X, =(Z x {2})U(¥x {3}) neither is S-w.id. nor has trind.

However, we have the following theorem on the inverse invariance of S-
wi. dimensionality as well as the existence of trInd under open-and-closed
mappings (cf. Theorems 3.7, 3.8). :

58. TaeoreM. If f: X — Y is an open-and-closed mapping of a metrizable
space X onto a metrizable space Y, all fibres of the mapping f are discrete and
the space Y is S-wid. (has triInd), then the space X is S-w.id. (has trInd).

Proof. It is enough to give the details of the proof in the first case. As
in the proof of Theorem 5.3, we represent Y as the union of two disjoint
subsets Y, and Y, such that Y, is open discrete and the mapping [
=fy: fTH(H) - Y s open-and-perfect. We let X, =f~*(Y;). Since the
subspace S(Y;) of Y; is compact (see Remark 2.3), the subspace FH(S(Yy) of
X, is compact. It follows from Theorem 5.1(ii) that f~1(S(Yy)) is A-w.i.d. and
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thus is S-w.id. Consider now a closed subspace T of X, contained in
X \TY(S(Y) Since F(T) = Y;\S(Y;), it follows from Theorem C that
dim [f(T)] < co. Since all fibres of the restriction f|T: T—7(T) are discrete,
dim T< oo (see [8], Theorem 4.3.6). From Theorem C we infer that X, is S-
w.i.d. The subspace X\ X, of X being discrete, one easily checks that X is S-
w.id.; thus the proof of the first case is concluded.

The proof of the second case, i.e. when Y has trInd, is similar. As S(Y;)
is cd., 771(S(Yy)) is c.d. (see [9], Theorem 4.6 and either [4], Theorem 5.6 or
[10], Section 7). Thus f~*(S(Y;)) has trInd (see [9], Theorem 4.2). One easily
checks that every closed subspace T of X, contained in X, \f~'(S(Yy)) is
finite-dimensional, so that by virtue of Theorem D trInd X, is defined. To
show that X has trInd it suffices to observe that X\ X, is discrete and to
apply Theorem D once again.

The author would like to express his gratitude to Professor R. Engelking
for his valuable advice.

He also thanks Dr R. Pol for a helpful discussion, which resulted in an
improvement of the results of Section 4.
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Confluent local expansions
by

Krzysztof 'O miljanowski (Wroctaw)

Abstract. Every confluent local expansion of an arcwise connected continuum onto itself is
open,

In paper [6] Professor 1. Rosenholtz has proved that every open local
expansion of a continuum onto itself has a fixed point. The following
question is asked in [2], Problem 3.1:

(%) Does there exist a confluent local expansion of a continuum onto
itself which is fixed point free?

This. paper gives a partial answer to this question: every confluent local
expansion of an arcwise connected continuum onto itself is open, and so it
has a fixed point. This will follow from two results proved for locally one-to-
one mappings. An example shows that this method cannot be extended to
continua which are not arcwise connected. . :

The author wishes to thank Professor J. J. Charatonik for his valuable
suggestions and discussions on the subject of this paper.

A continuum means a compact connected metric space. Let X and Y be
metric spaces with metrics dy and dy respectively. A continuous surjection
f: X =Y is said to be .

— a local expansion if for each xe X there is a neighbourhood U of x
and a number M > 1 such that

dy(fO), f(2) = M -dx(y,2) for y,zeU

(ef. L6\ - _

— open if the image of any open set in X is open in Y,

— confluent if for every continuum @ = Y and for every component C
of /~*(Q) we have f(C) = Q, . _

— locally one-to-one if for each point xeX there is an open neigh-
bourhood U of x such that the restriction f|y is one-to-one.

Let us recall (see [1], VI, p. 214) that

(i) any open mapping of a compact space is confluent.
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