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Decomposition spaces having arbitrarily small
neighborhoods with 2-sphere boundaries II

by
Edythe P. Woodruff* (Princeton, N. J) :

Abstract. Let G be an usc decomposition of %, H be the collection of nondegenerate elements,
and P be the natural projection of $* onto $3/G. Suppose that each go€ H has an arbitrarily small
neighborhood with a (possibly wild) 2-sphere boundary § and that S contains every g H which it
intersects. Then any one of the three following additional conditions jmplies that $%/G is
homeomorphic to 3. (1) § is tame from one side. (2) The wildness from Ext § und Int § can be
described by certain E,-sets F; and F,, respectively, for which P(F,) and P(F,) are aisjcinl, 0-
dimensional sets in $%/G. (3) G is a compact, 0-dimensional decomposition and the wildness from the
two sides can be described by certain F-sets F, and F, with the property thatno g & H intersects both
F, and F. Also proved is a theorem which states that §%/G is homeomorphic to 8% if each g & H lies in
an arbitrarily small open neighborhood U such that P(Bd U) is a 2-sphere and the new usc
decomposition G’ of $* whose H' = {geH: gnBd U # @} itself yields a decomposition space $3/G’
which is homeomorphic to 8% '

1. Introduction

1.1. Preliminaries. Definitions and notations are below in (1.2) and the
motivation for this paper is given in (1.3). Section 2 concerns techniques used in
later proofs. In Sections 3, 4, and 5 we state and prove our results.

1.2. Definitions and notations. All decompositions used are upper semicon-
tinuous (usc) by a standard definition such as in Whyburn [Wh]. For a
decomposition G of §2, the set of nondegenerate elements is denoted by H, and
the natural projection of §% onto §/G by P. Asubset A = §° is called G-saturated
if for geG, either gnA =@ or g A. For aset T < S* let Sat T denote
{peS™ p is a point in some geG which intersects T}

For any collection C of sets, C* = {xeC}.

A decomposition is called a compact O-dimensional decomposition if
P(Cl H*) is a compact O-dimensional set.

A sequence {M,} of 3-manifolds with boundary in 83 is called a defining
sequence for a decomposition G of S%if and only iffor eachi, M; . ; < Int M;,and

4l
the elements of H are the nondegenerate components of () M.
i=1

* Partially supported by NSF Grant MCS-7909542.

2 — Fundamenta Mathemalicae CXIX, 3


GUEST


186 E. P. Woodruff

A crumpled cube is the closure of either component of the complement of a
(possibly wild) 2-sphere in S3.

Let 4 be an annulus bounded by 2-spheres §; and S,. A homeomorphism ¢
taking S, onto S, is called admissible if there exists a homotopy H: S*xI — A
such that H(S?2x0)=S;; H(S*x1) = S,; and for xeS* if H(xx0) = pe§,,
then H(xx1)=¢(p)eS,.

1.3. Motivation. In “Decomposition spaces having arbitrarily small ncigh-
borhood with 2-sphere boundaries” [W] the author proved:

TueoReM. Let G be anusc decomposition of S°. Suppose that for any g & H, and

open set U containing g there is a crumpled cube X such that g = Int X < U, and
Bd X misses H*. Then $3/G is homeomorphic to S°.

Armentrout [A3] has shown that there is an usc decomposition G of $3 such
that §%/G is not homeomorphic to $° although it shares the following property
with decompositions satisfying the above theorem. For every g € G and open set
U containing g thereis a set V containing g in its interior and having the property
that P(Bd V) is a 2-spheré S in S§*/G. In this example, for each g e H Armentrout
exhibits a set P~ (S) which is a 2-sphere unioned with a Cantor set of piercing
arcs.

In the original version of this paper I conjectured that $3/G would be
homeomorphic to §° if every g € H has an arbitrarily small neighborhood ¥ such
that Bd V is a G-saturated 2-sphere. When Steve Armentrout considéred this
conjecture, he wrote [A4] in which he shows that the example in [A3]is a
counterexample to this conjecture.

In this paper we present results which lic between the theorem [W] and
Armentrout’s example [A4]. We prove that for a decomposition satisfying the
condition that every g H has an arbitrarily small neighborhood V such that
Bd Vis a G-saturated 2-sphere the space S3/G is homeomorphic to 3 if one adds

“either (a) Bd V is tame from one side, or (b) the nondegenerate elements in Bd V
have a certain nice placement with respect to any wildness in Bd V.

The last theorem in the paper replaces the assumption that Bd V is a 2-
sphere by P(Bd V)is a 2-sphere; and requires that for the new usc decomposition
G’ of $* into points and {geH: g = Bd V3, the decomposition space $3/G' is
homeomorphic to 53,

The reader should notice that if the 2-sphere theorem in [W] applies to a
decomposition G then P (H) is 0-dimensional for that G. This is not necessarily
true for the decompositions considered in this paper. Here, P(H) can even be 3-
dimensional.

2. Techniques and lemmas

2.1. Shrinkability. We will prove each of the theorems in this paper by
showing that a given decomposition is shrinkable.
The basic concepts in the definition and theorem below were originally given
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by McAuley in [Mcl] and [Mc2]. Although there is a problem in [Mc2]

.involving a generalized definition of upper semicontinuity and shrinkability, his

theorem is correct if the standard definition of usc is used. Concerning this, see the
theorem by Reed in her thesis [R]. The version we use is from her work and

provable using methods in [Mcl].

DerFINITION. Suppose that G is a decomposition of S3. We say that H is
shrinkable in §* if for each G-saturated open cover 4 of H*, homeomorphism ¢ of
$* onto S3, and 7 > 0; there exists a ¢ (G)-saturated open cover % of H* that
refines % and a homeomorphism f, of $* onto $* such that (1) f|S*—&*
= ¢|8® —*, (2 for each geH, Diam f(g) <, and (3) for each We#" there exists
Ue such that o(W)uf,(W) < @(U).

SHRINKABILITY THEOREM (McAuley, Reed). If H is shrinkable in S°, then S*/G
is homeomorphic to S3.

2.2, Existence of a shrinking homeomorphism. The following lemma uses a
hypothesized local condition for a decomposition G to show that K is shrinkable.

Lemma 2.1. Suppose that G is an usc decomposition of S* such that S3/G is 3-
dimensional, for each g, G there are arbitrarily small G-saturated open sets X*
and X3 withgo < X* and Cl X* = X3; and for eache > 0, each G-saturated closed
set F, and each homeomorphisma of S® onto S° for whichg € G and g <= F imply that
Diam a(g) < ¢ there exists a homeomorphism h of S* onto S* such that

(1) hla(S®—X3) =id,

(2) if geG and g = X', then Diam hx(g) < &/2, and

(3) if geG and g = F, Diam ha(g) <.

Then G is shrinkable. .

Proof. The Shrinkability Theorem hypotheses give us a G-saturated open
cover % of H*, a homeomorphism ¢ of S* onto S and % > 0. Choose &,
such that if p, ¢eS® and the distance dist (p, q) <eo/2, then
dist (¢ (p), ¢(g)) < n/2. Denote the collection of “large” elements by H
= {geH: Diam g > s}.

From % u(S* — H¥) choose a minimal finite subcover % of $°. Let P(%)
denote the open cover {P(U): U e %} of $3/G.The decomposition space S3/G is a
compact metric space (although we do not yet know that it is homeomorphic to
53). Hence, there is a Lebesgue number d for the cover P(#%). Let ¥ be any
minimal finite open cover of $%/G such that for each Ve¥", Diam V < d/9.

The decomposition space S3/G is also 3-dimensional. Therefore, there is an
open refinement % of ¥ such that % splits as % = ¥, V%, V¥, ¥, where the
elements in each %, are pairwise disjoint [H, W, pp. 54, 55]. Let &% denote the
collection {P~(Y): Y e%,}. We note that if there is a ge H}, in Z,,, then Z,
is in some member of %. The cover & is a G-saturated open cover of §3.

For each geH,, choose G-saturated open sets W, and W? such that g = W},
ClW!' c W}, and W} <V for some ZeZ. From {W}: geH,} choose a
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minimal finite subcover #* of Hy,. There is the corresponding cover #7> = {W,*:
there is a g such that W;'e#™}.

Since the Shrinkability Theorem requires a cover #” of all of H*, we will
augment #. Let %' = {ZN(U*—H}): ZeZ}. Let W =#1uW . Itis a G-
saturated open cover. of H¥.

Order the elements of % so that those of #™* precede those of #".

Within #°! require the ordering to use all sets in #, = {We#™": W
corresponds to an element of %' which is contained in P! (Z*)}, then use all
sets in %, = {We#': W corresponds to an element of # which is contained
in P71(&¥—2%), then use all sets in %, = {We#™: W corresponds to an
element contained in P~ '(Z¥*—2*— ¥}, and finally use all sets in %,
= {We#™: W corresponds to an element contained in P~ (2% —Z¥ -~
— &¥)}. Give each W' e #™* asubscript i corresponding to the ordering. Assume
there are m sets in W2,

The shrinking homeomorphism f, is the composition @fpfp-3...f1,
where each f; is the homeomorphism h hypothesized using

Xo=fi_y (W) for j=1,3; e
F=f_,. . .f ((kg‘ Cl W) U(S2 — (%))

A=f_,...fifori>1and 1 =id for i = 1; and ¢ be such that if p, g&S® and
dist (p, q) < &, then dist (A(p), A(¢)) < &o. (If the reader is comparing this proof
with the [W] proof, note that we now use the same ¢ for each application of the
hypothesized h.) Notice that when we shrink the image of a particular W}, the
nondegenerate elements in it shrink and in later work each set F limits the
growth. Hence, we satisfy (2) of the shrinkability definition. Condition (1) of the
definition is satisfied because f; is fixed off #*. To see that we also have (3), we
must consider the effect of the ordering. For any W2e#3,
Snfnet ST PR) =y o /L (D)

if W2nW2#@, and

JoSmer S (W) e (fm—L ---f1(Wi3))Q(fm—1 fl(Wrr?))
if W2 W, + O&. Repeating this we see that

Jm—1 -»-fl(W¢3) < (fm—z A (Wa))o(fm—z S (W»?-x))
it W3nW2_, # @, and

Joet  SL W) =fuey o [1 (W)

if W2nW;i_, # @, while

Tt o L) S (fmz e FL D) Oz - fr (W= 1))
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if W2nW2., # 0, and

St o Sy WD) = fonez - 1 (W)
if W3 AW2_, = @. From this sort of analysis we find that f,,fp,~1 ... f1 (W) is
contained in the union of chains of the form {W,} where
(a) {W,} is a subsequence of W3, Wa_,, ..., W,
(b) WynW, =0, and
© Wi Wiejoy # O.

In view of the order imposed on work, let us see how long a chain can be. If W;

intersects one set %, then it may be possible for the chain to continue to grow

within the particular P~ (Z) which contains W,. But because the elements of 2,
are disjoint, this chain cannot intersect any other P~*(Z) corresponding to Z,.

Next in the chain there can be W;’s which lie in #7,, but all these must be in the

same P~ ! (Z) corresponding one element of &, . Similarly, we may have W/'s from

#°, and then #,. It now easily follows from our use of the Lebesgue number that

there is a U e 4 such that W, and f,,f,,_; ... f; (W) lie in it. Hence, the McAuley—

Reed Shrinkability Theorem is satisfied. m

2.3. Tearing and resewing S3. We wish to show that with certain added
conditions the homeomorphism k in the Lemma 2.1 hypothesis follows if the
other hypothesis conditions are given. In the standard method for showing the
existence of a homeomorphism such as b, which shrinks some elements of H and
controls the size of other ones, the desired h is shown to be the end of some
isotopy. Instead, we use quite a different technique, which was first described in
[W]. We tear out a crumpled cube in S° and shrink it. This shrinks the
nondegenerate elements in the crumpled cube. Then we carefully sew the shrunk
set and closure of the remainder of S back together. Statements (A) and (B) below
are for this resewing.

Lemma 2.2. Suppose that G is an usc decomposition of S® such that for each
go€G and i =1, 2, 3 there are arbitrarily small G-saturated open sets X' with
Bd X' a G-saturated 2-sphere, g, = X*, C1 X! = X2, and Cl X* = X°. Also, let
& > 0, homeomorphisma and F be given as in Lemma 2.1. Assume that statement (A)
below implies statement (B). Then the homeomorphism h of Lemma 2.1 exists.
(A)  An annulus A is bounded by 2-spheres S and £ (S) where & is an admissible

homeomorphism on S and there are 2-spheres X' and £* such that the

component U of 8% —(Z'UZ®) bounded by both X' and X* contains A.

There is a decomposition G such that H* = $*—Int A, Bd 4 is G-

saturated, and ¢ carries the decomposition of S onto the decomposition

of £(S). The set F < S is closed and G-saturated, and & > 0. There are
| disjoint F,-sets F, and F, in'S such that F, OE(F,)UExt A is 1-ULC.
(B)  There is a map f of $* onto S° such that

(1) f18°-U =id,
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(2) f183—~A is a homeomorphism onto S*—f(A),

3) fIS=f¢ and f& is a homeomorphism onto f(A), and

@) for geG and gcF, Diamf(g) <38/4+¢; where ¢=
max {Diam g: g = F}.

Proof. Since the homeomorphism 4 is for composition with the homeo-
morphism «, all work should be in «(S3) with «(G) = {a(g): g€ G}, a(F), etc, For
simplicity we will work in S3, and choose the appropriate corresponding distance
& for the given e. Let £ be such that if p, geS® and dist (p, g) < &’ then
dist («t(p), «(q)) < &. Choose & to be —g.

Consider S* to be the union of the crumpled cube X = Cl X? and K
= C1(8*~X). Maps which we will define are indicated in the diagram

$P=X0UK
hxl
§3 hg

N

e

The map hy is a reembedding of X in a(S%). It is given by the Hosay——Lininger'
The'o.rem [H], [L], which states: If C is a crumpled cube in «(S?) and e is a
positive number, then there exists a homeomorphism h from C into a(S%) such
that Cl («(S®)—h(C)) is a 3-cell and if x& C then the distance dist (x, h(x)} <e.
When we apply the theorem, we require that hy be the identity on X (The
method of proof in [L] implies that this is possible, since Cl X! = X )

Let dist (Bd X", Bd X) be denoted by D. Let § be a homeomorphism of a(S%)
onto itself taking Ay (X) to a set of diameter less than the minimum of D/2 and /2
and not moving points in X*. Note that now all nondegenerate elements that
were in X are in 0hy(X) and are small, and that Ohy(X) < Int X.

We next apply the Hosay-Lininger Theorem to K to get the reembedding h
of K in §3. Choose e smaller than the minimum of dist (Bd «(X?), Bd a(X 3))"
dist (K, th(X)), and 6/4. We tequire that /1y be the identity on a(Ss -X3). Tht;
first condition on the size of e is for condition (1) on h, the second guarantees that
Ohy (X) and kg (K) do not intersect, and the third condition is for condition (3) on
:;11 Note tfhz;: Ohy(X) and hy(K) are disjoint crumpled cubes in §% and that the

o .

o s/t:e of the complement of each is a 3-cell. Denote CI (x (5%) — Oy (X) — hg (K))

We now show that Statement (A) is satisfied. The 2-sphere § i ‘
The homeomorphism & is by hi ' 0~ 1. Hence, &£(S) is hy (deX )= h]:(f;:ix g?)d’lggé
?-spheres Z*' and X are Ohy (Bd (X)) and hy (Bd a(X?)), respectively. Let “F
in Statement (A) be fhy (F 0 X) U(F N K) where these use the set “F” of Lemma

2‘1. We must show tha.t Aisan al]nulus that h h 6 ]‘S a(l]lll’SSil)]C and ”12“
] K x . >
the F,"Sets exist.
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The boundary of A is the two copies of Bd X. They are disjoint 2-spheres.
Let T be a tame 2-sphere in A separating these boundary components. Consider a
homeomorphism A of Cl (x(S*) —8hy (X)) onto a polyhedral 3-cell P. Since T is
tame in Cl{«(S%)— 0hx (X)), it is bicollared in it. Its image is bicollared in P and,
hence, is tame there. Since A0hy (Bd X)is Bd P, it is tame. Hence A(T) and Bd P
bound an annulus. The homeomorphism A~ ! must take this annulus back to an
annulus. Similarly, the set bounded by T and 8hy (Bd K)is an annulus. Thus, A is
the union of two annuli whose intersection is a 2-sphere in the boundary of each.
This implies [K, p. 167] that A is an annulus.

Admissibility is concerned with preserving orientation. To guarantee that
hyhz! 07! is admissible we made each of hy, hy, and 8 have a neighborhood on
which it is fixed. The following argument shows that this gives admissibility. Let
Sx and dx be tame 3-cells on which the reembeddings Ohy(X) and hg(K),
respectively, are fixed. We can make Jy small enough that o(S*)—dy is a
neighborhood of 8. In & (%) — 8¢ — Int & there are homotopies of Bd X to Bd Ox
and of Ohy (Bd X)to Bd 8x. Hence, ina (S%—Int 63 —Int 3y thereis a homotopy
of Bhy (Bd X) to hy (Bd X). Since each of 6hy(Bd X)-and hy(Bd X)is tame on
side containing A4, the homotopy can be pushed into A.

Eaton’s Mismatch Theorem [E] implies that, since X and K are crumpled
cubes whose intersection is the boundary of each and their union is a(S%), there
exist disjoint O-dimensional F,-sets F; and F in Bd X such that F; UInt X and

nulnt K are 1-ULC. Hence 6hy(F}) and hy(F3) are the necessary F,-sets.

We have shown that we have all the conditions in Statement (A). Since we are
assuming that (A) implies (B), we may now use (B), which states that a certain map
f exists. Define the map

h, fi
h(x) = Shy or
: fOhy  for
This map is the required homeomorphism h and completes the proof of Lemma
22. m

xeK,
xeX.

2.4. Anisotopy with control of nondegenerate element size. Construction of
the map described in Statement (B) will involve pushing the boundaries of 4
together. In Theorem 1 we will push one boundary onto the other; in Theorem 2
we will move both boundaries and some points of each will be fixed. The paths of
points during these motions can result in nondegenerate element growth. In
Figure 1 we indicate an element g with subscripts denoting times 0, ¢, and 1 of
some push. The possible growth is important because (1) a nondegenerate
element from Bd A may grow larger and then be left in this state, and (2) though
by the end of the motions each nondegenerate element in the image of Bd A4 may
be an acceptable size, nondegenerate elements from S* — 4 may grow, and then be
left large, near the path of a nondegenerate element. The following lemma is for
controlling the sizes of images of nondegenerate elements.
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Fig.1

LEMMA 2.3. Suppose that an annulus A < S is bounded by (possibly wild) 2-
spheres S, and S, = £(8,), where & is an admissible homeomorphism on S, ; and there
exists an usc cellular decomposition G of S* —Int A such that Bd A is G-saturated
and & carries the decomposition of S, onto the decomposition of Sy. Let o > 0.
Assume that for each g € G whichis in S,, Diam ¢(g) < Diam g +0/2. Let Fsbea
compact G-saturated subset of S, and assume that Fg < Oy, which is G-saturated
and open in S,. Then there is an isotopy .#: S* xI - A such that $ (S? x 0) = §,
and F(S?x 1) = S,; if for xeS? the image F(xx0) = peS,, then F(xx1)
= {(p)eSy; and if for a subset w = §* we have % (w x 0) = geGandg < Fg, then

Joranytel, it is truethat Diam % (w x t) < «+max {Diam g: geGandg < Og}.

Proof. From the homotopy in the definition of admissibility for & one can
get an isotopy #;: §? xI; — A such that £, ($2x0) = §,, #,(§*x 1) = §,; and
for xe$§? if S, (xx0) = pe§,, then F, (x x1) = ¢(p)eS,. In this isotopy let
us substitute the 2-sphere S, for the abstract §2. L ‘

This isotopy gives us no control of the size of nondegenerate elements. We
will define another isotopy and then compose the two.

Let G, be the usc decomposition of S, which is the given decomposition G
restricted to §,. By Moores Theorem [M], S,/G, is again a 2-sphere.
Siebenmann’s results in [S] used for n = 2, or Armentrout’s methods in [Al] and
[A2] applied to n = 2, imply that the decomposition G, is shrinkable. Edwards
and Glaser [E, G] show that this actually gives a pseudoisotopy of S, with the
following property. Let ¥ be a G-saturated open cover of S,. Then for any g € G
there is a ¥,€¥" such that the pseudoisotopy on' g is contained in V.

Choose a cover ¥~ of S, such that no ¥V e ¥ intersects both F sand S,— Oy
and that each V lies in the o;/8-neighborhood of some g€G. Then the previous
paragraph implies that there is a pseudoisotopy .#,: 8 x I, ~ S, such that if for
w < S? we have ., (wx 0) = g, then #2(wx1)is a point; and if w = Fy, then for
each tel,, Diam £, (w x 1) <a/4+max {Diam g: g = Ox}.
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This 1sotopy .#, is indicated in Figure 2, where the image of some posglblc
nondegenerate element is shown at the four times denoteq by the §pbsc;1pts.
Our required isotopy .# will be made by composing .#; with certain parts of
#,. One can think of the 2-sphere S, starting to move across A and as

Fig. 2

moves it, it is being subjected to the shrinking pseudoisotopy #,. (Of course,
we avoid using the final time for the pseudoisotopy.) Since closc. to the end
of #, all the nondegenerate elements are arbitrarily small, it must be
possible for £, to shrink elements fast enough that they do not. grow too
large from the possible growth caused by ;.

r(t)
1_.

Shrinking elements of &

Moving across A
Fig. 3

As above, we denote times in I, by t and those in I, by 7. Let t(f) be an
increasing continuous 1-1 function such that (0) =0 and (1) = 1. Such a
function is in Figure 3. Now consider £, (£, (§* x I} x I1) to be the image of an
isotopy. We can make t be sufficiently large with respect to ¢ that foreachg < F
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we have
Diam (#, (£ (g x () x1)) < &/2+ max {Diam g: g < O}

for each rel,. Hence, we have a pseudoisotopy J5:-8% xI; — A defined by
Fi(x, ) =S, (Jz(x, (1), t) for each tel;.

Analogous to the definition of .#, two paragraphs above, we can define an
isotopy £, using S,, € (F), and & (Oy)in place of S, F, and O, respectively. (Recall
that max {Diam g: g < £(0p)} = a/2+max {Diam g: g < Og}) .#, and 4,
could then be used to define a pseudoisotopy. Then the first part of each of .#; and
this new analogous pseudoisotopy could be pieced together to get an isotopy.
Instead, we simply define

Fa(x, 1) if t<05,
F1(Fo(x, t—0), 1) if t205.

In order for this to have all the desired properties near S,, it may be necessary to
require that ¢ be even larger with respect to ¢ near 0. Once this is done we have the
required isotopy. m

I(x, 1) ={

3. Decompositions in which the 2-sphere S is tame from one side

The decompositions in the theorem in this section have the property that
each g, € H lies in the interior of arbitrarily small either (1) (possibly wild) 3-cells
with saturated boundary, or (2) crumpled cubes with saturated boundary and
with an open 3-cell complement. ‘

TueoREM 1. Let G be an usc decomposition of S* with H the set of
nondegenerate elements. Suppose that for any ge H, and open set U containing g
there is a crumpled cube X such that g < Int X < U, Bd X is G-saturated, and
Bd X is tame from at least one side. Then S*/G is homeomorphic to S3.

Proof. The proof will follow from the Shrinkability Theorem and Lemmas
2.1 and 2.2, after we show that our Theorem 1 hypotheses imply that Statement
(A) implies Statement (B). For Lemma 2.1 notice that the 3-dimensionality of
$3/G follows from the G-saturated Bd X's.

For each goeH use the hypothesized crumpled cubes to get the X' of
Statement (A).

The decomposition G is obviously cellular. Hence, the corresponding
decomposition in Lemma 2.3 is also cellular.

We wish to use Lemma 2.3 isotopy in the annulus 4 of Statement (A). For
this, let S, = S, the decomposition G be the same, Fg = SN F, anda = 4/4;for Op
we first choose an open (in $%) saturated set Q, containing F and containing no
g €6 such that Diam g > §/4+¢, and then let Oy = 0, NS. We can assume that
6 in the Lemma 2.2 proof is chosen so that Diam 6h, (X) < &/8, which certainly
implies that Diam &(g) < o/2 for each geX. With these conditions, the
conclusion of Lemma 2.3 gives us the isotopy .#.

We collapse A by pushing its tame boundary, which we can assume is Sas

onto the wild one, S,. This is done by using several pushes. Each push of S,
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corresponds to changing the level  in the isotopy .#. For each push we choose an
annular neighborhood of the image of S, and let the push act on this
neighborhood. These neighborhoods are contained in U —S,, and for the last
push S, must be in the boundary of the chosen neighborhood. Except this S,
boundary, the annular neighborhoods always have tame boundaries. The push of
S, is extended linearly along paths given by .# to the entire chosen annular
neighborhood. We choose each neighborhood so that it contains no nondegener-
ate elements in the image of F with diameter more than §/4+¢. The length with
respect to t of the push is chosen so that the new maximum size of nondegenerate
elements in the image of G is /2+max {Diam g:g < F}, orso that the pushof S,
onto S, is completed. Note that these choices of sizes are possible because we
controlled the growth of nondegenerate elements during the isotopy. This
completes the proof of Theorem 1. m

4. Decompositions in which there is a nice relationship between the wildness
of the 2-sphere and the nondegenerate elements in it

In this section we will use a technique developed by Eaton [E] for collapsing
an annulus. In that paper there were no nondegenerate elements. We use
nondegenerate elements and alter the proof so that growth of nondegenerate
element is controlled. In the annular collapse, what one might think of as the
wildest points on each 2-sphere boundary are the fixed points. If one
nondegenerate elements were to contain a fixed point in each annular boundary,
these points would determine a lower boundary on the final size of this
nondegenerate element. Hence, it is not surprising that the placement of
nondegenerate elements in a wild 2-sphere boundary is a condition in the
hypothesis.

THEOREM 2. Let G be an usc decomposition of S®, Suppose that for any g H
and open set U containing g there is a crumpled cube X suchthat g = Int X < U,
and Bd X is G-saturated. Also, assume that there exist disjoint O-dimensional F -
sets Fy, F, = Bd X such that (Ext X)UF, and(Int X)UF, are 1-ULC and P(F,)
and P(F ;) are disjoint O-dimensional sets in P(Bd X). Then S®/G is homeomorphic
to S°.

Proof. As in Theorem 1 proof, we will use the Shrinkability Theorem and
Lemmas 2.1 and 2.2. Again, the G-saturated Bd X’s imply that $%/G is 3-
dimensional. We must now show that the hypotheses concerning the F,-sets are
sufficient added conditions for a proof that Statement (A) implies Statement (B).

This proof depends on Lemma 4.1 below. That lemma is a modification of
Eaton’s “Main Lemma” in [E]. Before we consider our modification, let us briefly
describe his method. In that paper, a 3-cell, which is a subset of a partially
collapsed annulus, is further collapsed. The boundary of that C is the union of two
disks with disjoint interiors, His proof involves pushing the disks towards one
another and fully together on a grid. The resulting set after the collapse is a finite

collection of 3-cells, each having a smaller size. The [E] map is defined with


GUEST


196 E.P. Woodruff

sufficient care that infinite iteration of the lemma fully collapses C, identifies the
disks, and is a homeomorphism on the remainder of S2.

In [W] modifications were made involving the presence of an usc
decomposition of §* with C totally missing the nondegenerate elements. That
modified map was defined so that there was control of the size of nondegenerate

. elements. Now hin Lemma 2.1 is a map on the open annulus of Statement (A), and
this annulus contains nondegenerate elements in its boundary. In our proof we
must control the size of those nondegenerate elements and of the nondegenerate
elements in the set F.

Most of the size control is in Lemma 4.1 below, which starts the collapse by
taking the open annulus onto a 2-sphere plus a finite collection of open 3-cells.
There is control of sizes and placement of nondegenerate elements. The size of
each 3-cell which intersects F is small. In the proof of the theorem this lemma is
applied only once. It is then possible to complete the proof by collapsing each 3-
cell using an infinite iteration of a map very similar to Eaton’s original one. In the
infinite iteration the only size control needed for the nondegenerate element is
that the image of the collapse of a 3-cell C; be in C;.

After the proof of Lemma 4.1 we will quickly complete the proof of this
theorem. .

LemMa 4.1. Assume Statement (A) is true. Also assume that S is a G-saturated
2-sphere, and that for the F ,-sets in Statement (A), the projections P(F ;) and P (F,)
are disjoint O-dimensional sets in P(S). Then there exist a cellular subdivision
{P(C1Dy), ..., P(C1 D,)} of P(S) with each D, a G-saturated open disk in S and a
map f of 8% onto S* such that

(1) f18°~U =id,

(2) f183—A is a homeomorphism onto S*~f(A),

(3) both f|S and f|E(S) are homeomorphisms,

(4) (USat Bd D)N(F, UF,) =@,

(5) F®)NSfE(S) =f(USat Bd D;),

(6) fIUSat Bd D; =f¢||)Sat Bd D;,

@) Cl((f(D,-))ufé(D,-)) bounds an open 3-cell C, in f (4) such that P(C1C)
is a 3-cell in $3/G, '

; (8) forge H and g.c F, Diam f (g) < §/4+ g, where o = max {Diam g:geG
and g <F}, :

(9) if C1 D;"F # @, then Diam f (D;) < 36/32+ ¢ and Diam C, < /8+0¢.

-Proof of Lemma 4.1. Notice that at the conclusion of this Lemma 4.1
proof there is a summary of sizes chosen throughout the proof.

"f[he proof will be presented by specifying changes in the [E] Main Lemma
proof.

The reader familiar with the proof in [W] will recall that [W] Lemma 4 was
concerned with using admissibility of & to start the collapsing. If one did not use
admissibility there, then the orientation of the J might not be correct. In the
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present proof admissibility is used in the formulation of the isotopy £, so we do
not need to be further concerned with the orientation. Hence, we proceed
immediately with the analogue of [W] Lemma 3.

If we were to simply apply the [E] method with no concern about
nondegenerate elements, some might be stretched from S to &(S). To avoid this
problem in our proof, whenever we push a point, we will push the entire
nondegenerate element in which it occurs. Hence, several conclusion involve
saturations. Also, instead of trying to attain a given mesh, we will choose a local
subdivision size related to nondegenerate elements and the set F. Control of
growth of nondegenerate elements will be similar to that in Theorem 1 of this
paper. :

Instead of Eaton’s projection map called “P” we will need the control
available from Lemma 2.3. Since the controlled growth involves the size of
elements in a neighborhood of Fg, we choose a particular neighborhood for F.
For this, choose G-saturated open sets Oy and Jr suchthat F < Qp,Cl Qp = O,
and max {Diam ¢: g = Qp} < §/32+¢. Apply Lemma 2.3 using S, and'S, for §
and £(S), respectively; ¢ as the admissible homeomorphism; o = §/32; and ¥
= Sat Cl 08 and Oy = QpnS. Again we can assume that work already done .
has shrunk &(S) so small that for each geG in S, Diam¢(g) < Diam g+a/2.
Hence, we have the isotopy #: §2 x I — A suchthat .# (S2 x 0) = Sand .# (% x 1)
= ¢(S); S carries decomposition elements in S to corresponding onesin & (S),and
at any level tel no nondegenerate element in Fs has grown larger than 6/32+
+max {Diam g: g < Qp} = 6/16+¢. For the abstract S* in .#, we use the 2~
sphere S = Bd 4.

The details of the [E] proofstart in his P2. Replace [E] P2 by this paragraph.
In the decomposition space the set P(S) is a 2-sphere by Moore’s theorem [M].
Imitating the set G in P2 of [E], choose a nonempty grid % of simple closed curves
in P(S) missing P(F, UF,)! The open disks in §—P~'(%) form the'collection
{Dy, ..., D,} of our Lemma 4.1 conclusion. We further require that ¢ be chosen
so that (a) no Cl P(D)) intersects both P(F) and P(S~—Op), and (b) for each
P(D;) = P(Oy) there is a geG such that P(D;) is contained in P (the &/32-
neighborhood ofg). The isotopy # serves the purpose of Eaton’s P~ ! and levels
of the isotopy are analogous to his L(). The set P~ 1 (%) is tame because it misses
the F -set Fy, and EP™'(%) is tame because it misses £(F,). The set
g ((P' H¥) % I) is tame, because the ends of the isotopy on P~ (%) are tame
and the isotopy is on all of §.

In our modification of [E] P3 it is the tame set £P™ ! (%) that we push, and
the push is along .# ((P"1 (%) xI) from ¢&(S), which corresponds to t =1 to S,
corresponding to ¢t = 0. We will again use the composition of a finite collection of
maps {x,} of S* onto $°. In [E] the purpose of these was for cross sectional
control; we achieve our cross sectional control by our choices of # and 4. The
control we exercise by using the map sequence is concerned with the size to which
nondegenerate elements grow.


GUEST


198 E. P. Woodruff

~ Inour modified P4 we use 1 =t, >, > ... >t, =01n I of the isotopy for the
analogue of the partition of his segment ab. We will specify the choice of t;’s below.
Define the projection map w; of T;=.#(P" (9 x[t;_y, t]]) onto G,

= # (P! (%) xt,;) by the condition that u;(x) = .#(y xt,) where y S such that
J J J. .

xe F(yx[t;_y, t;]). Our next task is the extension of o, to all of $3. We will use
two (not necessarily disjoint) subsets of P~ (%). For each of these two we will find
a homeomorphism extending o, in a neighborhood of that subset. The union of
the two subsets will be P™*(%). The two homeomorphisms will be combined
using a partition of unity to get the extension of o; to all of 3.

The two subsets of ¢ will be ¥ and %,.. By using F and the choice of the grid
¥, we can choose % so that P~ (%) contains no large nondegenerate elements.
The other set, P~'(%,;) may contain large ones. To choose these sets, we first
consider the grid % to be the union of open arcs and vertices (in the obvious way).
Let a vertex be in % if it is the end point of an open arc which intersects P(F). Let
an openarc be in %y if it has an end point in %;. Let a vertex be in %, if it does not
lie in P(F). Let an open arc be in %,, if both its end points are in %,. Note that
Y9, =% and 9,n%, is empty only if either %; or %, is empty.

Wefirst extend the homeomorphism o[ ¢P~* (%). Assume that t;-y and the
extension ofa;_ ; |EP™ ! (%) have been chosen. (Use o = id and to = 1.)Choosea
regular neighborhood N;_, = N;_, of %, in P(S) sufficiently close to % to
ensurethato;_, ... a; EP™Y(N,_,) lies in a thin tubular neighborhood of Gj-yp

= #(P™! (%) x1;_y). (Require that a, £P™1(N,) also lie in 0r.) Also choose
Nj.; sufficiently close that P~'(N;_,) contain no nondegenerate element as
large as 55/644-¢. (Note that under the isotopy, images of nondegenerate
elements in # (P~ (%) x I) are smaller than this. The Epsilonics Summary may
be helpful here.) Although we have not yet chosen I;, we can state the next steps
and then specify ¢;. Define T, » by replacing % by its subset %y in the definition T,.
Select a sr?lall neighborhood Vie of Tp—Gjpinajy ... 0 ¢P™H(N;_,) such
that V; r misses # (S x [z, t,]). We now specify t;:chooseit as far as possible from
tj—1, but such that there exists an extension of a)|T,r to ¥V, causing no
nondegenerate element to grow more than 116/128 +0. A further condition on
the length of [r;_y, t;] is specified five paragraphs below. We denote this
extension by o; .

We next extend the homeomorphism o |EP™ Y (%), Choose the sets
P~1(N;_y,;) and V,  so that their closures miss F. Define o, using all the steps in
the last paragraph except those concerning the sizes of nohdegenerate elements
and the choice of t;.

Combine o, and a;;, using a partition of unity on the closure of each open
arc which lies in both % and %, . This gives us the map o = Oy «oo O +.. 0y, Which
causes no nondegenerate element from F to grow larger than 36/32+ ¢. The map

- o squeezes A to a finite collection of a(G)-saturations of open 3-cells with the
cross-sections controlled for those 3-cells intersecting F. A typical open 3-cell C,
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has its boundary in (Sat Bd D;)waé (Sat Bd D;). The remainder of [E] P5 can be
kept with only some obvious changes in words.

This completes Step 1. For each C; which does not intersect F, the map «|C;
is the desired map f|C;. For each C; which does intersect F we must perform an
analogue of [E] Step 2.

P 6 becomes: We squeeze the cross-sectionally controlled open cells C; from
Step 1 to thin cells. We find a finite collection {U;} of disjoint open sets in U such
that (Sat Cl C;)—Sat Bd D; < U,, and we squeeze each open cell which intersects
F individually, moving only points in U;. For convenience, we drop the subscripts
on these sets, and use the notation and hypotheses of this lemma with Sat Cl C;
and Sat Cl D; replacing 4 and S, respectively, and with the additional
requirement that the cross sectional diameter of open 3-cell C; now denoted by C
with respect to open 2-cell D; now denoted by D be less than 36/32 + . Instead of
again applying Lemma 2.3 in the proof below we continue to use the isotopy %
from above.

Concerns about nondegenerate elements and effects of previous modifi-
cations cause many changes in P7. We will choose a finite collection
{Cqy, Cy, ..., C,} of open 3-cells such that || C; = C = |JCI C;. The diameter of
each C; is less than 6/8 + ¢, and the thickness is less than §/32, where thickness
means max {Diam ((.# (x x I))"C;: xe C}. These {C,} are in a linear order and
Int (Bd C;—;nBd C)) is an open 2-disk, which we denote by H;. The G-
saturations of the closures of D, Hy, ..., H, are disjoint and D < Bd C,. We can
assume that P(£7'({JSat Bd H))nP(F,UF,) = &, because P(F, UF,) is 0-
dimensional. Hence, Sat Cl H; and ¢~ *(Sat Bd H,) are tame. We also assume
that each H, lies in a §/64-neighborhood of a constant ¢-level of .#, To attain this
last condition we must know that Sat Bd H; not extend too far from some such
constant t-level. This we now get by putting the further restriction on the size of
[t;1, t;]in the above modification of P 4: Make each [¢;. ;, t;] sufficiently small
that we can achieve this condition on H;.

In P 8 through P 19 we repeatedly modify by (a) replacing 3-cells, 2-cells, and
annuli by the corresponding open sets; and (b) instead of pushing certain arcs and
simple closed curves, we push the corresponding analogues, which are G-
saturations of particular sets.

When our analogue of [E] P 17 flops a disk down, the homeomorphism ¢
acts on a set which has a controlled diameter, and this controls the nondegenerate
element growth. The points in certain G-saturations of boundaries flop to
prescribed points, and the remainder of Z is required to go homeomorphically
onto the corresponding set in Z’. We add a requirement that if pe C, then g (p) lies
in the &/32-neighborhood of .# ((P~*(g)) x1).

Each time we push a set (as in P 4 or similar later pushes P 12 and P 19) the
set is tame. Either it starts exactly on its isotopy path or very close to it. The
isotopy pathis tame. If we did start on it, we can follow it. If we started very near
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it, we can in a short portion of the push get onto it. Hence, the growth of
nondegenerate elements near the push is the same as that in the modification
of P4.

As in [E], the Parts 1-and 2 are repeated a finite number of times. The
‘controls of sizes turn out to need the same numbers used above. They do not
change with the order of the iteration stage.

The following summary completes the proof of this lemma.

Epsilonics summary. We list here only conditions concerning sizes. Of
course, the other conditions in the text must be simultaneously satisfied. The “d,”
distance notations are introduced below to help the reader follow this summary.
Recall that ¢ = max {Diam g: ge H and g = F}. In this summary we use “g” for
g€ H and “nondegenerate element” when we mean an image of some g. The
“0/32” used very often below is not adjusted for each use, but rather is sufficiently
small to be used in every one of the places.

1. Choose an open set Jp such that g < (y implies that Diam g < 5/32+¢
=d,.
2. Choose an open Qp such'that Cl Oy < Jp. Then for g = Qy, again

Diam g < d;.

3. Choose £ such that for every tel, g = Qp, Diam £ (g x 1) < §/32+4d,

=0/16+p =d;. :

4. Choose % such that if D; = Qp, then D; is contained in a sufficiently small
neighborhood of some g = Qr ~(Image of S) that if D,AF 5 @, then for tel )
‘Diam #(D; xt) < 6/32+d; = 36/324¢ = d,.

" 3. Move points in the modified P4 so that no nondegenerate element
from F grows during this work to.more than 6/32+ (the diameter of non-
-degenerate elements which it is trailing) = 8/32+d, = 36/32+¢ =ds.

6. In the modified P 7 choose the thickness of C; as measured along £ to be
less than 6/32. Hence, Diam C; < 6/32+d, = /8 +¢ = d;.

7. Flop in the modified P17 so that no nondegenerate element grows to
more than 8/32+dg = 56/32+¢ = d,.

In the finite iteration of P4 through P20, note that:

a. There is no change at all in the objects involved in our choices (1), (2), (3),
and (4).

b. It is possible to again satisfy (5), (6), and (7).

This completes the proof of Lemma 4.1. m

For the completion of the proof that Statement (A) implies (B) we must fully
. collapse each Sat C1 C; from Lemma 4.1 Conclusion (7) onto an image of its
Sat CI D;. As in our modification of [E] P 6, we find a finite collection {U,} of
disjoint open sets in U such that (Sat Cl C;)—Sat Bd D, = U;. Wefurther require
that if C; intersects F, then Diam U;, <6/4+¢. We will squeeze each C,
individually, moving only points in U,. ) :

The choice of Qp, Lemma 4.1 Conclusion (8), and the conditions on U,

icm®

Decomposition spaces having arbitrarily small neighborhoods 201

together give us the Statement (B) Conclusion (4). Hence, we need no further
control on the size of any nondegenerate elements.

In order to accomplish a partial collapse of each C; we again slightly modify
the original [E] Main Lemma. This modification is necessary because it is
possible that Cl C; is not a 3-cell, since Sat Bd D, may non-locally connected.
This problem can be handled as it was in Lemma 4.1 above. Other than Sat Bd D,
we will not need to ever consider G-saturations in this modification. No other
changes in the [E] lemma are needed. Note that we do use the [E] mesh
requirement on the subdivision {Dy, ..., D,}; denote that mesh size now as f8
instead of the ¢ in [E].

In the first application of this slightly modified [E] lemma to each C;, the size
of B> 0 is arbitrary. We iterate the use of the lemma with /2/ for the jth
repeated application.

This completes the proof that Statement (A) implies (B) and of Theorem 2. =

The following lemma will lead to a corollary of Theorem 2.

LemMMmA 4.2. Let Gg be a compact O-dimensional use decomposition of a 2-sphere
S. Let F{ UF, be a O-dimensional subset of S. Then P(F, UF,) is a O-dimensional
subset of P(S). ’

Proof. Since Gg is a compact 0-dimensional decomposition of S, there is a
defining sequence {A,};e, for Gi.

Let xe P(F; UF,;)and U be an open set containing x. We will consider two
cases. -

First suppose that x is such that P~ (x) nCl H* = @. The set P~ !(x)is an
element of G; it is either an element of H or a point in (C1 H*)— H*, It lies in the
interior of every 4;. Choose an n such that the component of A4, ; containing
P~ !(x)liesin P"'(U). Let K denote the component of A, containing P~ *(x). Let
d = dist (Bd A,, (Bd 4,-; UBd 4,.)). Note that the d-neighborhood of Bd K
does not intersects H*. Using 0-dimensionality of F, UF,, we find for each
pe(Bd K)n(F; UF,}) an open set ¥, containing p, such that Diam ¥, < d and
Bd ¥, misses Fy UF,. Let W = KuU(J V). It is an open set whose boundary

misses F'; U F, and whose boundary als'()) misses H*. Hence, P(W) < Uis anopen
set such that xe P(WW) and Bd P(W) misses P(F, UF,). This completes the
first case.

For the second case we suppose that P! (x) does not intersect Cl H*. Since
by hypothesis, Cl H* is compact, there is an open set ¥V < P~ (U) containing
P~ 1(x) and missing Cl H*. Also, P~*(x) is a single point, which is in F, UF,.
Using O-dimensionality of F{UF,, we find an open set W < V such that
P~'(x) « Wand Bd W misses F', UF,. Hence, for this case we have the required
open set P(W) < U such that xe P(W) and Bd P(W) misses P(F, UF,).

Hence, in both cases we have shown that P(F, UF,) is O-dimensional. m

COROLLARY. Let G be a compact O-dimensional usc decomposition of S°.

3 -~ Fundamenta Mathematicae CXIX, 3
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Suppose that for any g € H and open set U containing g there is a crumpled cube X
such that g < Int X < U, and Bd X is saturated. Also, assume that there exist
disjoint O-dimensional F,-sets F,, F; = Bd X such that (Ext X)UF, and
(Int X)UF, are 1-ULC; and there is no g &G which intersects both F, and F,.
Then S*/G is homeomorphic to S3.

Proof. This is immediate from Theorem 2 and Lemma 4.2.

5. Situations in which the decomposition of the 2-sphere S is shrinkable

THEOREM 3. Let G be an usc decomposition of S3. Assume that Joreachge H
and open set U containing g there is an open set X such that g<=X < U;the set
P(Bd X) is a 2-sphere; and for the new usc decomposition

G, ={geG: g =Sat Bd X} U{peS®: p¢Sat Bd X)

of 8, the decomposition space 8%/G, is homeomorphic to $*. Then $%/G is
homeomorphic to S

Remark. Notice that the hypotheses do not require that Bd X be G-
saturated or be a 2-sphere. The condition that P(Bd X }is a 2-sphere would follow
if Bd X were a G-saturated 2-sphere.

Proof. We will show that Theorem 3 hypotheses yield Lemma 2.1
hypothesis, including the homeomorphism h. Then Lemma 2.1 and the
Shrinkability Theorem complete the proof.

The existence for each geH of the sequence of nested open sets X' i
= 1, 2, 3, is immediate from the hypotheses of Theorem 3. Hence, Statement (A)
is true.

Recall that in [W] there are certain 2-spheres which totally miss- the
nondegenerate elements. We will apply the [W] Lemma 1 to the image of Bd X2
in §3/G,. Then we will approximate the resulting composite map of §* by a
homeomorphism, which will be the required f. To satisfy the required epsilonics,
we must do the work carefully.

From Armentrout [A1], [A2] and Price [P] we know that because $3/G, is
homeomorphic to §3 and each element of the decomposition is cellular, it mustgbe
true that the decomposition is shrinkable, This shrinkability can be described as
follows. Let ¥” be a saturated open cover of $3. Then there is a pseudoisotopy h;:
$% 8% te[0,1] such that "

(a) ho =1id,

(b) hy = P,, where P, is the projection map of $% onto §%/G,, and

(c) for each'g’eG, there is a V€% such that for all ¢, h,(qe), < V.

For our use, we will choose ¥ to be an open cover which is G-satﬁrated \i'ith
respect to the original decomposition G, and also has the properties

(i} if for any ¢'c H, an element V of 7~ contains ¢, then V < X3, and

(i) if an element ¥ of ¥" intersects F, then there is a nondegenerate eleament
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g'eH, such that ¢’ < F and V is in the (5/8)-neighborhood of ¢’, where §
=¢—max {Diam g: geH and g = F). :

Note that because each V is G-saturated with respect to G, we actually have
condition (ii) with respect to G. This implies that P, (F) contains no P, (g)forge G
with diameter more than &—§/4.

We now apply [W] Lemma 1. For “g” in that hypothesis use
min {dist(P,(Bd X?), P,(Bd X?)), ¢/4, and &/4). Hence, we get a homeo-
morphism f such that :

(1) £18*=P,(Bd X*) = id,

(2) if geG and ¢’ = X, then Diam fP,(g") < ¢/4, and

(3) if g'eG and ¢’ < F, then Diam fP,(g) < e—3/2.

The map fP, on S* is cellular. Hence, it is shrinkable and can be
approximated arbitrarily closely by homeomorphisms. This shows that the
required homeomorphism h exists. The 3-dimensionality of $3/G follows from the
bypotheses on Bd X. This completes the proof that Statement (A) implies
Statement (B), and completes the proof of Theorem 3. m

CoROLLARY 3A. Let G be an usc decomposition of S®. Assume that for each
g€ H and open U containing g there is an open set X such that g = X < U; the set
P(Bd X) is a 2-sphere; each element of Sat Bd X is a tame polyhedron, and there
are only countably many nondegenerate elements in Bd X. Then S3/G is
homeomorphic to S3.

Proof. This is immediate from the Starbird~Woodruff result [S, W1].

CoroLLARY 3B. Let G be anusc decomposition of S®. Assume that eachg € H is
atame polyhedron and that H contains at most a countable number of arcs (but any
number of other polyhedra). Also assume that for each ge H and open set U
containing g there is a crumpled cube X such that g < Int X < U and Bd X is
saturated. Then S*/G is homeomorphic to S>.

Proof. This follows from Corollary 3A, since the conditions here imply that
H, is countable.

Remark. In Corollaries 3A and 3B the tameness condition can be replaced
by assuming that each g€ H has a mapping cylinder neighborhood in $3. This
follows from Theorem 2 in [W1]. ‘
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w-Trees in stationary logic
by
A. Baudisch, D. G. Seese and H. P. Tuschik (Berlin)

Abstract. It is proved that for all trees 4, B of height at most w 4 = B(Q,) implics.ﬁl = B(ua).
Moreover all such trees are finitely determinate and the theory of the class of all trecs of height at most
w in stationary logic is decidable.

Preliminaries. The study of stationary logic L,,(aa) was begun by J.
Barwise, M. Kaufmann and M. Makkai [1], following a suggestion of S. Shelah
[8]. In their paper Barwise, Kaufmann and Makkai proved Completeness,
Compactness, Downward-Léwenheim-Skolem-Theorem and Omitting Types
theorems for stationary logic. The quantifier @, “there exist uncountably many”
is definable in stationary logic. Thus L, (Q,)is a sublogic of L, (aa). We assume
the reader familiar with stationary logic.

Throughout this paper L denotes an elementary language for partially
ordered structures with finitely many individual constants and predicates
eventually.

Structures for L are denoted by A, B, etc. and their universes |A4|, | B, etc. by
the corresponding capital letters 4, B, etc. For a set M let P,,, (M) denote the set of
all countable subsets of M.

A set 4 <P, (4) is unbounded if every BeP, (4) is a subset of
some Ced. 4 is closed if the union of each increasing sequence
B, =B, c .. c B, < ... of elements of 4 is again an element of 4.

Closed and unbounded (cub) subsets of P,,, (4), P,,, (B), etc. are denoted by
A, B, etc.

B get L(aa) we expand L by adding countably many set variables
X, X3, ..., the esymbol and a new quantifier aa. Formulas of L(aa) are formed
as usual with the new formation rule:

if ¢ is a formula of L(aa) so is (uaX)¢ for each set variable X.
For an L-structure 4, A|=(aaX ¢(X) holds iff there is a cub collection

4 < P, (4) such that for all Be AAl= ¢(B) hold. Let K be a class of structures
for L then Th,,(K), Th; (K) denote the theory of K in the language L(aa), L(Q,)
respectively. In case that K has only one element 4 we write Th,, (4), Th, (4)

instead of Th,,(K), Th,(K) respectively.
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