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< r.Hence C U, # @. Let ueK such that G(u) " U, # @, then d(u, G(u)
< ¢. This contradiction completes the proof.

Problem 3.1 would have an affirmative answer if the following problem
due to Madkowiak (see [9]), has an affirmative answer.

3.3. ProsLEM. Do arc-like continua have the fixed-point property for upper
semi-continuous refluent set valued functions?
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Metrizability of certain quotient spaces

by
Yoshio Tanaka (Tokyo)

Abstract. The metrizability of certain sequential spaces can be characterized by whether or not
they contain two canonical subspaces.

Introduction. Let us begin with the following well known examples. These
example will play an important role in this paper. Let « be an infinite cardinal
number. Let S, be the space obtained from the topological sum of & convergent
sequences by identifying all the limit points. S, is especially called sequential
fan. We also need another canonical example S,. That is, S, = (Nx N)u
UNU {0}, N is the set of integers, with each point of N x N an isolated
point. A basis of neighborhoods of neN consists of all sets of the form
{n} U {(m, n);m = m,}. And U is a neighborhood of 0if and only if 0 U and U
is a neighborhood of all but finitely many neN.

We recall some basic definitions. Let X be a space and Let U be a cover
(not necessarily closed or open) of X. Then X has the weak topology with respect
to W, if F — X is closed in X whenever F n A4 is closed in 4 for each 4Ae 2. Of
course we can replace “closed” by “open”. A space X is sequential (resp. a k-
space), if X has the weak topology with respect to the cover consisting of all
compact metric subsets (resp. compact subsets). As is well known, a sequential
space (resp. k-space) is characterized as a quotient image of a metric space [5]
(resp. locally compact space [2]). A space X is a k,-space [14], if it has the weak
topology with respect to a countable cover consisting of compact subsets of X .
A space X is Fréchet (resp. strongly Fréchet [21], E. Michael [15] calls it
countably bi-sequential) if whenever xe A (resp. xe A, with 4,.., < 4,), there
exist x, € A (resp. x, € 4,) such that x, — x. We shall remark that S is a Fréchet
k,-space which is not strongly Fréchet, and that S, is a non-Fréchet, k,-space.

Now, S, (resp. S,) is helpful in analyzing the gap of Fréchet spaces and
strongly Fréchet spaces [22; 16 (b)] (resp. gap of sequential spaces and Fréchet
spaces [6; Proposition 7.37). A.V. Arhangel'skii and S. P. Franklin [1]
introduced the sequential order o (X) of a space X. For a hereditarily normal
sequential space X, V. Kannan [11] gave a characterization of o (X) by whether
or not X contains spaces S, defined inductively, and showed that such a space X
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is Fréchet if and only if it contains no closed copy of S,. In connection with the
study. of products of k-spaces, sequential spaces, and spaces of countable
tightness, spaces S,,, S,,, and S, play important parts in [8], [10], [25], and
[271.

S. P. Franklin and B. V. Smith Thomas [7] gave the following metrization:
Every k,-space X with metrizable “pieces” is metrizable if and only if it contains
no copy of S, and no S,. This result is precisely a case where X is the quotient
image of a locally compact, separable metric space. As generalizations of this

case, we shall consider certain quotient spaces of metric spaces, and as related .

spaces, spaces having the weak topology with respect to a certain point-
countable cover, and CW-complexes. In this paper, we give some metrizations
of these spaces by whether or not they contain S, and S,.

We assume all spaces to be Hausdorff, and all maps continuous and onto.

1. A-spaces, and S,,. E. Michael [16] introduced the notion of A-spaces,
inner-closed A-spaces, strict A-spaces etc., and characterized spaces X with the
property that each map onto X belonging to some class €; must belong to some
class €,. In E. Michael, R. C. Olson and F. Siwiec [17], these spaces are
investigated detailedly. A space X is an A-space, if whenever [A4,; neN] is a
decreasing sequence with each A,~— {x}3x (simply, (4,) | x), then there exist
B, < A, such that B = (J B, is not closed in X. If the B, are closed (resp.
singletons), then such a space is inner-closed A (resp. inner-one A). If xe B—B,
then X is a strict A-space. It is easy to show that S, is an A-space (indeed, strict
A-space), but S, is not 4.

THEOREM 1.1. Let X be a sequential space. Then X is an A-space if and only if
it contains no closed copy of S,.

Proof. “Only if”. Since every closed subset of an A-space is 4, if X
contains a closed copy of S, then S, is an A-space. But S, is not 4. This is a
contradiction. Hence X contains no closed copy of S,.

“If”. First we shall prove that if (4,) | x with each A, closed, then [A,;
neNj is not hereditarily closure preserving. To show’' this, suppose that
-‘{A,,; ne N} is hereditarily closure preserving. Since xed,—{x}, x is not
isolated in a closed subset 4,. Then, since 4, is sequential; there exists a
convergent sequence {x,; i€ N} in 4,—{x} with x,; — x. For each ne N, let C,
= {xu;ie N} U {x}, Y = {J C, and let X, be the topological sum of C,’s. Let f:
X, — Y be the obvious map. Then, since {C,; ne N} is hereditarily closure
preserving, f is a closed map of a metric space X, onto a Fréchet space Y. Since
Y does not contain a closed copy of S,,, by [8; Lemma 2] df = (x) is compact.
However, 0f ~*(x) is not compact. This is a contradiction. Hence {A,;neN}is
not hereditarily closure preserving if (4,) | x with each 4, closed.

Next we prove X is an A-space. To show this, let (4,) | x. Then (4,) | x,
hence by the above there exist subsets B, of 4, such that B = ) B, is not c’iosed
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in X. Since X is sequential, there exist b¢ B and b, €4, such that b, — b with
b, # b. Thus there exist neighborhoods ¥, of b, with V,¢b.1f C, = 4,n V,,
then |J C,— U C,2b. This implies that there exist subsets C, = 4, such that
U C, is not closed in X. Thus X is an A-space.

By the following example, the sequentialness of X of Theorem 1.1. is
essential. .

ExampLE 1.2. A paracompact k-space which contains no copy of S, and no
S,, but is not an A4-space.

Proof. Let X be the space obtained from the topological sum of w ordinal
space [0, ,] by identifying all the first uncountable ordinal numbers w, . Since
no sequence converges to oy, it is easy to check that X is a k-space which
contains no copy of S, and no S,. But X is not an A-space.

The following lemma due to [17] will be useful. :

LemMa 1.3.() A regular space X is strongly Fréchet if and only if X is a
Fréchet A-space.

(i) Suppose X is a regular sequential space. If X is an A-space (resp. inner-
closed A-space), then every subset of X is an A-space (resp. inner-one A-space).

Proof. (i) is Proposition 8.1 in [17].

(ii) Since X is sequential, as is well known, if xe A then xeC for some
countable C = A (cf. [15; Propositions 8.3 & 8.5J). Then, by [17; Proposition
5.1], X is a strict A. Hence every subset of X is an 4-space. The parenthetic part
follows from [17; Proposition 5.4].

COROLLARY 1.4. Let X be a regular Fréchet space. Suppose that X has the
weak topology with respect to a point-countable cover € consisting of compact
subsets (for example, X is a k,-space). Then X is locally compact if and only if it
contains no closed copy of S,. :

Proof. The “only if” part is obvious. _

“If*, By Theorem 1.1, X is an A-space. Thus X is strongly Fréchet by
Lemma 1.3 (i). Suppose that X is not locally compact. Then there exists a point
xo€X such that the closure of any neighborhood of x, is not compact.

Let {C*eG; x,eC*} = {C},C4,...} and X, = () CF for neN. Then
i=1

(X—X,) | xo, hence there exist x,eX—X, with x,—>x,. Let K = (X,

neN} U {x,) and {Ce€;CnK # @} ={C;,C;, ...}, and let Y, = U C, for

i=1
neN. Assume K & Y, for neN, so there is D = {y,; ne N} with y,e K—7Y,.
Since D A C is at most finite for each Ce@, D is discrete in X, hence in K, a
contradiction. Thus K is contained in a finite union of elements of €. But each
element of € is closed, so there exists Cft, such that C¥ meets infinitely many
elements of K. This is a contradiction. Hence X is locally compact.
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TrroreM 1.5. Let X be a regular sequential space. Then the following are
equivalent. )

(a) X contains of copy of S,-

(b) X contains no closed copy of S,

(¢) X is an A-space.

(d) Every Fréchet subspace of X is strongly Fréchet.

Proof. (a) — (b) is clear. (b) — (c) follows from Theorem 1.1. (c) —(d)
follows from Lemma 1.3. (d) — (2) is obvious.

LemMma 1.6, Let X have the weak topology with respect to a cover
consisting of strongly Fréchet subspaces. If for each xe X, {A e %; xe A} is finite
(resp. countable), then X contains no copy of S,, (resp. no copy of Sy ).

Proof. Since the parenthetic part is proved similarly, so suppose that X
contains a copy Yof S,,. Let Y= {xo} U U {x;,; ne N} with x;, = X, for each

ieN.Iet C; = {x,;neN} U {x,) for ie N. Then Y has the weak topology with
respect to {C;; ie N}. On the other hand, since each C; is closed in X, each C;
- has the weak topology with respect to AN C; = {An C;; AeN}. Thus Y has
the weak topology with respect to a cover {4 C;; Ae¥, ie N}. But cach
element of the cover of Y is contained in an element of a cover AN Y of Y.
Therefore Y has the weak topology with respect to N Y. Let 8 = A Y and
B, = {BeB; x,€B}. Then B, is finite. Since each element of B, is strongly
Fréchet, it contains no copy of §,,. Thus there exists C,, such that C,, N B is
finite for each BeB,. Let S = C, — {xo). Then S N B is closed in B for every
BeB—B,. To show this, suppose that S B, is not closed in By for some
B, B—B,.If S N B, has an accumulation point a4 in By, then ay = x, so that
B, B,. This is a contradiction. Then S N B, has no accumulation point in B
Thus S ~ By, is closed in B,. This is a contradiction. Hence S N B is closed in B
for every Be B — B,. In the sequel, S N B is closed in B for every BeB. Since Y
has the weak topology with respect to B, this shows that S is closed in Y.
However, S does not contain the limit point x, € Y. This is a contradiction. Hence
X contains no copy of S,.

THeorREM 1.7. Let f: X —» Y and X be metric.

(i) Suppose that fis quotient. Iff is compact, i.e., every f ~* () is compact and
Yis regular (resp. fis an s-map, i.e., every f ~ ' (y) is separable), then Y contains no
copy.of S, (resp. under (CH)(') no of Su,). Moreover if X is locally compact
metric, then the parenthetic part holds without (CH).

(il) Suppose that f'is closed. Then every df ~* (y) is compact (resp. Lindelif) if
and only if Y contains no copy of S, (resp. no Sop)-

Proof. (i) Let fbe compact. Let S be any Fréchet subspace of Y. 'Then S has
the weak topology with respect to the cover {C,;y e I'} consisting of all compact

(!} (CH) can be omitted.
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metric subspaces. Since each C, is closed in Y, each f|f~ 1(C,) is quotient.
Hence g = f | f~*(S) is a quotient compact map onto a Fréchet space S. Thus
by [5; Theorem 2.3] and [14; Proposition 3.2], g is bi-quotient, so that S has a
point-countable base by [4; Theorem 1.1]. Suppose now that Y contains a copy
S of S,. Then, by the above S has a point-countable base, a contradiction.
Hence Y contains no copy of S,.

Next, let f be an s-map. Suppose that Ycontains a copy Y, of §,, . Since Yo
is Frechet, h = f| /=1 (Y,) is 2 quotient s-map. Let B be a ¢-locally finite base
of Xy =f ™ !(Yy). Since h is a quotient s-map, Y, has the weak topology with
respect to a point-countable cover & = h(‘B). Let xo be non-isolated in Y;. Let
U be an open subset of ¥, with xoeU. Then U has the weak topology with
respect to ' = {Ge®; G < U}, because f1f~1U) is quotient and {BeB;
B « f~1(U)} is a base for f ~1(U). Suppose that x, € U—St(x,, ) U, Since U
is Fréchet, there exist x,eU—St(x,, ®) with x, —» xo. Let 4 = {x,; neN}.
Then 4 A G is closed for each Ge ®'. Thus A is closed in U, a contradiction.
Hence, x, eint St(xo, ®) = U. This implies that {int St(xq, H); H < ®) is a
local base of x, with cardinality < 2“in Y. This is a contradiction under (CH).
Hence Y has no copy of S,, under (CH). When X is moreover locally compact,
X has the weak topology with respect to a locally finite closed cover &
consisting of compact metric subspaces. Thus Y has the weak topology with
respect to a point-countable cover f () consisting of compact metric subspaces.
Thus by Lemma 1.6, Y contains no copy of S, .

(i) In view of [8; Lemma 2] we have the “if” part.

“Qnly if”. If every &f ~ ! (y) is compact, then Yis metric. So this part is clear.
Let every &f ~ ! (y) is Lindelsf, and & be a g-locally finite closed k-network of X .
Recall that a closed k-network is a closed cover such that if C = U with C
compact and U open, there exists a finite subcover EwithC = {J& = U.Then
F(%) is a closed k-network of Y. Indeed, let C = U with C compact and U open
in Y. By [12; Corollary 1.2], C is the image of some compact subset K of X.
Thus there is a finite subcover & of ¥ with K < U & < f~!(U), hence
C < (&) < U. Then f(§) is a closed k-network. Since every o L(y) is
Lindelsf, as in the proof of [12; Corollary 1.2] we can assume that f7»m
is Lindelsf. Then f () is point-countable. Hence Y has a point-countable
closed k-network. Thus Y contains no copy of S,, by [26; Proposition 1].

We remark that the converse of Theorem 1.7 (i) is not valid. Indeed, let Ybe
a regular separable first countable, non-metric space. Then by [5; Corollary
1.13], Yis the quotient image of a locally compact metric space. Since Yis first
countable, it contains no copy of §, and no S, . But since Y has no point-
countable base, by [14; Proposition 3.3(d)] and [4; Theorem 1.1] there is no
quotient map f: X — Y with X metric and each &f ~!(y) separable.

Lemma 1.8. Let X be a CW-complex due to Whitehead, and let {e,; v} be the
cells of X.
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(i) Then X is a sequential space having the weak topology with respect to
{g,; v}, where g, = cle,.

(i) ([27; Lemma 2.2]). If X contains no closed copy of S, (resp. S,,), then
each {y; g,3x} is finite (resp. countable).

* From Lemmas 1.6 and 1.8, we have

TueoreM 1.9. Let X be a CW-complex withthe cells {e,; y}. Then X contains
no copy of S,, (resp.no S,,,) - is and only if each {v; €2} is finite (resp. countable).

By Theorems 1.1 and 1.9 together with Lemma 1.8(i), we have

CoroLLary 1.10. Let X be a CW-complex with the cells {e,; v}. Then X is

an A-space if and only if each {y; & 3x} is finite.
" 2. Fréchet spaces, and S,.

THEOREM 2.1. Let a regular space X have the weak topology with respect to a
point-countable cover W. Suppose that (a) or (b) below holds. Then X is Fréchet if
and only if it contains no copy of S,.

(a) Each finite union of elements of W is Fréchet, or a sequential space in
which every point is Gj.

(b) X is sequential and each countable union of elements of U is a space in
which every point is Gs.

Proof. Case (a). The “only if” part is obvious. So we shall prove the “if”
part. Since X has the weak topology with respect to 2, it has the weak topology
with respect to the collection U* of all finite union of elements of 2. Moreover
each of these unions is sequential. Thus X is sequential. Suppose that X is not
Fréchet. Thus, following the proof of [6; Proposition 7.3], we can choose a
countable subset X, = {xo} U{x;ieN}U{x;;i,je N} of X such that x,e G,
for some pairwise disjoint open subsets G;, and x;; — x;, X; = X,, also no
sequence of x;’s converges to x,. Thus X, is a copy of S,, if X, is sequential;
that is, every subset U of X, is open in X, whenever each sequence converging
to a point in U is eventually in U.

Now,let {4e ;AN X, # O} = {4;;ieN},andlet X, = Lnj A;forneN.

Let us put Co = {xo} U{x;;ieN}, C; = {x} U {x;;je N} for i‘e;v. Since A is
point-countable, by the proof of Corollary 1.4, each C,, icw, is contained in
some element of A*. Thus there exists X g WithCo = X, ng- Suppose that {ie N;

XnoNC; is infinite} is not finite. Then there exists an infinite subset X o
= '{xo}u{x,-k; keN}u,{xik,q; qe N} of X, such that X, < X,. If X, 15
Fréchet, then xoiis a limit point of some XiyjgS- This is a contradiction. So we
assume that X,  is a}sequential space in which every point is G,. Since x, is a G-
seF in X, , there exists a decreasing sequence {¥;ie N} od open subsets of X,

with cl,("0 Vie1r =V and x, = [} . Since each ¥ contains x,, we can assumg
that for each i, {x; } LU {x,:qu; g€ N} is contained in ¥, Hence it follows that X,
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is closed in X, . Since X, is sequential, so is X,. Hence X is a copy of S,. Thus
X contains a copy of S, a contradiction. Therefore X, M Cyg is at most finite
for some C,,,. Since Cony'is contained in some X, (n; > ng), we may assume
that Cpy < Xoy —Xog- By induction, there exists an infinite subset {mg, my, ...}
of N such that C,, = Xy, —Xn, (Meey > ). Let Y= Cou U C,, and Ay
= A—{4;; ieN). Then Y X, is closed in X, for neN, also YN A = 9 if
Aedl,. Since X has the weak topology with respect to | X,; ne N} w g, this
shows that Yis closed in X. Thus Yis sequential. Then Yis a copy of S, hence
X contains a copy of S,, a contradiction. Therefore X must be Fréchet.

Case (b). The notation used here is the same as in case (a). Let Z
= {4e; AnX, # O} assuming X is not Fréchet. Since X, = Z and
Xo€ X, is a Gs-set in Z, by the same way as in (a), we can assume that X, is
closed in Z. But A n X, = @ if A€ %,. Then X, is closed in X, because X has
the weak topology with respect to {Z} U ;. Since X is sequential, so is X,,.
Then X, is a copy of Sy, hence X contains a copy of S,, a contradiction.
Therefore X must be Fréchet.

COROLLARY 2.2. Let a regular space X have the weak topology with respect to
a point-countable cover . Suppose that each element of U is closed and that each
element is Fréchet or a sequential space in which every point is Gs.Then X is
Fréchet if and only if X contains no copy of Ss.

Proof. The “only if” part is obvious, so we prove the “if* part. Suppose
that X is not Fréchet. For neN, let X, be the subsets defined in the proof of
Theorem 2.1. Then each X, is Fréchet, or a sequential space in which every
point is G,, or Fy U F,, where F; is closed and Fréchet, F, is closed and a
sequential space in which every point is G5. From the proof given there, we have
a contradiction. Thus X is Fréchet.

From the proof of Theorem 2.1, we also have

TueoreM 2.3. Let X be a regular sequential space in which every point is Gs.
Then the following are equivalent.

(a) X contains no copy of S,.

(b) X contains no closed copy of S,.

(c) X is Fréchet.

The following example shows that the condiction “each point of X of the
previous theorem is G;” is essential.

ExaMmpLE 2.4. A compact sequential space which contains no copy of S, and
no S,, but it is not Fréchet.

Proof. Let X be the sequential space, non-Fréchet compact space
constructed by S. P. Franklin in [6; Example 7.1]. Then [20; Theorem 10]
showed that X contains no copy of S,. But we shall give an indirect proof here.
Since X is compact and sequential, by Lemma 1.3(ii), every subspace of X is
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inner-one 4. However S, nor S,, is not inner-one A4, so that X contains no copy
of S, and no S,.

3. Strongly Fréchet spaces, and products of spaces of countable tightness.

THEOREM 3.1. Let X be a sequential space. If X is a regular space in which
every point is Gg, or hereditarily normal, then the following are equivalent.

(a) X contains no copy of S, and no S,.

(b) X contains no closed copy of S, and no closed copy of S,.

(¢) X is strongly Fréchet.

Proof. (a) — (b) and (c) — (a) are obvious.

(b) — (c). Since X contains no closed copy of S,, X is an A-space by
Theorem 1.1. If each point of X is G, since X contains no closed copy of S5,
then X is Fréchet by Theorem 2.3. If X is hereditarily normal, X is also Fréchet
by [11; Corollary 2.3]. Hence X is strongly Fréchet by Lemma 1.3(i).

Recall that a space X has countable tightness, t (X) € o, if xe 4 in X, then
xeC for some countable C = A4. It is well known that every sequential space
has countable tightness.

The following theorem gives a necessary condition for the product to have
countable tightness. '

THEOREM 3.2. (CH). Let f: X — Y be a closed map with X paracompact and
sequential, and let Z satisfy one of the properties below. It t(Yx Z) < w, then
either every df ~*(y) is Lindeldf or Z is strongly Fréchet.

(a) Regular Fréchet space.

(b) Regular sequential space in which every point is G;.

(c) Hereditarily normal, sequential space.

Proof. Suppose that some &f ~'(y) is not LindelSf. Since af ~'(y) is
paracompact, f ~*(y) has a closed discrete subset of cardinality w, . Thus, since
X is collectionwise normal and Y is sequential, Y contains a closed copy of
Su; (= S,0) by [27; Lemma 1.5]. Since ¢ (Yx Z) < w, s0 t(8,, X Z) < w, hence
every k,-subspace of Z is locally compact by [27; Proposition 1.1(2)]. Thus Z
contains no copy of S,, and no S,. Thus, if Z satisfies (a), Z must be strongly
Freéchet by Theorem 1.5. If Z satisfies (b) or (c), then Z is also strongly Fréchet
by Theorem 3.1.

THEOREM 3.3. Let X be a regular Fréchet space, and let Y be a non-discrete
first countable space. Then the following are equivalent.

(a) X x Y contains no copy of S,,.

(b) X x Y contains no copy of S,.

() X is strongly Fréchet.

. Proof.(a) — (c). Since X x Ycontains no copy of S, neither does X, hence
X is an A-space by Theorem 1.1. Thus X is strongly Fréchet by Lemma L3(j).
(¢) — (a) & (b). Since X is strongly Fréchet and Yis first countable, X x Yis
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strongly Fréchet by [15; Proposition 4.D.4]. Hence we have the implication.

(b) — (c). Since Yis not discrete, there is a sequence {y,; ne N} in Ywith y,
- yoand y, # yo. Let Coq = {y,; ne N} U {y,}. Suppose now that X is not an
A-space. Then X contains a copy of S,, by Theorem 1.1. Hence X x Ycontains a
copy of S, x Cy. But, S, x C, is a sequential space in which every point is G,
and it contains no copy of S,. Hence S, x C, is Fréchet by Theorem 2.3.
However, since S, is not strongly Fréchet, by the proof of [15; Proposition
4D.5], S, % Cq is not Fréchet. This is a contradiction. Thus X is an A-space.
Hence X is strongly Fréchet by Lemma 1.3(i).

4. Metrizability of certain sequential spaces.

LemMA 4.1. Let X be a regular space having the weak topology with respect
to a point-countable closed cover & consisting of metric subspaces. Then X is a
locally metric space with a point-countable base if and only if X contains no copy
of S, and no §,.

Proof. We prove only the “if” part. Since X is a sequential space which
contains no copy of S, and no S,, by Theorems 1.1 and 2.1, X is a Fréchet and
A-space. Thus X is strongly Fréchet space by Lemma 1.3(i). Hence, as in the
proof of Corollary 1.4, X is locally metric. Let X, be the topological sum, of
and f: X, — X be the obvious map. Then fis quotient s-map of a metric space
Xo. Thus X has a point-countable base by [4; Theorem 2.2].

THEOREM 4.2. Let a regular space X have the weak topology with respec.t toa
closed cover W consisting of metric subspaces. If (a) of (b) below holds, then X is
metrizable if and only if X contains no copy of S, and S,.

(a) U is star-countable. (b) X is paracompact and W is point-countable.

Proof. By Lemma 4.1, X is locally metric. Thus to show X is metric, it
suffices to prove X is paracompact for case (a). Let W = {A,; fe B}, and let §
~ B if St"(A,, W) > A, for some neN. Then by this equivalent relation. ~, the

set B can be decomposed as Y. B,. Let X, = |J {4;; feB,} for each yeT.

el .
Then X, n A is empty of A4 for Z:ach Ae¥, so each X, is open and closed in X .
While each X, has the weak topology with respect to 2, = {A,; feB,}. Since
A, are assumed to be an increasing countable closed covering of X, X, has the
weak topology with respect to 2L, in the sense of K. Morita [18]. Thus each X,
is paracompact by Theorem 4 in [18]. Hence X is paracompact.

By the following example due to R. W. Heath (for example, see [3;
Example 5.4.B]), the closedness of 2 in case (a) (resp. the paracompactess of X
in case (b)) is essential

ExaMPLE 4.3. A regular non-metric space X which has the weak topology
with respect to a countable open cover (resp. point-finite open and closed cover)
consisting of metric subspaces, and X contains no copy of S, and no S,.

Proof. Let X be the subset of the plane defined by the condition y > 0.
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Define a topology on X as follows: Let each point above the x-axis be isolated
and take as a base at a point (x, 0) the family of all segments starting at (x, 0)
which form with the x-axis an angle of 90° if x is rational and an angle of 45" if x
is irrational.

Then X is a regular space which is not normal by the Baire category
theorem. Since X is first countable, X contains no copy of S, and S,. Let R; Q
= {g,; ne N} be the set of real numbers; rational numbers respectively. For
neN, let X, = (X—R)u(R—{g;; j > n}) (resp. for xeR, let F, be the line
starting at (x, 0) which forms with the x-axis an angle of 90" if x is rational and
an angle of 45° if x is irrational. Then {X,; ne N} (resp. {{y}; yis a point above
the x-axis} U {F,; x€R}) is a countable open cover (resp. point-finite open and
closed cover) of X, so that X has the weak topology with respect to these covers.
Since each F, is obviously metrizable, we only prove that each X, is metrizable.
Each X, is regular and X, = X, U P,, P, is a finite subset {g;;j < n} and X,
= (X —R)U(R~Q). Then, since X, is paracompact, X, is also paracompact.
While, X, is locally metrizable. Hence X, is metrizable.

As a generalization of ¥,-spaces due to E. Michael [13], P. O’Meara [19]
introduced the notion of N-spaces. An N-space is a space with a o-locally finite
closed k-network.

THEOREM 4.4. Let X have one of the properties listed below. Then X is

metrizable if and only if X contains no copy of S, and no S,.

(a) Regular sequential, NX-space.

(b) CW-complex.

(c) Regular space which is the quotient s-image of a locally separable, metric
space.

Proof. The “only if” part is clear, so we prove the “if”” part. Suppose that X
satisfies (a) or (b). Then X is a sequential space in which every point is G;. Since
X contains no copy of S, and no S,, X is strongly Fréchet by Theorem 3.1.
Thus (a) or (b) implies that X is metrizable by [24; Lemma 2,1] or [23; Lemma
4.3] respectively.

Case (c). Suppose that f Y— X is a quotient s-map with Y locally
separable, metric. Then Y has the weak topology with respect to a locally finite
closed cover  consisting of separable metric subspaces. Since fis quotient and
every f ' (x) is Lindeldf, X has the weak topology with respect to a point-
countable cover f(§). Moreover each element of f'( i) is hereditarily Lindeldf,
hence every countable union of elements of /() is a space in which every point
is G;. Thus, since X is sequential, X is Fréchet by Theorem 2.1. While, X is an A-
space by Theorem 1.1. Hence X is strongly Fréchet by Lemma 1.3(i). Thus X
has a point-countable base by [15; Theorem 9.8]. Hence X is locally separable,
metric space by [4; Corollary 1]. '

From the proof of case (c) of the previous theorem, and Theorem 1.7(i), we
have

icm
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COROLLARY 4.5. Let a regular space X be the quotient s-image of a metric
space. If each point of X is G,, then X has a,point-countable base, or contains a
copy of S, or S,,. When X is the quotient compact image of a metric space, we can
omit “or S,”. -

As an application of case (c) of Theorem 4.4, we have the following theorem
in terms of weak topologies. Compare with Theorem 4.2, where each element of
A is assumed to be closed.

TueEOREM 4.6. Let a regular space X have the weak topology with respect to a
point-countable cover U consisting of locally separable, metric subspaces. Then X
is metric, or contains a copy of S, or S,,. When U is point-finite, we can omit
“or S,

We shall remark that, by Example 4.3, the separability of each element of 20
is essential even if 2 is countable or point-finite.
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