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we infer that dim X < 1. Applying the characterization of tree-like continua
from [2] we conclude that X is tree-like. This completes the proof.

It foliows from the theorem that h.i. continua with trivial shape must be
tree-like. In this form the theorem was discovered by the second author.
Continua with trivial shape may be characterized as those which are the limits
of inverse sequences of absolute retracts.
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The I!-theory of profinite abelian groups
by

Peter H. Schmitt (Heidelberg)

Abstract. The concept of an algebraically complete topological abelian (ACTA-) group was
introduced by J. Flum and M. Ziegler in their monograph on the topological first- order language L
([5] below). We determine the structure of saturated ACTA-groups and give cardinal invariants for
their I-equivalence. We show that the profinite abelian (PFA-) groups constitute a subclass of the
ACTA-groups. We axiomatize the I'-theory of PFA-groups and show its decidability.

The topological logic I, recently introduced by Sgro, turned out to be a
surprisingly good analog of first-order logic in the context of topological
structures. A detailed description of I! will be presented in §1 below.

In [5] Flum and Ziegler introduced the concept of an algebraically
complete topological group. They proved that a topological abelian group is
algebraically complete if and only if it is L-equivalent to a direct sum of abelian
groups with discrete topologies. From this they inferred decidability of the L-
theory of this class of groups. In § 2 we will determine the structure of saturated
algebraically complete topological abelian groups and give cardinal invariants
for I-equivalence. In §3 we show that profinite abelian groups are in fact al-
gebraically complete and we give axioms for the L-theory of this class of
topological groups and prove its decidability. Our approach also yields a new
proof of the decidability and axiomatizability results contained in [1].

We should like to thank Martin Ziegler for pointing out a mistake in the
original proof of Corollary 3.6.

§1. Prerequisites

A. The topological logic I'. We will present the first-order topological logic
I in a form specifically adapted to the discussion of first-order properties of
topological groups.

Let LG be the usual first-order language of group theory (written
additively) and let LG" be the extension of LG to the following weak second-
order logic:

1. Syntax: Conventional second-order logic with second-order variables
X, Y, ..., second-order constants and the binary relation symbol €. The class of
formulas is closed under second-order quantification.
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2. Semanties: a structure for LG" is a group G with a family % 6f subsets of
G. .

3. Interpretation: € represents membership. Second-order variables range
over 4.

DermaTION 1.1. An occurrence of a second-order variable X in an LG"-
formula ¢ is said to be positive (negative) if it is governed by an even (odd)
number of negation symbols. (In this connection we take the propositional
connectives to be 7], A, v only; thus ¢ — y abbreviates 71 ¢ v )

L is a sublogic of LG" with the same semantics but a restricted syntax:

DerinrTION 1.2. A formula ¢ of LG" belongs to I iff for each subformula
3 Xy (resp. V Xyf) of ¢ all occurrences of X in  are negative (resp positive).

ExampLe. The following three L-sentences

LLYXVY 3Z Vx(xeZ - xeX A xeY),

2. VX(0eX),

3.VX 3YVX,y(x,yeY> x—yeX)
assert that the family 4 constitutes a neighbourhood basis at 0 for a topology T
on G such that (G, 1) is a topological group.

Elementary equivalence with respect to I is denoted by =,. The following
two theorems are easily veritied (see e.g. [5]).

TueOREM 1.3. If B,, &, are neighbourhood bases for the same topology on
the topological group G then (G, %,> =,{G, %,).

THEOREM 1.4. The logic L satisfiés the Compactness Theorem.

DEeFINITION 1.5. Let <G, # be a structure for I. A type I over (G, B> is a
set of formulas of L involving a fixed finite set of first and second-order variables
X15eees Xps Xy, ..., X, such that

L. all constants occurring in formulas in I" denote elements of G or sets in
A,

2. the variables X; occur only negatively in formulas of I,

3. I is finitely satisfiable in (G, #) using elements ay, ..., a,€ G and sets
Ay, .., AneAB.

DerFiNITION 1.6. 1. For 5 an infinite cardina) {G, B is x-saturated if each
type over (G, #> which involves fewer than » constants in G U & is realized in
G, %>.

2. {G, #) is saturated iff (G, B) is x-saturated for x = card(Gu ).

3. G is x-saturated (saturated) if there is a nelghbourhood basis 4 for G
such that <G, #) is x-saturated (saturated).

TueoreM L.7. If Go, G, are saturated topological groups of the same
cardinality and Go =, G, then G, is topologically isomorphic with G,.

TueOREM 1.8. Let » be a regular cardinal. Then each I-structure is I'-
equivalent to @ %™ -saturated structure of cardinality at most 2.
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The proofs of these theorems follow the routine used in first-order logic and
may be found in [57].

Saturating a topological group actually simplifies its topological structure.

Lemma 1.9. If G is a x-saturated topological group then the intersection of
fewer than x open sets is again open.

- Proof. Fix a neighbourhood basis # of G at 0 so that (G, &) is x-
saturated. Our assertion reduces easily to the following: if {U,: @ < A} is a
family of sets belonging to # and A < x then () {U,: « < 1} is again a
neighbourhood of 0. Consider the set I' = (Vx(xe X — xeU,): « < 4} with
the free second order variable X. I' is a type over (G, #). Letting U € 4 realize
I' our claim follows.

LemMma 1.10. If G is an N;-saturated topological group then there is a
neighbourhood basis for G at 0 consisting exclusively of open subgroups of G.

Proof. For any given neighbourhood 4 of 0 in G we choose open sets B,
such that B,,;, =B, By,< A and B,,,—B,,; = B, for all n. Let A4,
= (1 {B,: new}, then A4, is a subgroup of G containing 4 which by Lemma 1.9
is open.

B. Abelian groups. In notation concerning abelian groups we follow [6]. Let
G be a (non-topological) abelian group. For all primes p and natural numbers n
the following are called the Szmielew-invariants of G:

¥,(G) = inf {dim p" G [p]: new},
B,(G) = inf {dim p"G/p"** G: new},

o,,,(G) = dim p"~* G [p}/p" G [p],
0 if G is bounded,
2(6) = {oo otherwise.

We do not distinguish between different infinite cardinalities, for a Szmielew-
invariant 1 1(G) is either a finite number or the symbol oo.

Each Szmielew-invariant can be described by a set of elementary sentences,
which we list for later reference:

x1(p,m k) =3x, ... %, /\/\1Pn+1x =01<i<k}
=dimp"G[pl =k,

X2(p, n, k) =3 x, ... x, (indep(mod p"* ) (p" x4, ..., p" %))
= dim pn G/p"'” G> k

x3(p,n k) =3 x; .. xk/\/\lpx~—01 <k} A

A indep(mod p") (p" ! x, .. x,‘)
=a,,(G) = k
%a(n) = Ax(nx # 0).

A indep(p"xy, ..., P" X))
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We used the abbreviations:

indep(y .30 = ANA\{ X ry #0: 0 <p,(ry...ny # 0},
1

<i<k

indep(mod p™)(y; ...y = Yz A\ { 2< ryi#pmz 0 < p,F# 0}
1€i<k

The sentences y;, 1 < i < 4, and their negations are called first-order core
sentences.

THEOREM 1.11. Two abelian groups are elementary equivalent iff they have the
same Szmielew-invariants.

Proof. [4] Theorem 2.6.

DerFiNiTION 1.12. An abelian group G is said to be equationally compact if
for all sets 2 of equations with countably many variables and countably many
parameters from G such that every finite subset of £ has a solution in G the
whole set £ has a solution in G.

THEOREM 1.13. An equationally compact group G is x-saturated iff for all
Szmielew-invariants 1 we have

if 1(G) is infinite,  then

Proof. [4] Theorems 1.11. and 2.7.

THEOREM 1.14. An abelian group G is equationally compact iff for all H such
that G is a pure subgroup of H, G is a direct summand of H.

Proof. [6] Theorem 38.1 and Exercise 38.5.

Lemma 1.15. Let A, H be subgroups of G, H equationally compact, AnH
= 0 and ADH a pure subgroup of G, then there is a subgroup K of G such that G
= H®K and A < K.

Proof. Apply Theorem 1.14 to G/A and (H+ A)/A.

LemMA 1.16. Assume A, H are pure subgroups of G and AnH = 0. Then
A+H is a pure subgroup of G iff for all n An(H+nG) < nG.

Proof. First.assume A@H is a pure subgroup of G. For ae A N (H +nG)
we get a = h+ng for some heH, geG. Thus a—he(A®H)nnG = n(A®H)
= nA®@®nH. Therefore aenAd < nG. Now assume the second line. If ae 4, he H
and a+henG then ae AN (H+nG)eAnnG = nA this implies henH.

1(G) = x.

C. Profinite abelian groups. A topological group is called profinite iff it is a
totally disconnected, compact Hausdorff group. The profinite groups are just
the inverse (or projective) limits of finite groups. They may also be characterized
as the groups appearing as Galois groups of field extensions endowed with the
Krull topology. In the case of abelian profinite groups it is however more
convenient to use Pontryagin duality.

Consider Q/Z as a topological group with the discrete topology.
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DeriniTiON 1.17. Let A be a topological group. The character group A* of A
consists of all continuous homomorphisms from A4 in Q/Z. A* is turned into a
topological group with the neighbourhood system at O:

{Ann C: C compact open subgroup of A}

where
AnnC = {geA*: for all ceC g(c) = 0}.

Tueorem 1.18. (Pontrjagin duality theorem)

(1) If A is an abelian torsiongroup with the discrete topology then A* is an
abelian profinite group.

(2) If A is an abelian profinite group then A* is a discrete abelian
torsiongroup.

(3) If A is a discrete abelian torsiongroup (or a profinite abelian group) and
with every ae A we associate the element @, A** defined by:

@a(f) =fla) for all feA*

then aw— @, is a topological isomorphism from A onto A*¥*.

Proof. [6] Theorem 48.1 and Exercise 48.1. It is possible to describe the
structure of A* completely in terms of certain invariants of A. For us the
following will suffice:

TueoreM 1.19. Let A be an abelian torsiongroup, A, its p-component and B,
the p-basic subgroup of A,. Thus

B,= @ Z(p"™"
k21

and
an(np)
A,/B, = Z(p*)'”.
Then
ax=[[[@ z(N"™" @ 2,71
p k21
where ~ denotes p-adic completion and
. my if my, is finite,
M = is infinite  if my,, is infinite,

L if n, is finite and B, is bounded,
P lis infinite  otherwise.
Proof. [6] Theorem 47.1.

Remark. In general n, is not an invariant of A4, but it is when B, is
bounded.
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TreoreM 1.20. The elementary theory of the class of profinite abelian groups
T,s is axiomatized by the axioms for abelian groups and {o,,: p prime, kew},
where G satisfies o, iff dimp*G[p] < dimp* G/p**! G. Furthermore T is

" decidable.

Proof. [1}.

§ 2. Algebraically complete groups

DerINrTION 2.1. A topological abelian group G is locally pure if it satisfies
for all n

VX 3YVy(nyeY—>Ix(xeX A nx = ny)).

This definition is best understood in terms of ¥;-saturated groups.

LemMa 2.2. An N,-saturated group (G, &) is locally pure iff there is a
neighbourhood basis B, of G at 0 consisting exclusively of pure open subgroups.
Moreover %, may be chosen such that every U € %, is dn intersection of countably
many elements from 2.

Proof. Easy, following the pattern of the proof of Lemma 1.10. See also
(51

DerFINITION 2.3. A topological abelian group G is called algebraically
complete if it is locally pure, Hausdorff and satisfies for all n Vx(VX3y
(x+nyeX) - Ay(x = ny)).

The theory of algebraically complete topological abelian groups is denoted
by ACAG. Examples of models of ACAG are discrete topological abelian
groups and as we shall see later profinite abelian groups. It is also easily seen
that a direct sum of algebraically complete groups with the product topology is
again algebraicall complete.

The most impostant property of models of ACAG is given in the following
lemma. ‘

LemMA 24. Let {G,®)> be a x-saturated model of ACAG, C = G with
card C < x and Van open neighbourhood at 0. Then there is a pure open subgroup
U of G, U< Vand a subgroup A with C< A and G = A®U.

Proof. Let A, be the pure subgroup generatee by C. We have card 4,
= max (card C, N¢) < »x. For any ae A, we find by algebraic completeness
U, €% such that ae U, +nG implies aenG. By Lemmas 1.9 and 2.2 choose a
pure open subgroup U which is contained in all U, and U < V. Thus we have

Ayn(U+nG) € nG.

Fl}rthermore we have U = () {U,: v < p} for certain U,e % and p < x%. From
this and x-saturation of (G, #) we get that U itself is equationally compact (in

general U is not x-saturated). Now the assertion of the lemma follows from the
Lemmas 1.15 and 1.16.
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It is our aim to describe the structure of saturated algebraically complete
groups. Here are the invariants that we need for this purpose:

DeriNrTioN 2.5. For any Szmielew-invariant 1 set:

1*(G) = sup{1(G/U): U pure open subgroup of G},
1,(G) = inf {1(G): U pure open subgroup of G}.

Though Definition 2.5 makes sense for any topological group G it will be
most useful in N,-saturated locally pure groups.

Lemma 2.6. For any uncountable saturated algebraically complete group G
we have for all Szmielew-invariants 1.

1*(G) = 1(G).

Proof. We only give the proof for 1 = f,. It will be clear how to prove the
remaining cases. The inequality 1(G) > *(G) is obvious. If C < p"Gis aset of
representatives for an independent subset of p” G/p"** G with cardC < then
we apply Lemma 2.4 to get a pure open subgroup U and a subgroup 4 such that
C < Aand G = A®U. This implies dim p" 4/p"** A > card C and the lemma
follows.

The situation for 1, is a bit different.

Lemma 2.7. For any Szmielew-invariant 1 and any N,-saturated model G of
ACAG such that 1,(G) > 0 we have already 1,(G) = © and 1(G) = 0.

Proof. Let us again only treat the case 1 = f,. If 8, ,(G) were finite we
would find an open neighbourhood U such that §,(U) = f,,,(G) and B = U
such that {b+p""' U: beB} is a basis for p"U/p"** U.'By Lemma 2.4 we find
an open neighbourhood V = U such that U = A® Vfor some A with B < 4.
But this implies B,(V) = 0, contradicting Bp.x (G) > 0. Since we have for pure
subgroups U 1(G) = 1(U) the second assertion is clear.

LemMa 2.8. For any Szmielew-invariant 1 there is a set S, (1) of L'-sentences
such that for any N, -saturated model G of ACAG: G satisfies S, iff1,(G) = 1.

Proof. Consider the sentences:

xs(pon) = VX3x(xeX A p"*ix =0Ap'x#0),
26(p, 1) = VX3Ax(xe X AVz(p" 'z # p"x)),
2 (0,1 =VXIx(xeX Ap'x=0AVz(p'z # P x),
s = VY XIx(xe X A nx # 0).
Considering that in G the second order variables range over pure open
subgroups it is easily seen that S,(y,) = {xs(p,n): n > 1} does the job and
likewise the sentences s, X7, Xs correspond to the Szmielew-invariants f,, @,

and 9.
The sentences x; to ¥ and their negations are called core sentences!
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Lgt A be a (non-topological) abelian group, » a cardinal. 4 denotes the
(fu}l) direct product of » copies of 4. A* is turned into a topological group by the
neighbourhood basis at 0: {V,: o < 2} where ¥, = {ged: Vv <a(g, = 0)].

DerFiniTION 2.9,

exp(4, x) = {ge A*: g, is eventually 0},

exp(4, x) is endowed with the topology induced from A*.
It is easy to check that exp(A4, ) is a model of ACAG.

THeorREM 2.10. If G is u saturated model of ACAG of cardinality » then G
=~ B®exp(A4, x) where @ denotes topological direct sum, B is a saturated abelian “

group of cardinality » with the Szmielew-invariants 1(B) = 1(G) and discrete
topology, A is the saturated abelian group of cardinality x with the Szmielew-
invariants 1(A) = 1, (G).

. CoroLLARY 2.11. Two algebraically complete groups G, G, are L'-equivalent
iff for all Szmielew-invariants 1:

1(Gy) = 1(Gy)  and  1,(Gy) = 1,(Gy).

) Proof of C.oro_llaFy 2.11. Since 1(G), 1, (G) are each described by a set of
L'-sentences one implication is obvious and in proving the reverse implication
we can assume thgt G, and G, are saturated of the same cardinality x™, for
some regular cardinal » > N,. Here we use Theorem 1.8 and x* = 2”. Now it
follows frorp "l'"heoremA 2.10 that G, and G, are topologically isomorphic and
thus.a fortiori L'-equivalent. Ways and means to eliminate the use of the
continuum hypothesis are described in [4] page 120.

. The remainder of §2 will be devoted to the proof of Theorem 2.10. Let us

X an uncountable saturated algebrai :

I an Sacoun gebraically complete group <G, #), card G
o PEMMA 2.12. There is a pure open subgroup H of G such that for all Szmielew-
invariants 1:

() 1(H) = 1,(G),

(i) 1(G/H) = 1*(G),

(1) H is an intersection of < » many sets in 4.

Proof. We start with two observations:

(1) if H,, H, are pure subgroups of G, H, € H

5 ) c then 1(H,) < 1(H,) a

GIH D > STt 2 { N 1(H,) < 1(H,) and

(2) if 1,(G) = Ny (or 1*(G) = N,) then saturation implies th:
e Al o ation’of G implies that 1, (G)

By (1) and (2) it is possible to choose for ea 1 i i

ach Szmielew-invariant i pur

open subgroups U*(1), U, (1) such that euinvariant f pare

1(G/U* (1)) = 1*(G), 1{U* () = 1,(6).
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Let H=N{U*)nU,(@:1a Szmielew-invariant ). Saturation guarantees that
H is again a pure open subgroup and (i), (i) follow by (1). Since there are only
countably many Szmielew-invariants Lemma 2.2 tells us that we can find H
such that (iii) is also satisfied.

The group H of Lemma 2.12 will be kept fixed for the remainder of § 2.
Clause (iii) implies that H is equationally compact, thus we get from Theorem
1.14 a complementary summand B:

G = B®H.

If we endow B with the discrete topology and H with the topology inherited
from G then the algebraic isomorphism is in fact a topological isomorphism.
This proves already one part of Theorem 2.10. It remains to show that H has the
form indicated in Theorem 2.10.

Let {g,: o < %}, {U, @ < %} be enumerations of G and #y = (Ue 4:
U < H) respectively.

Lemma 2.13. There are pure open subgroups H, and subgroups Ay of H for

o < B < x such that

(1 Ho = H,

(2) if « < p<x then Hy = H,,

() H, =\ (H,: v < a} for o a limit number,

(4 Hysy S Uy,

(5) every H, is the intersection of less than » set in #,

(6) H, = A,s®H, for a < f <x,

(7) Agy = Agp® Ay, for a <f <,

(8) if @ < B < then Ao, & Agp-

Notation: n,: H — H, denotes the canonical homomorphism associated
with the decomposition H = Ag,®H,.

(9) Ty (gu)eAu,a+ 1

(10) for all Szmielew-invariants 1. 1{Ayq+1) = 1{H).

Proof. For « = 0 there is nothing to be done.

« a limit number: Take H, = () {H,: v < o}. By saturation H, is again a
pure open subgroup of H. Set A* = {J [Aoy: v < a}. We certainly have
A*nH, = 0. But A*®H is also a pure subgroup of H, for if ae(A*@ H,) " nH
then we have a = aq+h with age€ Ao, for some v <a and heH,. Since
Ao ®H, = H we get that agend, < nA* and henH,. Purity of H, then yields
henH, and thus aenA*@®nH,. Since H, is the intersection of less than x
elements from 4 saturation of <G, 8> implies equational compactness of H,.
Now Lemma 1.15 supplies us with a subgroup Aq, of H such that Ay, & Ao, for
all vy < o and H = A, ®H,.

We define the remaining complements by A4,, = Ao, N H,. Now one easily
checks that H, = 4,,®H, and A,, = 4,,@4,, for v <y <a.

Successor step: Assume H,, Ay, for g <a already constructed in
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accordance with (1) to (10). Let C be a pure subgroup of H, such that
(i) m,(g.)eC,
(i) for any Szmielew-invariant 1 and any direct summand C, of H,
containing C we have 1(Cq) > min (i (H), N).
Since by choice of H, 1(H) = 1*(H) = 1(H,), it is possible to include in C
“for each Szmielew-invariant 1 sufficiently many appropriately independent
elements from H, to assure (ii). Obviously C may even be taken to be countable.
Using Lemma 2.4 we find a pure open subgroup H, ,, and a subgroup 4, ,,, of
H, such that H, = A4, ,,®H,,, dnd C S 4,,, . Moreover Lemma 2.4 tells
us that we may choose H, ., as small as we wish, in particular it is possible to
have a set Ve with CAV =@ and H, 2 V2 H,,, and H, 2 H,.. This
has the effect that whenever 1(4,,.:) > No then we may use saturation of
{G, #> to get i(A,,+,) = %. So-clause (10) of Lemma 2.13 is satisfied. If we
define 4,4 = A, @A, 4, for B < a it is easily seen that (6), (7) and (8) are
true. By choice of C also (9) has been taken care of. This proves Lemma 2.13.
Let A be isomorphic to 4,,. We claim

(2.14) H = exp(4, ).
As direct summands of the equationally compact group G all Apory are
themselves equationally compact. Clause (10) of Lemma 2.13 and Theorem 1.13
imply that each A,,., is in fact x-saturated. Since card G = » and Agur
cannot be finite we also have cardA4,,,; = x. Let f: Ayas1 — A be
isomorphisms which exist by Theorem 1.11 and the fact that any two
elementary equivalent saturated structures of the same cardinality are
isomorphic. For he H we define he 4* by h, = f,(n,(h).

Clause (9) of Lemma-1.13 implies that heexp(4, x). It follows easily from
the definitions that for all he H and

(2:15) heV, iff heH,.

If & = 0 then (2.15) yields he H, for all « < x, this implies & = 0 since G is
Hausdorff and {H,: o < x} is a neighbourhood basis at 0 (clause (4) of 2.13).

So far we have that * is a continuous embedding from H into exp(4, x)
with continuous inverse. It remains to show that * is surjective. To this end we

define K, = [geexp(4,x): forall § > « (95 = 0)} and we prove by induction
on «

(2.16) K, = A,

This is trivial for « = 0 and the induction is easily carried on beyond successor
steps. So let « be a limit ordinal and ke K. By induction hypothesis there are
elements h,eH such that

- k if u<v,

() = { Lo

0 if p=v.
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By clause (5) of Lemma 2.13 and saturation of G we find an element #° e H such
that for all v < a: K —h,e H, . Let h be the projection of &° on Ao, then we
bave for u > o« m,(h) = 0 and for u < a n,(h) = =, (F°) = n,(h,) = k,.

This completes the proof of Theorem 2.10.

Corollary 2.11 could be used to give an alternative proof of the decidability
of ACAG following the line given in [4]. Let us state another consequence of
Corollary 2.11.

CoROLLARY 2.17 Every L'-sentence is in ACAG equivalent to a Boolean
combination of core sentences.

§ 3. The L'-theory of profinite abelian groups

We begin with an auxiliary lemma on abelian torsiongroups.

LemMa 3.1. Let G be an abelian torsiongroup, n = 2 and C an arbitrary finite
subgroup of G. There are finite subgroups By, By and a subgroup H of G such that

() C = By®By, (i) G = Bo@H, (ii)) B; & nH.

Proof. Let G = @G, be the decomposition of G into its primary

4
summands. The group C' = @ (C N G,) is again finite and C < C'. From this it
P

is obvious that it suffices to verify the lemma for all summands G,. Thus we may
assume from the start that G is a p-group and n = p™. We proceed by induction
on m. Assume the result true for all m < m. So we have finite subgroups Dy, D

of G and a subgroup H such that C = Dy®D;, G = Do@H and D, = p"H.
We choose a finite subgroup D, = H with D; < p™D,. Now we proceed by

- induction on k = card{deD,: d¢ pH}.

If k = O then D, < pH. This shous D, = p"** H and we can use the same
Dy, D, also for the case m+1.

If k > 0 chose de D, with d¢ pH. Thus {d) is a pure subgroup of H and
therefore a direct summand: H = {d)@®H,. For D} = Hon D, we have D,
={dH@D;.

Since card {deDj: d¢pH,} < card{deDy: d¢pH} < k we find by the
hypothesis of the induction on k finite subgroups D, D and a subgroup H§ of
H, such that

D; = D§@ D3,
H, = D§®HE,
D¥ < p"t' HE.
In this case take By, = D@ <d)@®D¥ and B, = D¥ to get
C < B,®B,,
G = By@®H},
B,.c p"*t'HY.
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LemMa 3.2. Every profinite abelian group is locally pure.

Proof. By Theorem 1.18 we may assume without loss of generality that G
= A* for some abelian discrete torsiongroup A. For every new and every finite
subgroup C of A we have to produce another finite subgroup B of A such that

Vy(nyeAnnB -3 xeAnnC(nx = ny)).

Choose by Lemma 3.1 finite subgroups By, By of 4 such that C < B,@B, and
for some Aq: A = Bo@B, and B; < nA,. Let B, be a finite subgroup of 4 such
that already B, < nB, and take B to be B = B,@B,. Consider any g Ann B.
Let f be the unique element in A* determined by:

0
=10,

For any ceC given by ¢ = bo+nb, with bye By, b€ B, we have f(¢) =
+ng(b,) = 0. Thus fe Ann C. Furthermore we have for any a = by +do, bo€ B,
ae A, nf(a) = ng(ay) by definition of f and ng(a) = ng(ao) since ng(by) = 0.
Thus we arrive at nf = ng is required.

LemMa 3.3. Every profinite abelian group G is algebraically complete.

Proof. Let G = A* for some discrete abelian torsiongroup 4. By Lemma
3.2 and since any profinite group is Hausdorff we need only to show that for any
element ge G satisfying

if a€ By,
if ae A,.

(1) for all finite subgroups C of A there is h such that nh+geAnnC
we have
@ genG.

Consider for any finite subgroup C of A the set
W, = {(h, )eG+G: keAnnC and g+nh = k}.
Since Ann C is clopen ¥, = {(h, k)e G+ G: k¢ AnnC} is an open subgroup of
the topological product group G+ G. Also for any finite subgroup D of 4
Up = ((h, ke G+G: g+nh—k¢ Ann C}

is open in G+ G. Since the complement of W, in G+ G equals VU () U, we see -
D

that W is closed in G+ G. By (1) it is non-empty. Furthermore we have for
any two finite subgroups C{,C, of 4: W, = We, N W, where C is the

finite subgroup generated by C; u C,. By compactness of the topological group
G+G there is (1, k) () { We: C finite subgroup of A}. This implies in particular

ke(YAnnC, ie. k =0 and therefore g = —nhenG.
C
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Lemma 3.4. For any abelian profinite group G = A* and any Szmielew-
invariant 1.

G satisfies S, (1, k) for all k if 1(G) = N,
G satisfies T18,(1, k) for all k if 1(G) < N,

(for the definition of S, (1, k) see Lemma 2.7).

Proof. It follows from the structure Theorem 2.10 that G satlsﬁes S,(, 1)
iff G satisfies S, (1, k) for all k. Lemma 2.12 (i) implies that G satisfies 7 S, (z 1)if
1(G) < N,. It remains thus to show that G satisfies S, (t, 1) if :(G) > No This
will follow from:

() for any ﬁmte subgroup C of 4 1(AnnC) > N,.

It is easily checked that Ann C = (4/C)*. Now (*) follows from Theorem 1.19 if
we observe e.g. that the p-basic subgroup B; of A/C is unbounded if the p-basic
subgroup B, of A4 is unbounded and that the number of summands Z (p™) in
A/B, equals the number of summands Z (p*) in (4/C)/B, if B, is bounded, since
in this case we have C < B,.

TuEOREM 3.5. Two profinite abelian groups are L-equivalent iff they are
elementary equivalent.

Proof. Follows from Corollary 2.11 and Lemmas 3.2-3.4.

COROLLARY 3.6. The Li-theory of the class of profinite abelian groups, Ty, can
be axiomatized by T,y +ACAG+{x5(p, n) — 25(p, n) for all primes p and ne w}.

Proof. By Lemma 3.3 T,,+ ACAG & T, while T; |- x5 (p, ) — 26(p, )
follows from Theorem 1.18 and Lemma 3.4, To prove the converse inclusion we
shall show that for any I-sentence ¢ which is true in some model G of T,
+ACAG +{y5(p, n) = x6(p, n): p, n} there is a profinite abelian group H and ¢
is true in H. By Corollary 2.17 it suffices to find for every finite set of primes P
and N, K e w a profinite abelian group H such that for all core sentences x of the
form y;(p, n, k), x:(p,n) or x;(n) with peP, n < N, k < K Gy iff Hf= %.
Given G and P, N, K we will construct an abelian torsiongroup A:

4=9 @ Z(TOINSS Z(” )P
peP neN+1

where g ¢ P, such that H = A* is the profinite group looked for. The following
equalities for arbitrary abelian groups B will frequently be used in the following

dim p* B[p] = dimpk+1B[P]+ap,k+1(B):

(1) dim p* B/p** ' B = dim p**' B/p**2 B+ 0,41 (B).

For a proof see [4]. We shall also use frequently Theorem 1.19 without
mentioning.
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Let us first assume that G is unbounded. For pe P and 0 < n < N we
specify «,,, as follows:

If @, (G) > 1, then o, = No.
If Op, 5 (G) = 0 and (Zp_"(G) = o0 then dp,n =K.
If o, ,(G) is finite, then &, , = 0,,,(G).

By Lemma 2.7 we can have a,,(G) < ¥, only if ., (G) = 0, so there is
no collision in the above definition.
The following determines &, y+i:

If xs(p, N) is true in G, then o, 4y = No.

If y5(p, N) is not true in G and dim p™ G [p] is infinite then o, y4; = K.

In all other cases o, v+ = dimp" G[p]—Z{0,;: M < i < N}. Here M is
the least number < N+ 1 such that for all m, M < m < N+1 a,,,(G) is finite.

The number ¢ is determined such that N < ¢'. '

Finally v, is determined as follows:

If x6(p, N) is true in G then y, = N,.
If %6(p, N) is not rue in G but dimp™ G/p™** G is infinite, then y, = K.

In all other cases 7, = dim pM G/p™** G—dim p™ G [p]. Since G is a model
of T,; v, is always non-negative. This completes the description of A4, let us now
check that A* has the desired properties.

For y = )Fs(p, m, kypeP, n < N,k < K it is clear that G}= y iff A*=y,
and the same is easily seen to be true for x,(p,n). For n < M we have by (I)
Gk x1(p,n, K) and A*[ x, (P, n, K). If M = N+1 this is already the whole
st_ory."So assume M' < N.If dim p™ G [p] is infinite, then by choice of M and (I)
dim p" G [p] is infinite for all n such that M < n < N. W¢ defined in this case

@ ne1 > K. Thus f im p" . :
Zaves > K. Thus for all m, M < n < N dimp" 4* [p] > K. 1f dim p G Lp] s

dim p™ A* [p] = dim p™* 2 A4* [p]+ X {o, (A%): M < i < N+2}
=Z{ty;: M <i<N+1}

=dimp¥G[p], by definition of W1

ancendun pMG[p;I is finite (I) implies that in this case we have already
dimp" A*[p] = dimp"G[p] for all n, M < n < N. Let us now consider y,.
For n < M we have as above Gl=y,(p,n, K) and A*|= y,(p, n, K). Ne;t
a§surr:’e Mni 1:] 'fmq dnppM G/pM*1 G is infinite, then for all n, 1\/; <£n<gN
dim p" G/p ‘ G is infinite and y, > K implies that for all n, M < n < N
22(p,m, K) is true in A*. If dimp™G/pM*1 G is finite then

©
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dim pM AJpM A = 5 (a,,(4%): M < i < N+2)+dimp"*2.4%/p"" A*
=Xt M <i<N+1}+y,
= dimp¥ G[p]+7,
= dimp¥ G/pM*' G.

Since dim p™ G/pM* 1 G is finite, we get from (II) that for all n, M < n < N
dim(p" A*/p"" ! A%) = dimp" G/p"*1 G.

The direct factor Z(q') assures that A* satisfies 4 (N). Considering x5 we
remark first that )

A*E= s (p,n)  iff o, (A% n <i < N+1} 2 N,
it 2 {a,;(A): n<i< N+1} = No.

If GE= 15 (p, N) then we have by (I) G = 15 (p, n) for all n < N. In this case we
defined o, y+; = No and we get for all n < N that ys(p, n) is true in A*. If
Gk T1xs(p, N) and G xs(p, n) for some n < N then (I) implies that there is
some i, n < i < N such that a,; , (G) # 0 and thus we have also A* = x5 (p, n).
If G= 71 %s(p, n) then we have for all i, n < i< N a,; < N, and since this
implies G = x5 (p, N) also &, y+1 < No. Thus A*E= 71 ys(p, n). Considering s
we remark first that

¢

A* = y6(p, n) iff for some i, n < i< N+1 a,; = No or y, = No.

If GE= x¢(p, N) then we have by (II) G k= X6 (p, m) for all n < N. In this case we
defined y, = No. Thus xs(p, 1) is true in A* for all n < N. If G= 71 xs(p, N)
and Gk y6(p, n) for some n < N, then (I1) implies a,; 4(G) # O for some i, n
< i< N. But as we have seen above this implies d,;4(4%) # 0 and thus
AE 16(p, n). I Gl= 71 36(p, n), then we have foralli,n <i< Nao,; <Npand
since G is a model of xs(p,n) —xe(p,n) we have also o, n+1 < No-
Furthermore Gl 1 xs(p, N) and therefore 3, < No. Alltogether we find
A*E Ty (p, ).

Now consider the case that G is bounded. We may assume that for any
prime p and n > 0 such that o, ,(G) # 0 we have pe P and n < N. In this case
%1» X2 and xs., X¢ are completely determined by x5 and y; respectively using (I)
and (II). So we construct

A=@ ® Z(p)""
peP nsN
where o, ,, peP, 1 < n< N are defined as above. The validity of x4(n) and
xs(n) is obviously not changed when passing from G to A4*.
CoroLLARY 3.7. T is decidable.
Proof. Using the fact that a sentence which is consitent with T, has

5 ~— Fundamentas Mathematicae CXIX.2



GUEST


150 P.H. Schmitt

already a model A* where A = @ ® Z(p")?" @ Z(p®)” is determined by the

peP n€N peP
finite tupel of numbers a,,, and y,, it is possible to enumerate recursively all
L'-sentences which are consitent with T,.. This implies decidability.

References

[1] S. A.Basarab, Onthe elementary theories of abelian profinite groups and abelian torsion groups,
Revue Romaine de Math. Pure 22 (1977), pp. 299-311.

[2] G.Cberlinand P. H.Schmitt, Undecidable Li-theories of topological abelian groups, J. Symb,
Logic 46 (1981), pp. 761-772.

[3]1 — — A decidable L'-theory of topological abelian groups, to appear in Ann, Math. Logic.

[4] P. Eklof and E. R. Fischer, The elementary theory of abelian groups, Ann. Math. Logic 4
(1972), pp. 115-171.

[51 J. Flum and M. Ziegler, Topological model theory, Springer Lecture Notes 769,

[6] L. Fuchs, Infinite abelian groups, Vol. 1, Pergamon Press 1970.

Accepté par la Rédaction le 3, 8. 1981

icm

On the span of weakly-chainable continua
by

Lex G. Oversteegen (Birmingham, Ala.)
and E.D. Tymchatyn* (Saskatoon, Sas.)

Abstract. A continuum is weakly chainable provided it is the continuous image of the pseudo-
arc. It is an open problem to classify weakly chainable atriodic tree-like continua. In particular, the
following problem, due to Mohler, is open: Suppose X is a weakly-chainable atriodic tree-like
continuum, is X chainable? In this paper we will give a necessary condition for weak-chainability of
certain continua by proving the following theorem: Suppose X is a weakly-chainable (atriodic) tree-
like continuum such that every proper subcontinuum is chainable, then the span of X is zero. This
answers a question of Ingram. We will also investigate some related problems.

1. Introduction and preliminaries. By a mapping we mean a continuous
function and by a continuum a compact, connected metric space. A tree is a
finite, connected and simply connected graph. A continuum is tree-like (arc-like)
if it is an inverse limit of trees (arcs, respectively). A continuum X is atriodic,
provided for every pair Y;, Y, (¥, = Y;) of subcontinua of X, Y; \Y, has at most
two components.

Let (X, d) be a connected metric space. Fori = 1,2 let n;: Xx X — X be
the ith coordinate projection. We define the surjective span o* (X) (respectively
the surjective semi-span o (X)) (see [6], [7]), of X to be the least upper bound of
the set of real numbers a > 0 with the following property: there exists a
connected set C, = X x ¥ such that d(x, y) > afor (x,y)eC,andn, C,) = X
= 7, (C,) [resp. n; (C,) = X7]. The span o(X) [resp. semi-span o,(X)] of X is
defined by

i

o(X)
(resp. o (X)

sup {o*(4)] A = X, A # @ connected}
sup {6§(A)] A = X, A # @ connected}.

It is known that the (semi-) span of a chainable continuum is zero. It is an open
question of Lelek whether a continuum of span zero is chainable. It follows from
[8] that such a continuum is atriodic tree-like.

* This research was supported in part by NSERC grant no. A5616 and by a University of
Saskatchewan research grant.
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