Continua whose local homeomorphisms are homeomorphisms

by

Akira Tominaga (Hiroshima)

Abstract. Let $f: X \to Y$ be a local homeomorphism between continua. Then an answer is given to the question: Under what conditions for X, is f a homeomorphism?

1. Introduction. Let X, Y be continua and $f: X \to Y$ a local homeomorphism of X onto Y. Then we give sufficient conditions for X that f is a homeomorphism. If X is a chainable continuum or more generally a tree-like continuum, then f is a homeomorphism ([5, p. 261], [3, p. 67], [2, p. 317], [4, p. 50]).

Our results are the following:

Theorem 1. Let X, Y be continua and $f: X \to Y$ a local homeomorphism of X onto Y. If X is the limit of an inverse sequence, with bonding maps onto, of simply connected Peano continua and X has the fixed point property for homeomorphisms, then f is a homeomorphism.

Theorem 2. Let X, Y be continua and $f: X \to Y$ a local homeomorphism of X onto Y. If X is the intersection of a monotone decreasing sequence of simply connected Peano continua and X has the fixed point property for homeomorphisms, then f is a homeomorphism.

Corollary. Every local homeomorphism of a compact metric AR onto a space is a homeomorphism.

2. Definitions and notation. A Peano continuum is a locally connected, connected, compact metrizable space. A space X is simply connected if it is arcwise connected and each closed path in X is homotopic to zero. A map means a continuous function. A local homeomorphism $f: X \to Y$ between topological spaces is a map having the following property: For each point x of X there exists an open neighborhood U of x such that $f(U)$ is open in Y and f restricted to U, $f|U$, is a homeomorphism of U onto $f(U)$.

Let (M, d) be a metric space and δ a positive number. For points a, b of M, a δ-chain from a to b is a finite sequence $x = \{a = x_1, x_2, \ldots, x_l = b\}$ of...
points such that \(d(x_i, x_{i+1}) < \delta \) \((1 \leq i < \infty)\). If \(a = b \), then \(a \) is a \(\delta \)-loop based at \(a \). Let \(x = [a_1, \ldots, a_\ell] \), \(y = [b_1, \ldots, b_\ell] \) be \(\delta \)-chains. If \([a_1, \ldots, a_\ell, b_1, \ldots, b_\ell] \) is also a \(\delta \)-chain, then we denote it by \(a \equiv b \). Moreover \([a_1, a_2, \ldots, a_\ell] \) is denoted by \(a^\ell \). For \(\delta > 0 \), a finite set of points \(\{x_i \in X : 1 \leq i \leq l, 1 \leq j \leq m \} \) is a \(\delta \)-net provided that the diameter of \([x_i, x_{i+1}, x_{i+2}, \ldots, x_{i+j}] \) \((1 \leq i \leq l, 1 \leq j < m)\) is less than \(\delta \). Let \(\alpha = [a_1, a_2, \ldots, a_k] \) be a \(\delta \)-loop. If there exists a \(\delta \)-net \(\{X_{ij} : 1 \leq i \leq j \leq k \} \) such that \(X_{ij} = a_i \) and \(X_{ij} = a_j \) \((1 \leq i \leq j \leq k)\), then \(\alpha \) is a \(\delta \)-homotopic to zero in \(M \), and we denote \(\alpha \equiv 0 (\delta) \).

Let \(X, Y \) be continua, and \(f : X \to Y \) be a local homeomorphism of \(X \) onto \(Y \). Hereafter we shall exclusively use the symbols \(f, \psi, e, \mu, \gamma \), and \(\lambda \) as follows: For each \(V \in \mathcal{V} \) there exists a finite collection \(\{E_1, \ldots, E_k\} \), denoted by \(\mathcal{E}(V) \), of mutually exclusive open sets of \(K \), such that \(f^{-1}(V) = \bigcup_{i=1}^k E_i \) and \(f|E_i : E_i \to \mathcal{V} \) \((1 \leq i \leq k)\) is a homeomorphism of \(E_i \) onto \(V \).

\(\Psi \) is the covering \(\bigcup_{i=1}^k \mathcal{V} \) of \(X \).

\(\psi \) is the Lebesgue number of \(\Psi \).

\(\mu \) is the mesh of \(\Psi \).

\(\psi \) is the Lebesgue number of \(\Psi \).

\(\lambda \) is a positive number such that if \(A \) is a subset of \(X \) with diameter \(< \lambda \), then \(f(A) \) is a \(\delta \)-homeomorphism.

Let \(\beta = [b_1, \ldots, b_l] \) be a chain in \(Y \) such that \([b_1, b_{l+1}] \) is contained in an element \(V \) of \(\mathcal{V} \). If a chain \(x = [a_1, \ldots, a_k] \) in \(X \) satisfies the condition that \([a_1, a_{k+1}] \) is contained in an element \(\mathcal{V} \) of \(\mathcal{V} \), then we say that \(\alpha \) covers \(\beta \), or that \(\alpha \) is a lifting of \(\beta \). A homeomorphism \(g \) of \(X \) onto itself is said to be an automorphism of \(X \) with respect to \(f \) provided that \(f\circ g = f \).

By the method of lifting similar to that in the theory of covering spaces, we have (2.1) and (2.2).

(2.1) \(\mathcal{V} \) is an \(e \)-chain in \(X \) with initial point \(y \), and let \(x \) be a point of \(X \) with \(f(x) = y \). If \(e < \lambda/2 \), then there exists a unique \(e \)-chain \(X \) in \(X \) with initial point \(y \) covering \(\beta \).

(2.2) \(\mathcal{V} \) is a chain in \(Y \) from \(y \) to \(y' \), such that \(\beta \beta^{-1} \equiv 0 \) \((a) \) in \(Y \). Let \(x \) be a point of \(X \) with \(f(x) = y \), and let \(\alpha, \alpha' \) be liftings of \(\beta, \beta' \) with initial point \(x \), respectively. If \(e < \lambda/2 \), then \(\alpha, \alpha' \) have the same initial point. Whence a lifting of a loop \(\mathcal{V} \) is homotopic to zero is also a loop.

Obviously (2.3) \(\mathcal{V} \) is a \(\mu \)-chain in \(Y \) with \(\gamma \) \(\beta \), then \(\gamma \beta^{-1} \equiv 0 \) \((a) \).

3. Proof of Theorem 1. We first prove that if \(a, b \in X \) with \(f(a) = f(b) \), then there exists an automorphism \(g \) of \(X \) with respect to \(f \) such that \(g(a) = b \). Next we show that if \(a \neq b \), then \(g \) has no fixed point.

Let \(X \) be the limit of an inverse sequence, with bonding maps onto, of simply connected Peano continua \(X_t \). Let \(s_t \) be the \(t \)-th projection of \(X_t \) onto \(X_{t-1} \), and \(d_t \) a metric on \(X_t \) bounded by number 1. Then a metric \(d \) on \(X \) is given by

\[
d(x, y) = \sum_{t=1}^{\infty} 2^{-t} d_t(s_t(x), s_t(y)).
\]

We may assume that

\[
(1) < \lambda/2.
\]

Let \(\alpha \) be a positive number such that

(2) \(\alpha > 0 \).

(3) \(\alpha \) is a subset of \(X \) with \(\text{diam}(\alpha) < \tau_0 \), then \(\text{diam}(f(\alpha)) < \tau_0 \).

By (1) there exists a positive integer \(n \) and \(\gamma > 0 \) such that

(4) \(\alpha \) is a subset of \(X \) with \(\text{diam}(K(\alpha)) < \gamma \), then \(\text{diam}(\alpha(\gamma)^{-1}(K)) < \tau_0 \).

Choose \(\delta > 0 \) such that

(5) \(f(x, y) < \delta \), then \(x, y \) can be joined by an arc in \(X \) with diameter \(\gamma \).

Moreover choose \(\tau > 0 \) such that

(6) \(\tau < \min(\tau_0, \delta/2) \)

and

(7) \(\alpha \) is a \(\tau \)-chain in \(X \), then every lifting of \(f(\alpha) \) is a \(\tau/2 \)-chain.

(a) \(\mathcal{V} \) is a point of \(X \) and \(x \) a point of \(X \) with \(f(x) = y \). If \(e < \lambda/2 \), then there exists a unique \(e \)-chain \(X \) in \(X \) with initial point \(y \) covering \(\beta \).

(b) \(\mathcal{V} \) is a chain in \(Y \) from \(y \) to \(y' \), such that \(\beta \beta^{-1} \equiv 0 \) \((a) \) in \(Y \). Let \(x \) be a point of \(X \) with \(f(x) = y \), and let \(\alpha, \alpha' \) be liftings of \(\beta, \beta' \) with initial point \(x \), respectively. If \(e < \lambda/2 \), then \(\alpha, \alpha' \) have the same initial point. Whence a lifting of a loop \(\mathcal{V} \) is homotopic to zero is also a loop.

Obviously (2.3) \(\mathcal{V} \) is a \(\mu \)-chain in \(Y \) with \(\gamma \) \(\beta \), then \(\gamma \beta^{-1} \equiv 0 \) \((a) \).

3. Proof of Theorem 1. We first prove that if \(a, b \in X \) with \(f(a) = f(b) \), then there exists an automorphism \(g \) of \(X \) with respect to \(f \) such that \(g(a) = b \). Next we show that if \(a \neq b \), then \(g \) has no fixed point.
that $x_q = x_{1j} = x_j = a$ (1 ≤ i ≤ p, 1 ≤ j ≤ q) and $x_{q+1} = x_q (1 ≤ k ≤ l + m)$. Then by (8) and (4) ($x_q$) is a t_q-net in X and by (3) ($f(x_q)$) is an n-net in Y. Therefore if $β = (f(a) = f(x_{1q}), f(x_{2q}), ..., f(x_{q-1}) = f(x_{q}))$ and $β'$ = $(f(a) = f(x_q), f(x_{q+1}), ..., f(x_{q+q}) = f(x_q))$, then $β'^{-1}$ is 0 (0). Hence by (2) and (2.2) the liftings of $β$, $β'$ with initial point b have the same terminal point.

On the other hand, since a, a' are $τ$-chains, by (6) and (3) $f(a), f(a')$ are $τ$-chains with $f(a) ⊂ β$, $f(a') ⊂ β'$. Since $β$, $β'$ are $τ$-chains, by (2.3) we have $f(a)β'^{-1}$ 0 (a) and $f(a')β'^{-1}$ 0 (a). Thus the liftings of $f(a)$ and $f(a')$ with initial point b have the same terminal point, $g(x)$ (cf. (2.2)).

(c) The map g is a local homeomorphism. Let U be any neighborhood of $g(x)$. Then there exist $V' ⊂ V$, $E_1, E_2 ∈ E(V)$ such that $f(x) ⊂ V'$ and $g(x) ⊂ E_1$, $g(x) ⊂ E_2$. Let V' be an open set such that $f(x) ⊂ V'$, $diam_V β < τ$ and $E_1 ⊂ U$, where $E_1 = (f|E_1)^{-1}(V')$. Then $E_1 = (f|E_1)^{-1}(V)$, $E_2 = (f|E_2)^{-1}(V')$. If U is any point of E_1, and a is a $τ$-chain from a to x, then $a U$ is a $τ$-chain from a in U and $g(a) U$ is an $τ$-chain in Y. Lifting the $τ$-chain to a chain with initial point b, we see that $g(a) ⊂ E_2 ⊂ U$ and hence $g(E_2 ⊂ U$. Thus g is continuous. Clearly $g(E_1) = E_1$, and g is a local homeomorphism.

(d) The map g is a homeomorphism. For suppose that there exist distinct points a, a' with $g(a) = g(a')$. Suppose a is a $τ$-chain from a to x and a' is the chain with initial point b, covering $f(a)$. Then a'^{-1}, a'^{-1} cover $f(a')$ and have the common initial point b. Then by (2.1), we have $a' = b$, contrary to $a ≠ b$.

(f) Suppose that there exist distinct points $a, b ∈ X$ with $f(a) = f(b)$. Then by (a) (e) there exists an automorphism g of X without fixed point, which contradicts to our assumption that X has the fixed point property for homeomorphisms. Thus $f = g$ is a homeomorphism.

4. Proof of Theorem 2. Let a, b be points of X with $f(a) = f(b)$. We first show the existence of an automorphism g of X with respect to f such that $g(a) = b$.

We may assume that $μ ≤ i/2$. Let $τ_{ab}$ be a positive number such that if A is a subset of X with $diam(A) < τ_{ab}$, then $diam(f(A)) < τ$. Then we can find a positive integer n such that X_n is contained in a $τ_{ab}$-neighborhood of X. Choose $δ > 0$ such that if $z, x' ∈ X_n$ and $d(z, x') < δ$, then x' can be joined by an arc in X_n with diameter $< τ_{ab}/2$. There exists $τ > 0$ such that $τ ≤ τ_{ab}/2$ and such that if a is a $τ$-chain in X, then each lifting of $f(a)$ is a $τ$-chain.

(a) The definition of $g: X → X$ is the same as (a) in the preceding section.

(b) The map g is well defined. For let $α = (a = x_{11}, x_{21}, ..., x_{1q} = x_{1q+1})$ be a $τ$-chain in X, and let x_k be an arc in X_n, from x_q to x_{q+1}, whose diameter $< τ/2$. If $ψ: I → X_q$ is a parametrization of the loop $a_1 ⊂ a_2 ⊂ ... ⊂ a_{q+1}$, then there exists a map $F: I × I → X_q$ such that

$$F(s, 0) = ψ(s),$$
$$F(s, 1) = F(0, t) = F(1, t) = a (0 ≤ s, t ≤ 1).$$

We can find numbers $0 = s_1 < s_2 < ... < s_p = 1$ and $0 = t_1 < t_2 < ... < t_q = 1$ such that $diam [z_{01}, z_{11}, z_{11+1}, z_{11+1}, z_{11+1+1}] < τ_{ab}/2$, and such that there exists a subsequence of $x_i, 0 = s_{11} < ... < s_{1p} < s_{1p+1} = 1$, with $x_{0k+1} = x_q$. Choose a point x_{1k} of X so that $d(x_{1k}, x_{1k}) < τ_{ab}/2$. Then $x_{1k} = x_{1k} = a (1 ≤ i ≤ p, 1 ≤ j ≤ q)$ and $x_{0k+1} = x_q (1 ≤ k ≤ l + m)$. Then x_{0k} is a $τ$-net in X and $f(x_{0k})$ is an n-net in Y. Therefore if we put $β = (f(a) = f(x_{1q}), f(x_{1q}), ..., f(x_{q+q})) = f(x_{q})$ and $β' = (f(a) = f(x_q), f(x_{q+1}), ..., f(x_{q+q})) = f(x_q)$, then $β'^{-1}$ is 0 (0). Hence the liftings of $β$, $β'$ with initial point b have the same terminal point (cf. (2.2)). On the other hand, since $f(a) ⊂ β, f(a') ⊂ β'$, by (2.3) and (2.2) the liftings of $f(a), f(a')$ with initial point b have the same terminal point, $g(x)$.

By the same procedure as (c) (d) in Section 3, we can complete the proof.

Addendum. The following Propositions 1 and 2 correspond to Theorems 1 and 2, respectively.

PROPOSITION 1. Let X, Y be continua, and $f: X → Y$ a local homeomorphism of X onto Y. If f is the limit of an inverse sequence, with bonding maps onto, of simply connected Peano continua, then f is a homeomorphism.

PROPOSITION 2. Let X, Y be continua, and $f: X → Y$ a local homeomorphism of X onto Y. If f is the intersection of a monotone decreasing sequence of simply connected Peano continua, then f is a homeomorphism.

I am much indebted to Professor Y. Kodama who indicated to me that Propositions 1 and 2 above are consequences of the Fox’s overlay theorem [1, (5.2), p. 60]. Also after submitting the manuscript, I have known Lau’s theorem (Bull. Acad. Polon. Sci. Sér. Sci. Math. 27 (1979), p. 382) closely related to this paper.
A sum theorem for A-weakly infinite-dimensional spaces

by

L. Polkowski (Warszawa)

Abstract. In this note we shall establish a hereditarily closure-preserving sum theorem for A-weakly infinite-dimensional spaces. The applications of this theorem to the closed mappings defined on A-weakly infinite-dimensional spaces are given in [5].

Our terminology and notation follow [2]. Let us recall that a normal space X is said to be A-weakly infinite-dimensional (abbrev. A-w.i.d.) if for every sequence $(A_1, B_1), (A_2, B_2), \ldots$ of pairs of disjoint closed subsets of X there exists a sequence L_1, L_2, \ldots of closed subsets of X such that, for each positive integer i, the set L_i is a partition between A_i and B_i in X (meaning that there exist disjoint open subsets U_i, V_i of X such that $A_i \subseteq U_i, B_i \subseteq V_i$ and $X \setminus L_i = U_i \cup V_i$), and $\cap_{i=1}^{\infty} L_i = \emptyset$. It is manifest that every closed subspace of an A-w.i.d. space is A-w.i.d.

We begin with the following obvious lemma (cf. the proof of Lemma 1.2.9 in [2]).

Lemma 1. Let F be a closed subspace of a hereditarily normal space X and A, B a pair of disjoint closed subsets of X. For every partition L between $A \cap F$ and $B \cap F$ in F with $F \setminus L = G \cup H$, where disjoint open subsets G, H of F are such that $A \cap F \subseteq G$ and $B \cap F \subseteq H$, there exists a partition L between A and B in X with $X \setminus L = M \cup N$, where disjoint open subsets M, N of X are such that $A \subseteq M$, $B \subseteq N$, $M \cap F = G$ and $N \cap F = H$.

The next lemma deals with countable families of partitions.

Lemma 2. Let F be a closed subspace of a hereditarily normal A-w.i.d. space X and $(A_1, B_1), (A_2, B_2), \ldots$ a sequence of pairs of disjoint closed subsets of X. For every sequence L_1, L_2, \ldots, where L_i is a partition between $A_i \cap F$ and $B_i \cap F$ in F for $i = 1, 2, \ldots$, such that $\cap_{i=1}^{\infty} L_i = \emptyset$, there exists a sequence