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Characterization of a certain subset of the Cantor set
by
Jan van Mill (Amsterdam)

Abstract. The Cantor set C contains a subset § which is topologically characterized by the
following properties: (1) § is a zero-dimensional separable metric space which is the union of a
(topologically) complete subspace and a o-compact subspace, (2) S is nowhere o-compact and, (3) if
U < Sis open and nonempty and if D < § is countable, then U — D is not complete. This implies that
if aX and bX are zero-dimensional compactifications of X = P x Q, i.e. the product of the irrationals
and the rationals, then (@X—X)xC = (bX—X)xC.

. |

0. Introduction. All topological spaces under discussion are separable
metric. It is well-known that there are good usable topological characterizations
of the space of rational numbers Q, the space of irrational numbers P, the
Cantor set C, and the product Q x C (see, respectively, [117, [1], [5] and [1]).
Recently, the author has obtained a characterization of -Qx P [9]. This
characterization is the following: Q x P is the unique zero-dimensional space
which is the union of countably many closed and (topologically) complete
subspaces and which in addition is nowhere complete and nowhere o-compact.

In this paper we study complements of dense copies of Q x P in C. It turns
out that there are only very few of these spaces. We show that if a(Q x P)
and b(Q x P) are zero-dimensional compactifications of Q x P then the spaces

"(a(@xP)—(@xP)xC and (b(Qx P)~(Q x P))x C are homeomorphic. This

is a consequence of the fact that there is only one zero-dimensional space S
with the following properties: '

(1) S is the union of a complete subspace and a o-compact subspace;

(2) S is nowhere o-compact; .

() iU =S is open and nonempty and if D < § is countable, then U —D is not
complete.

From this characterization it follows that any nonempty clopen subspace of S is
homeomorphic to §. This implies that § is homogeneous, in fact, any
homeomorphism between closed and nowhere dense subsets of S can be
extended to an autohomeomorphism of S, [9].

1. Extending small homeomorphisms. It is an interesting result due to Ryll-
Nardzewski, see [8], that any homeomorphism between nowhere dense closed
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subsets of C extends to a homeomorphism of C. The aim of this section is to .

prove an estimated version of this result.

1.1, LeMMA. Let A, B < C be closed and nowhere dense and let & > 0. Then
there is a homeomorphlsm @: C—C such that 9(B)n A = @ and d(g,id) < ¢.
Proof. Let C;,C,,...,C, = C be nonempty and clopen such that

1)) : CnCi=0 if i#j;
© diam(C;) < &;
3) AuBz= | C;.
. - =1
For each i < nlet E; = C; be clopen and nonempty such that E; n (4 U B) = @

and let ¢;: E;— C;—E; be any homeomorphism. Define ¢: C - C by

(x it x¢ () cC,

i=1

o(x) =3 @i(x) ~ if ‘xeE,
o7 (x) if xeC~E.

It is clear that ¢ is as required. m
We. now come to the main result in this section

1.0 30REM. Let A, B = C be closed and nowhere dense and let ¢p:- A - B
be a hon. morphism such that d(¢p,id) <e. Then @ can be extended to a
homeomorphusm @: C — C such that d(@,id) <e.

Proof. Let § = }(e—d(¢,id)). By Lemma 1.1 there is a hor.neomorphism
£: €~ C such that ANE(B) = @ and d(,id) < §. Define #: A—r.f(B) by

n(x) = £&(e(x)

‘and by Ryll-.Nardzewski’s result previously cited we may extend # to a
homeomorphism 7: C —+C. Let V be a clopen neighborhood of 4 such that
¢)] vaf(v)=0;

@) if xeV, then d(x,7(x)<36+d(p,id).

It is clear that such neighborhood exists since 4 ~ ¢ (B)

= 0 and d(7(x),
<d(p(x), x)+6 for all xeA. Define ¢: C—C by (769, %)

* if  x¢vop(y),
e(x) ={ 7(x) if  xeV,
lx) i xeF(V).
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Notice that g|4 = 7 and that d (g, id) < 36 +d (¢, id). Now define §: C — C by
§=E"*og. Clearly, 3|4 =¢ and

d(p,id) < 46+d(p,id)=¢. =

13. Remark. Notice that the estimated homeomorphism extension
Theorem 1.2 is true for any metric d on. C. There is also an estimated
homeomorphism extension theorem for Z-sets in the Hilbert cube, but this
theorem is valid only with respect to one of the standard convex metrics on the
Hilbert cube, [4].

14. Remark. Theorem 1.2 is not stated in full gencrahty Using Theorem
3.1 of [9] it can be shown that Theorem 1.2 is true with C replaced by any
strongly homogeneous zero-dimensional space (a space is called strongly .
homogeneous if all nonempty clopen subspaces are homeomorphic).

1.5. Remark. The reason that we are interested in an estimated
homeomorphism extension theorem is that in several constructions in this
paper, we obtain a homeomorphism with certain properties as a limit of
inductively constructed homeomorphisms. We can only ensure convergence to a
homeomorphism if at each stage the next homeomorphism can be chosen
arbitrarily close to the identity. The following result, due to Anderson [2],
explains this. i

1.6. TueoreM (Inductive Convergence Criterion). Let X be a compact space
and let {h }21 be a sequence of homeomorphisms of X. Then lim ho...ohy

i

exists and is a homeomorphism provided that for any i:
(1) d(hyq,id) <27,

and

2 d(hyy,id) <37 Vinf{d(ho...

ohy (%), o...oh () d(x,y) = 1/i}.

2. A capsed for C. Let K = C be a countable union of nowhere dense closed
subsets of C. We say that K is a capset (abbreviation for set with the compact
absorption property) for C if K = U K,, for some tower K; = K, = ... of
compacta with the following property

for each & > 0, each integer m, and each nowhere dense closed F < C, there
exists a homeomorphism h: C— C with d(h,id)<e, h|K, =id, and
h(F) = K,, for some nzm.

The idea of a capset for a given topological class of compacta is due
independently to Anderson [3] and Bessaga & ‘Pelczyhiski [6]. The following
lemma follows directly from [6, 2.1].
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2.1. LeMMaA. Let K and L be capsets for C and let ¢ > 0 be given. Then there is
a homeomorphism @: C — C such that ¢(K) =L and d(¢,id) <e.

It is not entirely clear that capsets in C exist. However, by using precisely
the same technique as in Curtis & van Mill [7, Theorem 2.1] and by using
Theorem 1.2 instead of the estimated homeomorphism extension theorem in the
Hilbert cube,-the following result can be shown:

2.2. LEMMA. Let K < C be a dense copy of Q x C. Then K is a capset for C.

Consequently, Lemmas 2.1 and 2.2 imply the following

2.3. THEOREM. Let K, L = C be dense copies of @ x C and let ¢ > 0 be qwen
Then there is a homeomorphism ¢: C — C such that ¢(K) = L and d(¢p, id) <.

3. Closed subsets homeomorphic to Q x C. In [1], Alexandroff and Urysohn
showed that all zero-dimensional, o-compact, nowhere locally compact and
nowhere countable spaces are homeomorphic to Q x C (see also [9]). In the
remaining part of this paper we will make use of this characterization.

Let X be a space. Define

¢X ={xeX: x has a countable neighborhood}
and
oX = {xeX: x has a compact open neighborhood}

respectively. Observe that both ¢X and o X are open subsets of X and that o X is
always countable.

3.1. THEOREM. Let X be a o-compact zero-dimensional space. If no closed
subset of X is homeomorphic to Q x C then X can be written as A U B where A is
countable and B is topologically complete.

Proof. By transfinite induction, for each ordinal & < @, define subsets
S., T, = X in the following way:

SO—QX and T, =0d(X—Sy),

S=e(X= U (Spuh) and L=o(X~(S,0 U & B).

By induction it is easy to show that U (Sg U Tp) is open in X for each a < ;.

Let B < wy be the first ordinal for wh1ch Sp =0 and T; = @ (it is clear that
such f < w, exists since X is separable metric).
Put Y=X-— U (8, v T,). We claim that Y= . For suppose that this is

not true. Since S,, = 7:, = () and since Y is closed in X, the space Y is o-
compact, nowhere locally compact and nowhere countable, Hence ¥ =~ Q x C,
which contradicts our assumptions on X.

PutA4 = U S,and B = Uﬁ T.. We claim that 4 and B are as required. It
is clear that A 1s countable, so it suffices to show that B is (topologically)
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complete. By induction we will show that () T, is complete for all ¥ < B. Since
T, is locally compact, Ty is complete. Ass‘:fme that |J T, is complete for-all

< f. Since U 1S open in U T forall p < x a:ld since a locally complete
space is comp]ag, e
V= U T

a<x

is an open complete subspace of U
M\M

U T,.ThenZ~V is g-compact, since V is complete. Since T, is closedin {J T,

agox ta<x

and since T, is locally compact, this implies that

z- U L=(2z2~ U D-T)u(L-T)

asx o <x

~. Let Z be a (metric) compactification of

is g-compact or, equivalently, J T, is complete. m

n€x

4. A description of S. In this section we will show that spaces with the
properties of S exist.

4.1. Lemma. Let X be a zero-dimensional compactification of Q xP.
Then X —(Q % P) is nowhere complete, nowhere o-compact, and is the union
of a complete and a o-compact space.

Proof. For each geQ let A4, —(lq}xP)

and B, = A,—(Q x P). Then

CE=X- U A, is complete and F = U B, is cr-compact smce each B, is

a~compact. Clearly X\@xP)=Eu F

If U = X is clopen and U n (X —(Q x P)) is o-compact, then U n(Q x P) is
complete. This implies that X —(Q x P) is nowhere g-compact, since Q x P is
nowhere complete. Similarly X — (Q x P) is nowhere complete, since Q x P
is nowhere o-compact. m .

Before we give a space with the properties of S, observe that P is the unique
zero-dimensional, complete and nowhere locally compact space, [1].

4.2, LiMMA. There is a space S with the following properties:
(1) 8 is zero-dimensional,
(2) 8 is the union of a complete and a a—compact subspace;
(3) S is nowhere g-compact;
(4)  if'U < S is open and nonempty and if D < S is countable, then U — D is not

complete.

Proof. Let K < C be the union of countable many nowhere dense Cantor
sets which is dense. By [1], K ~ @ x C and C— K =~ P.In addition, let E = C be
countable and dense. Then E =~ Q, [11], and C—E =~ P. Put

S =(CxC)—(C—K)xE).
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Since (C—K)xE = Q x P, by Lemma 4.1, § satisfies (1), (2) and (3). Now let
D < S be countable and let U = § be clopen and nonempty. Since K x E is
dense in S, there is an eeE such that Un(K x{e}) # ®. Observe that
U n(K x {e}) ~ 0 x C since Q x C is strongly homogeneous. Since @ x C clearly
contains uncountably many pairwise disjoint closed copies of Q, there is an
uncountable family 2 of pairwise disjoint closed copies of @ in U n (K x {&}).
Since " is uncountable, some G € 4" misses D. Then G is a closed (in S) copy of
Qin U n (K x {e})(notice that U n (K x {e}}is closed in §). Consequently, U ~D
is not complete. m

"Let& denote the class of spaces satisfying (1), (2), (3) and (4) of Lemma 4.2.

43. LEMMA If Se& and if U = § is nonempty and clopen, then Ug .

Proof. Obvious. =

Since we will show later that, up to homeomorphism, & contains precisely
one space, which we call S, Lemma 4.3 implies that § is strongly homogeneous.
As a consequence, S is homogeneous. In fact, any homeomorphism between
closed and nowhere dense subsets of S extends to a homeomorphism of §, [9,
3.1].

44. LEMMA. Let S € & and let aS be a zero-dimensional compactification of S.

. Then aS—S ~ Q x P, ‘

Proof. By using the same technique as in the proof of Lemma 4.1 it easily

follows that aS — S is nowhere complete and nowhere s-compact. Since S € ¥, §

. o
= E UF, where E is complete and F is o-compact. Let aS—E = () K;, where
i= CN

1
each K; is compact. For each ieN the space K;—F is clearly complete and
closed in aS—S. Since U (K;—F) = aS— S we conclude that a$ — S is the union

of countably many closed and complete subspaces. Since Q x P is the unique
nowhere complete, nowhere g-compact spacg which is the union of countably
many closed and complete subspaces, [9], this implies that aS—S ~ Q x P. =

‘We conclude this section with the following result which will be of .crucial
importance in the proof of our characterization of S.

4.5. TueoreM. Let S€%. Then S contains a closed copy of Q xC.
Proof.LetaSbea zero-dimensional compactification of S. By Lemma 4.4,

aS—S8 ~ Q x P hence aS—S = U P;, where each P;, is complete and closed in
=1

aS—S. For each ie N put B; = P,—P;. Then B; is a closed and o-compact
subspace of S. Suppose that no B; contains a closed copy of Q x C. We will
derive a contradition. Then, by Theorem 3.1, we can find disjoint A4;, F; ¢ B
with 4; U F; = B, such that 4; is countable and F; is complete (ieN). For each
ieN, we have that P,—F; is c-compact and consequently U (P,—F) is o-
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compact. Therefore

aS— J (B—F) = S— U 4,
ieN ieN
is complete, which is a contradiction since {) 4; is countable, and Se . =
ieN

5. A characterization of S. We will show that, topologically, & contains at
most one space. Since any §&. has a compactification homeomorphic to C, it
suffices to show that whenever S, Te.% are dense in C, then there is a
homeomorphism ¢: C — C such that ¢(S) = T. If A = C then A denotes the
closure of 4 in C.

5.1. LemMmA. Let § < C be dense such that Se . If T< C—S8 is closed
(in C—S8), nowhere locally compact and complete, then there exists a closed and
complete F < C—S such that
(1) T<F and T is nowhere dense in F,

2 F-FrQxC.

Proof Let E = T—T In addition, let
‘nonempty clopen subsets of § such that

(3) D,<=S—E for all neN;

4 diamD, < 1/h for all neN;

(5) if nsm then D, D, = O;

6 cs(U®)=U2VE.

It is clear that such a family exists since E is a nowhere dense closed subset of S.
Since, by Lemma 4.3 and Theorem 4.5, each nonempty clopen subspace of S

contains a closed (in S) copy of @ x C, for each ne N we can find a closed copy K,
of @ xC in D,. Clearly

% = {D,: neN} be a family of

w0

CIS( U Kn) =

=l

o .
U K,vE
n=1

oy
and since E is o-compact. 4 = (J K, VE = Q x C. Notice that E is closed and

n=1
nowhere dense in A. Put F = 4 ~ (C~5). Since A4 is nowhere locally compact, F
is dense in A, i.c. F~F = A ~ Q x C. Since E is nowhere locally compact, T is
dense in E, consequently T < F. Since E is nowhere dense in 4, it easily follows
that' T is nowhere dense in F.'m
5.2. CorOLLARY. Let 8 < C be dense such that S€&. Then there is a
sequence P, (ie N) of closed and complete subspaces of C — S such that for allie N

() PicPuy and ) P=C=5;
i=1
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(2) P, is nowhere dense in Py y;
(3) P—P,=QxC.
Proof. By Lemma 44, C—S =~ Q x P. Consequently, there is a. family

{E;: ie N} of closed copies of Pin C— S such that |} E; = C—S.From Lemma
ieN

5.1 it is clear that inductively one can construct closed copies P; (ieN) of P

in C—S such that for each ie N

U Pju U E;
=1 j=1

is a closed nowhere dense subset of P,,; while moreover P;— P, ~ Q ><‘C. L]

We now come to the main result in this paper.

5.3. TuEOREM. Let S, T = C be dense suchthat S, T e ¥, Then for eache > 0
there is a homeomorphism ¢: C— C such that @(S) =T and d(¢p,id) <s.

Proof. Inductively we will construct a sequence of homeomorphisms
h: C— C and a sequence of homeomorphisms g;: C — C such that

¢=limg, oh,0...097 0h,
n=rao

is as required. Without further mentioning, it is understood that at each stage
the next homeomorphism is constructed in accordance with the Inductive
Convergence Criterion 1.6 while moreover

Y d(h,id)+ Y, d(g;,id) <e.
i=1 i=1

By Corollary 5.2 there are sequences P; (ieN) and R; (ieN) of closed and
complete subspaces of, respectively, C—S and C—T such that for all ie N

@ ©
1) P <Py, RcRyy, U P=C=Sand |J Ry=C-T,;
i=1 i=1

(2) P; is nowhere dense in P;,; and R; is nowhere dense in R,,,;
(3 P—P,~R—-R ~QxC.

Suppose that we have to construct h; in such a way that d (hy,1d) < 8, for
certain 3, > 0. Find an integer n, such that d(x, R,,) < $8, for all xe P. It is
clear that there is a finite disjoint clopen cover E,, ..., E, of P, such that each E y
has diameter at most $5;. For each 1 <j < k pick a point x;€E; and a point
yi€Ry — {1, yjm1} such that d(x;, y;) < $é;.In addition, for each 1 <j < k
pick a clopen (in R, ) set F; = R, of diameter at most 4§, such that y;€F;and
such that the family {F,, ..., F,} is pairwise disjoint. Fix 1 < j < k. Notice that
E;~ F;~ C and that

E;~P;~ F;—R; = QxC,
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consequently, by Theorem 2.3, we can find a homeomorphism & + E;— F; such
that &;(E; N Pj) = F; " R;. Define y: P, —»R,ll by ¥ (x) = &;(x) if x € E;. Notice
that y is an embedding such that d(y, id) < 6, +36,+46, = &, . In addition,
V(P = R,; " (P;). By Theorem 1.2 we can extend ¥ to a homeomorphism
hy: C— C with d(h,id) < §,. Notice that k, has the following properties
@ d(h,id) < 8y o

%) : hy(Py) = R, nhy (Py).

This defines 4, .
Suppose that we have to construct g, in such a way that d(g,, id) < .
Find an integer m, > 1 such that d(x, (Pny) < %py for all xeR, . We wish

to construct g, in such a way that g, (R,,) = h;(P,,) and g, (R,) = by (Pm,)
while moreover g, |hy (P,) = g7 *|hy (P,) = id. Then, since h, (P,) = R,,, also
g7t hy (Py) ©R,,. To this end, let & be an open cover of R, —hy(P,) by
disjoint, compact, nonempty subsets such that for each De %

diam D < min {d(D, h, (Py)), +u;}.

For each De % pick a point x(D)eh, (P,)~hy (P,) such that d(x(D), D) <
min {2d(D, hy (Py)), $p, }, and with x (D) # x(D')if D s D’. This is possible since
hy (Py) is nowhere dense in h, (P, ,)- In addition, for each D, choose a clopen
(iantor set (clopen in hy (P,,)) C(D) = hy (Pmy)—hy (Py) containing x (D) such
that

diam (C(D)) < min {d(x(D), hy (P,)), 441},

and such that C(D)n C(D') = © if D # D’. Now, for each De 9 choose an
arbitrary homeomorphism fj,: D — C (D). By Theorem 2.3 we may assume that
fo(D AR, )=C(D)nhy(P,). Define an embedding f: R, — hy(P,,) by

Lo [f® i xeDea,
f(x)"{x it xeh,(P,).

Clearly f is an embedding and d(f,id) < 3p; +4p,+4u; = g;. By Theorem
1.2 we can extend f'to a homeomorphism g;: C — C such that d(g,, id) < §u,.
Notice that g, has the following properties

(6) g1lhy (Py) = id;
(7) g1 (Rnl) < hl (Pml)-

Continuing in this way inductively, it is easy to comstruct a sequence of
homeomorphisms {h,: C—C}, and a sequence of homeomorphisms
{gs: C = C}, and sequences of integers mg <m; < ...and n, < n, < ..., with
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me = 1, such that for all ieN

® gt ohy(Py,_ ) = Ry;
(9) gx— ! o hi (Pmi) = Rni;
(10) if k>i+1 then g;‘ohkl(g,-‘loh,-)(Pml)=id.

Therefore, if we put
¢ =lim g;toh,0...0g7 0l

then, by (8), (9) and (10), (C—8)=C~—T. u

54. Remark. In the proof of the above theorem we have used ideas from
[7, 21] and [6, 2.1}

5.5. CoROLLARY.. Let X be zero-dimensional and both complete and
o-compact. Then X xS = §.
Proof. Clearly, X x § satisfies the properties of S which characterize S. =
5.6. COROLLARY. Let a(Q x P) and b(Q x P) be zero-dimensional compactifi-

»

cations of Q x P and let X be.any nowhere countable zero-dimensional space which

is both complete and o-compact. Then
(a@*xP)—(QxP)x X ~ (b(@xP)—(Q x P)) x X.
Proof. Let U; & a(Q x P)—(Q x P) and U, = X be nonempty and open
and let D < U, x U, be countable. Since U, is uncountable, we can find a point
ecU, such that (U;x{e)nD =0. Let EcQxP be a closed homeo-

morphism-of P such that E—E < U;. Then E—E is closed in U, and is not
complete. Consequently

(E—Eyx{e} cU,xU,

is a closed subset of U, x U, which is not complete and which obvxously misses
: D. This easily implies that

(a(@xP)—(@xP)xX~S. -
Similarly (b(Q x P)—(Q x P))x X ~ S. Consequently,
(@@xP)=(@xP)xX =~ (b(@xP—(@xP))xX. u

6. Perfect images of S. A closed map f: X — Y is called perfect if f is
onto and if preimages of compact subsets of Y are compact. In addition, a map
f: X - Y is called irreducible if f is onto and if f(4) # Y for any proper closed
A < X. In this section we show that if X is any nowhere complete, nowhere
o-compact space which is the union of a complete and a g-compact subspace,
then there is a perfect map f> § — X.

The following lemma is well-known.
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6.1. LEMMA. Let X be a space. Then there is a zero-dimensional space Y and a
perfect irreducible map n: Y— X.

Proof. Let yX be a compactification of X and let f: C — yX be irreducible.
It is easily seen that Y=7f"!(X) and = =f|Y is as required. m
We now come to the main result in this section.

6.2. THEOREM. Let X be nowhere complete, nowhere o-compact space which

is the union of a 6-compact and a complete subspace. Then there is a perfect map
fi §—X.

Proof. Let ¥ be zero-dimensional and let n: Y— X be perfect and
irreducible, Lemma 6.1. Using the fact that = is both perfect and irreducible it
easily follows that Y is also nowhere complete, nowhere o-compact, and the
union of a complete and a o-compact subspace. Hence by Theorem 5.3,
Y xC ~ S. The rest is routine. m

6.3. Remark. By a more complicated construction, using ideas from van
Mill & Woods [10], it can be shown that there even is a perfect irreducible map
m S —X.
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