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Superstable graphs
by

Heinrich Herre (Berlin), Alan H. Mekler (London, Ontario)
and Kenneth W. Smith (Toronto)

Abstract. We define a natural class of graphs which includes the planar graphs and all graphs
of finite bounded valency. Every member of this class has a superstable theory.

Introduction. One sometimes knows a graph has a relatively “simple”
structure; because the graph does not contain certain “complicated” graphs. We
shall show how this structural “simplicity” is connected to a sort of logical
“simplicity”. In [7] Podewski and Ziegler call a graph I' superflat if for every
natural number m there is a natural number n such that no subdivision — by
fewer than m many points on each edge — of the complete graph on n vertices is
contained in I'. Note that all trees, all graphs of finite bounded valency, all n-
separated graphs embeddable in a surface of finite genus are superflat. All these
graphs (but not all superflat graphs) are among those we shall call vltraflat.

We show all ultraflat graphs are superstable. This result is due
independently to Herre [2] and Mekler and Smith [5] [6]. The proof presented
here is from [6]. In [2], the main idea is the same. However, systems of partial
isomorphisms replace automorphisms of saturated models. Similar methods to
those of [2] appear in [1].

In [97], it is shown (inter alia) that every planar lattice of bounded height is
superstable. Since a partial order with a finite bound on the length of chains can
be viewed as a directed graph, our results include the stability results from [9].
The motivation for [6] was to understand the relation between [7] and [9]. (It
should be noted that directed graphs are dealt with in [7])

We conclude this paper with an example of a non-directed super flat graph
which is not superstable.

Preliminaires. Our notation is standard (cf. [8] for example). Even our
periodic failure to distinguish between a structure and its universe is common. If
A is a structure and A2 X a type of 4 over X is a maximal consistent set of
formulae in the free variable v including Th(4y). Let S, (X) denote the set of all
types of A over.X. A countable first order theory T is -stable, if whenever
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A= T and || < % then [S,(A)] < x. Here | X| denotes the cardinality of X and x»
is a cardinal. If T is x-stable for some infinite cardinal x, then T is stable. If T is
w-stable for all % = 22, then T is superstable. A structure 4 is said to be (x-)
(super)stable, if Th(A) is (x-) (super)stable.

A graph is a structure I' = (G, R} where R is a binary relation on G. A
graph I' = (G, R) is non-directed if R is symmetric. Given a graph I" = {G, R>,
let I'* denote the graph (G, R*) where (g,¢)eR* if either (g,¢)eR or
(¢, 9)€R. Note: if I is non-directed, then I'* = I'. A sequence {go, --., g, Is 4
path of length n from g, t0 g,,, if (g;, gi+ )€ R for alli <n. M I' = (G, R) and 4
= ¢D, P, then 4 is a subgraph of I when D < G and P < R. A graph I" omits 4
if I'* has no subgraph isomorphic to 4.

Stability of graphs. For natural numbers m and n, let .#;" be the class of
graphs which can be constructed from the complete graph on n vertices by
inserting no more than m vertices on each edge. For example the graph in figure
1is in A2

Fig. 1

A graph I omits J,", if I'* omits each element of ;. Following [7] we
call a graph I' superfiat, if for each m there is an n such that I" omits J£". Call I"
ultraflat, if there is an n such that for all m I' omits X}".

TueoreM 1. If I' is ultraflat, then I is superstable.

Proof. Suppose I'is infinite and I omits #," for all m. Choose I'; > I' such
that I'; is saturated and |I'y| > |I']. (The assumption that I'; is saturated can be
eliminated. The argument can be carried out using |I'|*-saturation. We could
also force to get a large saturation cardinal; carry out the proof in this new
universe; and then use absoluteness facts to complete the proof.) We will show
by a series of lemmas that |S(I)| < |I|+2°.

Lemma 1. Ifbel's —T then |{geTI: b is connected to g by a path through
rF—r*<n-1. :

Proof. Suppose bel'y—I' is connected to go,...,g,—; €l by paths
through I'f —I'*. Choose by, ..., b, I'y —I" such that b = b, and the paths can
be formed from among these vertices. A straightforward argument about the
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consistency of types gives b}, ..., bl,el; for j < <;) such that: <b},...,b>

satisfy the same type over I' as {by,..., b,> and {b},...,bl} n{bh, ..., bi}
=@, if i #j. So I} and hence I' does not omit J#;". m '

For go, ..., gi €T, let I'(gq, ..., g) = {geI;: any path'in I}* from g to an
element of I contains some g; where i < k}. Choose X (go, - .., g) S I'(gos - +» 9)
such that each type in S-({go,..., gx}) Which is realized by an element of
I'(gos ..., gy is realized by a unique element of X(go, ..., gi)-

Note that |X (go,..-, g}l < 2% Let X be the union of these sets. Since
|X] < [I|+2°, the following lemma completes the proof.

Lemma 2. Every type in Sp(I) is realized by an element of X.

Proof. Since I', is saturated, it suffices to find for each gel’; an
automorphisin ¢ of I'y which fixes I such that ¢ (g) e X. Considerge I', . If ge I,
there is nothing to prove. Assume geI'; —I'. Choose g, ..., §,—2 such that
geI'(go, ..., gn—2). Let g’ be the element of X(go, « .5 gu—2) Which realizes the
same type over {go,...,Ju-2} a8 g

Choose ¢ an automorphism of I' such that ¢(g) = ¢’ and ¢(g)) = g; for
i<n—1. For any ael'; let

¢ay = {x: x is connected to @ in If*—{go, ..., gu-2}} Y {go>---> Gn-2}-

So ¢ | {g)> maps onto {g'>. (Recall ¢ | {g)> denotes the restriction of ¢ to {g>.)
I <g>=<gD let o=01<g. I {g>n<g>={go,..-, gu-2} let @y
= [{g>uU(p|<{g))™ L These are the only cases. Define ¢, on I'; by

(= {0109 il xedom(e),
$29=%  otherwise.
It is easy to verify ¢, is the required automorphism. m
If P is a partially ordered set (poset) with a finite bound on the length of
chains, we can view P as a directed graph.

COROLLARY 2. If P is a poset with a finite bound on the length of chains and P
is ultraflat, then P is superstable. m
Our method also yields a proof of the result in [7].

THEOREM 3. If I' is a superflat, then I' is stable.

Proof. The proof is similar to that of Theorem 1. In place of Lemma 1, we
use the following result.

LemmMa 3. Suppose I is superflat, I < T'y, |I'| <|I'y| and I'y is saturated. If
beI';—T, then b is connected by paths through I'* — I'* to at most w elements of
I' =
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COROLLARY 4. If P is a poset with a finite bound on the length of chains and P
is superflat, then- P is stable. w

Tt is easy to construct ultraflat graphs which are not w-stable. It is also easy
to construct superflat graphs which are not ultraflat. It is perhaps less obvious
that there is a superflat graph which is not superstable.

ExampLE. There is a non-directed superflat graph which is not superstable.

Proof. Let T= () "w. (Here "w denotes the functions from m to w.) For

mSo
each se®w and m < w place an edge between s and s [m, then add m new
verticés to this edge. Call this graph I.

We will call a vertex a branching vertex, if it is adjacent to at least 3 other
vertices (i.e., has valence at least 3). For se T, ht(s) denotes the domain of s.
Suppose sp, -- ., 5, are the branching vertlces of a path in I'. If 5, is such that
© ht(s) =k is mmlmal then sq [k =s;.

Cramm. For all m < w, I’ omits Ay, 4.

Proof (of claim). Suppose I'2 K, where K ey, 5. Let the branching
vertices of K be sy,-.., Sp42. Assume that hr(sy) is maximal. If 0 <i < m+2,
there is a path from s, to s; through the non-brarching vertices of K. Let sje T
be the element of this path such that ht(s}) = k; is minimal If i s then
So # s| # 5. Since s} = sq [ k;, there is i such that k, > m. This is a contradiction,
since the shortest path from s to any branching vertex of I’ has length > k.

CramM. I' is not superstable.

Proof (of claim). The element s of “w are those branching vertices from
which there are paths of length 1 and 2 through non-branching vertices to a
branching vertex. So “w is a definable subset of I'. Suppose s, t €“w. For any m
<w,sm=t|mif and only if s and ¢ are connected by a path of length m
through non-branching vertices to the same branching vertex. Hence in I' we
can define the structure (“w, E, >, <., where (s,f)€E,, if and only if sm
=t [ m. This last structure is well known to be stable but not superstable. m
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