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According to Theorem 2 there must be at least two unknotted fibers. Since h
is invariant on each of these, it follows from our earlier remark that h is
equivalent to a standard rotation. This verifies Thsorem 4.

TaroreM 5. If h is a piecewise linear homeomorphism of period n> 1 on

§3 with fixed point set a simple closed curve J, then J cannot be a non-trivial
torus knot.

Proof. Suppose J is a non-trivial torus knot with A(J) = J. Then there
is a regular neighborhood N(J) of J such that h(N{J)) = N(J). Using the
argument given in the proof of Theorem 4, we may fiber S such that J is a
fiber and every fiber remains invariant under the action of A.

If F is a fiber in N (J), then we may choose a meridian disc D for N(J)
such that DA J is a point, h(D) = D and the number of points in F naD
equals the winding number of F on N(J). By our previous observation, this
winding number must be greater than zero. Since the only fixed point of 4 on
D is DnJ and h(F n D) = F n 8D, the winding number of F on N (J) must
be greater than 1. Thus J is an exceptional fiber and, according to Theorem
2, cannot be a non-trivial torus knot. But this contradicts our supposition
and proves Theorem 5.

In view of Theorem 5 and the fact that every torus knot is a fibered
knot, it seems feasible that a purely geometric proof of the Smith Conjecture
for fibered knots can be developed.
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On the triangulation of smooth fibre bundles

by
F. E. A. Johnson (London)

Abstract. In this paper we prove that if p: (E, 0E) — B is a smooth fibre bundle, where
(E, OE) is a smooth compact manifold with corners in the boundary E, then p admits a piecewise
differentiable ( = P.D.) triangulation by a PL bundle, and moreover that any such triangulation
of p: 0E — B extends to one on the whole of E. This generalises the theorems of Putz, in the
case where JE is smooth, and Lashof and Rothenberg, in the case of a vector bundie.

The main technical result is that if «: K — M is a P.D. triangulation of a smooth manifold
m-ad M by a PL manifold m-ad K, then the simplicial set PL(K) \PD(K, M) is contractible,
where PL(K) is the simplicial group of PL automorphisms of K, and PD(K, M) is the simplicial
set whose n-simplices are P,D. triangulations 4"x K — 4" x M commuting with projection onto
an

§0. Introduction. In its simplest form, the main theorem proved in this
paper is that a smooth fibre bundle with compact fibre is triangulable by a
PL bundle, and that, if the fibre is bounded, such a triangulation of the
subfibre space determined by the fibre boundary can be extended to one of
the whole bundle. In its most general form, we wish, in addition, for the fibre
to have corners, and to be given a labelled collection of transversely inter-
secting submanifolds of codimension zero in the boundary, and a compatible
collection of PL bundles triangulating the subfibre spaces corresponding to
the labelled faces. The theorem then asserts the existence of a PL bundle
triangulating the whole bundle and extending the given triangulations.

~ Our main theorem, in its greatest .degree of generality, is a necessary
ingredient of our paper [5], in which we prove that compact stratified sets in
the sense of Thom are triangulable by simplicial complexes. A proof of the
simplest form of our main theorem has been given by Putz [9]. Were this
form sufficient for our application, this present paper would be unnecessary.
However, Putz gives no consideration to the case where the fibre boundary
has corners and since we definitely require the theorem in this degree of
generality, and since it is also not clear how to modify Putz’ somewhat
adhoc argument to give the result, we ‘are forced to give an independent

treatment. B o
In fact, the published result which is closest to ours, and from which
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ours derives, is the Lashof-Rothenberg functorial triangulation theorem for
vector bundles [7]. Whenever we could, we have followed [7] and wish to
thank Lashof and Rothenberg for having written it.

There are really only two published sources for the basic material of this
paper, namely, Whitehead’s original paper [11], and Munkres’ monograph
[8], and unfortunately neither deals with triangulations preserving projec-
tions onto a simplex. Consequently we expend some effort in setting out
those details which are not immediately accessible. Much the hardest part of
writing this paper lay in deciding what to include and what to omit. For
example, the PD Isotopy Extension Theorem is omitted since it is derivable
from the PL Isotopy Extension Theorem, as remarked in [3].

This work originated in the author’s 1972 University of Liverpool
Thesis. The author would like to thank Professor C. T. C. Wall for some
helpful conversations in the early stages of this work. Thanks also to the
referee for some constructive comments which have improved the style and
content of the paper. ‘

§1. Mappings of simplicial complexes into manifolds. We explain briefly
our usage concerning smooth manifolds, simplicial complexes and polyhedra.

With|regard to smooth manifolds, we generally follow Cerf [1], with the
difference | that our local models are slightly more complicated: whereas
Cerf’s local models are the spaces R"x (R, )", we allow extra factors of the
form R"—{R,)". Precisely, by a local model we shall mean a product of the
form C; x'...xC,, where each C; is one of R", (R,)" or R"—(R.y. As might
be expected, a smooth manifold is then a pair (X, 4) where X is a para-
compact Hausdorff space and A is a maximal collection of charts of the
form h: U — V with U open in X, V an open subset of a local model, such
that the domains of charts in A cover X, and such that any two charts are
C® compatible in the usual sense, namely that if h;: U; — ¥ are charts in 4,
i=1,2, then hyohi': hy (U nU,) = hy(U; nU,) is a C* diffeomorphism.
In particular, we take “smooth” to mean “C*® smooth”, lower classes of
smoothness being indicated by “C* smooth” for appropriate k. If Misa
smooth manifold and xeM, then it is easy to see that x has a neigh~
bourhood diffeomorphic to a local model by a diffeomorphism taking x to 0.

We denote by DIFF the category of smooth manifolds and C* smooth
maps.

If K is a finite simplicial complex, by its formal tangent space TK we

mean the subset Lljx! {x} x St(x, K) of |K| x|K]|, where |K| is the geometrical

real_isation of K, and St(x, K) is the closed star neighbourheod of x in |K|. If
M is a smooth manifold and f: |[K| - M is a simplex-wise C* map, we get
an induced continuous tangent map Tf: TK — TM. This is a coordi-
nate-free reformulation of the usual treatment [8), [11]. We denote by’

©
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C'(K, M) the set of all continuous maps K|~ M which are C! smooth on
each simplex of |K|. If feC'(K, M) and &> 0, let N,(f) be the subset of
C (K, M) consisting of all strong C! g-approximations to f in the sense of
Munkres ([8], p. 83). C*(K, M) will have the topology generated by all such
N,(f), and, without further mention, subsets of CY(K, M) will have the
subspace topology. Note that the tangent map T': CH(K, M)— C°(TK, TM)
is continuous when K is finite and C°(TK, TM) has the compact-open
topology. .

Still supposing K is finite, let T(K, M) be the set of C!-triangulations of
M by K. If T(K, M) is non-empty, then K is a combinatorial manifold with
a well defined boundary 8K. We make the convention that, for any subset
F(K, Myc CY(K, M), F(K,M)={feF(K,M): f(oK}= oM}. From
Munkres [8], we obtain

PropostrioN 1.1. If K is a finite simplicial complex and M a smooth
manifold then T(K, M) is open in C}(K, M).

It is ultimately more useful to consider .mappings of polyhedra into
manifolds. By a polyhedron (X, £), we mean a locally compact Hausdorff
space X, together with a maximal class £ of triangulations (K, h), where K is
a locally finite simplicial cnmplex and h: |[K| > X 'a homeomorphism, any
two elements of £ admitting an isomorphic simplicial subdivision. Let X
= (X, £2) be a compact polyhedron and M a smooth manifold. By a piece-
wise C! map f: X - M, we mean one for which f ohe C* (K, M), for some
admissible triangulation (K, hjef2. We denote by C*(X, M) the set of all
piecewise C' maps from X to M, topologised by the finest topology for
which all the maps h*: C'(K, M) > C*(X, M), f+>foh™?, are continuous
where (K, h) runs through Q. If M has boundary, we denote by C} (X, M)
the subset of C!(X, M) consisting of all maps which take X into éM, and
topologise it with the subspace topology. Also we write PD(X, M) for the
union of h*(T(K, M)) as (K, h) runs through Q. PD(X, M) is the set of
piecewise differentiable triangulations of M by X. From (1.1), we get

ProposirioN 1.2, Let X be a compact. polyhedron and M a smooth mani-
fold. Then PD(X, M) is open in C;(X, M).

We relativise this by considering mappings which preserve projection
onto a simplex. Fix (i) a smooth manifold M (ii) a compact polyhedron X
(i) a subpolyhedron, ¥, of 4™xX and (iv) a piecewise C' map a: Y
— A™ % M which commutes with projection onto 4™ Define C*(X, M, o, m)
to be the following set with its subspace topology ;

{feCt(d™x X, 4™ x M):

f extends o and commutes with projection onto _A"'}.

We write Ci(X, M, a, m) for the subset of C'(X, M, a, m) consisting of
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those maps which in addition preserve the total boundary over ¢, for each
ted™; ie. which map 8(4™x X)n {t} x X into d(4"x M) {t} x M.

THEOREM 1.3. With the above notation, if f € C*(X, M, «, m), there exists
a fundamental system of neighbourhoods (Uj)o<;<y of fin C* (X, M, a, m)
such that, for each i and each geU,, there exists a piecewise C' map F:
I'xd™x X —Ix 4™ x M commuting with projection onto I x A™ and such that (i)
Fo=f (i) Fy =g (i) F,eU, for all sel. Moreover, if f and g are in
C(%}X, M, o, m), then we can ensure that F,eU,C}(X, M, a, m) for all
sel.

Proof. Fix a smooth manifold N and a Riemannian metric on N
adapted to the boundary, so that each face of N is totally geodesic. If Lis a;
compact Hausdorff space and if f: L— N is continuous, we will describe a
fundamental system of neighbourhoods of f in C°(L, N) with the compact
open topology. TN will denote the tangent bundle of N, and TN the sub-
space of TN whose fibre over x is a copy of the standard model for the
corner at x. In Cerf’s treatment [1], TN is fibrewise convex since the stan-
dard corner models in [1] are convex. For us, TN is fibrewise starlike from
0. Chgose an open neighbourhood D of the zero section in TN which is
ﬁbrew1_se starlike from 0 and such that the exponential map defines a diffeo-
morphism Exp: D— N xN onto an open neighbourhood of the diagonal.
g:;rei f,:ﬁ(x)‘ = (nl(x), exp(x)), 1whcre 7 is the tangent bundle projection, and

e ‘usual’ exponential map.
e oy f}?us; ap. f 0<pu<1, define an open subset

W(f, ) ={geC°(L, N): V xeL, (f (%), g(x)eExp(D,)},

where, if “||v|] denotes the norm of a tangent vector v in the Riemannian

metric, D, = {veD: |jt|| < u}. It is easy to see that (W(f, M)o<p<y is a fun-

damental system of neighbourhoods of fin C%(L, N).

Next take a smooth manifold M with a complete Riemannian metric
adapted to the boundary and let 4™ x M have the product metric of the
standard Euclidean metric on 4™ with the above, Put N = T(4™ x M) and let
N havg a _cpmplete Riemannian metric adapted to its boundary in which
gemodesws in i.ibres over A™xM are linear, and which extends that on
A xM_. If 'K is a finite simplicial complex and iff:|K|—>d4™x-Mis C! on
eaflln simplex of K, and if 0<p<1, let W(f, i, K) be the opén subset
T (W:‘(Tf, 1) -of CY(K,A™x M), where we are putting L=TK, N
= T(4™x M), and where T: C'(K, —) - C°(TK, T(~))is the tangent r’nap

Let X be a compact polyhedron and feC!(X, A" x M). Let (K,, h,) :
be the collection of admissible triangulations of X su l‘;’ al:M
foh,eC'(K,, 4" x M). Define S o,

V(f, )= ];i__ﬂn;l’ h:(W(f h,, K,, A)) where I*(g) = goh-1, .
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It is easy to see that (V(f, M)o<i<1 is a fundamental system of neigh-
bourhoods of fin C(X, 4™ x M).
Finally, replace X by 4™x X, and define

U, )=V, )nC* (X, M, a, m).

Let ge U(f, A). For each xe4™ x X, there is a unique 0,€D N (T (4™ x M)y
such that Exp(v,) =(f(x), g(x)). Define F: Ixd"xX—>Ix4"xM by
F(s, x) = s, exp(sv,)), for sel. Each F, will be C! on each simplex of any
admissible triangulation of 4™ x X on which both f and g are simplexwise CL.
By choice of metrics, it is easy to see that each F, commutes with projection
onto 4™ and belongs to V(f, ). Moreover, if f and g are boundary preserv-
ing, then so is each F, since dM is totally geodesic. In addition, if xeY then
v, =0 since g(x) = f(x), hence each F,(x) = f(x), and each F,eU(f, 7). m

Note that for 0 < pu <A <1, we have V(f, y) = V(f, 4). Consequently
(v, 1/"))ez . isa countable fundamental system of neighbourhoods of f.

§2. Relativisation by means of space-valued functors. We relativise the
theory of §1 by introducing an indexing category ¥, and replacing M by a
functor #: é— DIFF, and X by a functor 4: ¢ — PL, where, PL denotes
the category of polyhedra and piecewise linear maps. A piecewise C! map
f: & — # is then a natural transformation of functors for which, at each
xeObj(€), f(x): & (x)— #(x) is piecewise C'. Similarly, f is called a PD
triangulation if each f (x) is a PD triangulation. CY(Z, #) (resp. PD(%, #A))
will denote the set of all piecewise C* maps (resp. PD triangulations) from x
to M. CL(Z, M) is the subset of [] C'(%(x), #(x)) consisting of all &-

: x€0bj(#)
‘tuples which commute with the structure maps. We give CY\(%, #A) the
subspace topology from the product topology, and give PD(Z, #) the sub-
space topology from C'(%, #). ‘

In practice, we shall resort to a very limited range of indexing categories,
all of them finite. For a positive integer n, 2" will denote the category whose
objects are the subsets of {1, ..., n}, with at most one morphism between
two objects, and Hom(x, y) # @ iff x>y. K, will denote the full sub-
category of 2"*! obtained by omitting the empty set. We take 2° to be the
trivial category with one object. The nerves of 2", K, are respectively the n-

,cube and the barycentric subdivision of the n-simplex.

DerinTioN. By a smooth manifold n-ad we mean a functor #: 2"
-+ DIFF such that

(i) if x > y and card(x) = card (y)+1, then #(x) is a compact smooth
submanifold of codimension 1 in . (y), with .4 (x) actually contained in the
boundary of #(y), and such that the structural map . (x)— . (y) is an
imbedding, and '


GUEST


44 ) F.E.A. Johnson

@) for all x,y, A(xUy)=.#(x)n.#(y), the intersection being
transverse. ‘

The restriction of an n-ad to K,_, is called its formal boundary. In
general, by a formal boundary of type (n—1) we mean a functor 5.#: K,_,
- DIFF such that, for some smooth manifold n-ad #, # _y =O0M.
Questions -about formal boundaries are reducible to questions about n-ads
thus; Jet 2 be the full subcategory of K, consisting of subsets containing i. 2}
is isomorphic to 2" by xi»x \{i}. Restriction of a formal boundary of type n
to 27, gives, with this re-indexing, a smooth n-ad. Hence a formal boundary
of type n can be regarded as a union of (n+1) n-ads, corresponding to the
values 1 <<i<<n+1.

One can mimic the above to give definitions of PL n-ads and PL formal
boundaries. An n-ad in either sense has a well defined total topological
boundary, which contains the formal boundary, in general properly. A formal
boundary consists of a number of n-ads, as described above, each of which
has its own boundary. Still writing subscript ‘@’ for sets of boundary-
gres,:rving mappings, we can deduce the following from (1.2), using con-
tinuity of restriction maps. :

ProrosirioN 2.1. Let # be either a smooth manifold n-ad or else a
smooth manifold formal boundary, and let % be either a PL n-ad or a PL
Jormal boundary, over the same diagram scheme as M. Then PD(Z, #A) is
open in C; Z, #).

Finally, we combine the above sort of relativisation with relativisation

- by means of taking products with simplices as in §1.If #': 4 - DIFF is a
functor and N is a smooth manifold, Nx.# will denote the functor
x> N x A (x). Likewise, if & is a functor : ¥ -PL and X is a poly-
hedron, X x ' will denote the functor xi—X x & (x). Let .# be either a
smooth n-ad or else a smooth formal boundary. Let % be either a PL n-ad
or a PL formal boundary, over the same diagram scheme as .#. Let % be a
subfunctor of A™xZ and let a: ¥ 5> A™x .4 be a piecewise C' natural
transformation commuting with projection onto A™. Define CH X, A, a,m)
(resp. PD(Z, A, 2, m) to be the subset of Cl(A™x, A" x 4f) (resp
PD(4™xZ, A" x #)) consisting of these elements which extend o;

and commute with projection onto 4. C}(Z, 4, a, m) will consist of those .

clements which, additionally, preserve boundaries in fibres over A™. With this

nOti.ltiOIl we have, remembering that our n-ads and formal boundaries are, by
choice, compact ’

THEOREM 2.2. If f € CH (X, M, a, m), there exists a Sundame
) %, A, o, m), ntal system o
ttexghb.ourhqods (IUA)AE,, of fin CH (X, M, a, m) such that, for each ge U, theriP
is a pzecew:lse C" map F IXA"XE > IxA™x 4 commuting with projection
onto IxA™ such that (i) Fo = f (ii) Fy =g and (i) F,eU, for all sel.
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Moreover, if f and g are in CL(Z, #,a, m) then we can ensure that
FeU,nCHZ, A, o, m) for all sel.

Proof. Suppose that .# is an n-ad. The same proof as (1.3) will give us
the result provided that we choose the Riemannian metric on .# (@) to have
the additional property that each #(x) is totally geodesic. Deformation
along geodesics then preserves the functorial subspaces.

If # is a formal boundary of type n, then its total space is a union of
(n+1) n-ads, as previously indicated, and we may prove the theorem one n-ad
at a time using the above. m

§3. Simplicial sets and a homotopy equivalence. If 2: € - PL, A: €
— DIFF are functors, we get a simplicial set PD(Z, .#) whose set of n-
simplices is the subset of PD(4"x %, 4" x .#) consisting of those elements
which commute with projection onto 4" face and degeneracy maps being
defined in the obvious way. Similarly, we have simplicial groups PL(Z) (resp.
DIFF (#)) whose n-simplices are PL (resp. DIFF) natural self-equivalences
of A"x & (resp. 4" x .#) commuting with projection onto 4”". Composition
defines a free right (resp. left) action of PL(%) (resp. DIFF(.#)) on
PD(%, #). If & and .# are n-ads or formal boundaries, then each of the
above complexes satisfies the Kan extension condition. In the case of
PD (%, ), this requires Whitehead’s theorem on extension of PD triangu-
lations from boundaries (see Munkres [8], §10). We leave the reader to fill in
the extra complication of requiring the extension to commute with projection
as an exercise using “openness of PD triangulations™.

Now let # be either a DIFF n-ad or a DIFF formal boundary, and let
& be either a PL n-ad or a PL formal boundary, though having the same
diagram scheme as .#. Suppose in addition that there exists a PD triangu-
lation a: & — . The existence of such an Z follows from Whitehead’s
original theorem thus; firstly suppose that .# is an n-ad. Although (D) is
given as a manifold with corners, it is well known that the total boundary of
#(®) admits a smoothing. For the details we refer the reader to Douady
[2]. Under any such smoothing, the formal boundary of .# consists of a
union of smooth closed submanifolds. A triangulation of the formal bound-
ary can then be extended to one of the whole boundary and thence to one of
# (§). Moreover, such a triangulation of the “smoothed” version of .# ()
triangulates equally well the unsmoothed version.: Hence the problem for
n-ads reduces to that for formal boundaries of type (n—1). But this is a union
of problems for (n— 1)-ads. Hence we proceed by induction from Whitehead’s
orginal theorem corresponding to the case n =0. :

We abbreviate PL(Z) to PL, PD(Z, #) to PD, and write PL(3) [m]
for the subgroup of PL [m] consisting of elements which extend the identity
on 94"x %. A PD triangulation a: & — # induces a simplicial map
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ty: PL—-PD by «,(f) =(1,,xa)o f for fePL{n]. We wish to show that
a, is a homotopy equivalence.

ProPOSITION 3.1. Let f: 4™ x & — 04™ x .# be a PD triangulation, com-
muting with projection onto 84™. Then every orbit of PL(0)[m] is dense in
PD(Z, A, B, m). : '

Proof. In the first case take .# to be an n-ad. Let ¢,y
ePD(Z, #, B, m). If g is a PL automorphism of 4™ x &, which we do not
assume commutes with projection onto 4™, define Y(g) by ¥(g)(t, x)
=(t, g, (¢, x)), where g =(g,, g;). We have

&9, %) = (9.t 0, &2(g1(t, %), g2(t, 1)),
E @), 0 =(t &t g2(t, %)),
e, %) = (t, y2(t, X))

Computing Jacobians, defined piecewise on simplices, we get

‘.
991 %299, 000, L
o ot ot ox ot ot
J(E-g) = L I =
CO ) w v ot | TP e |
ox Ot dx 0x Ox " ox
X
J(&-¥(g) =
0x 0x

Let U be a neighbourhood of y in PD(Z, .#, §, m). We must" find
acPL(9)[m] such that &-aeU. Let (V),y be a countable fundamental
system of neighbourhoods of y in PD{(4™ x &, 4™ x .#, B, 0) (see the remark
at the end of §1). By Whitehead’s. original theorem on uniqueness of PD
triangulations, for each r we can choose a PL automorphism g of 4™ x 2
such that £-g"e . To achieve this we can use the methods of Munkres ([8],
10.5). Consideration of the above expressions for ¢-¢’, &-y(g"), p and their
Jacobians shows that since the sequence (¢:g"),ey converges to y in
C A" X Z, 4™ x M, B, 0), so also does (¢-Y(g))ey. Now each &-y(g7)
belongs to Cj(%, #,f, m). Since PD(¥,.#,B,m) is open in
Ci(&, #, B, m), then, for all sufficiently large r, &Y (g is a homeomor-
phism, hence ¥ (g) is a PL automorphism. However each g" must be the
identity on 4™ x &, hence (g") is also the identity on 94™x 4 and when
¥(g") is a PL automorphism, it belongs to PL(3)[m]. Thus if we choose a
= y(g") for large enough r, we will ensure that £-acU. This completes the
proof in the case where .4 is an n-ad.

e © ‘
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If # is a formal boundary of type n—1, then we can find a smooth n-
ad .4 whose formal boundary is .#. In fact, by restricting our attention to
collar neighbourhoods of . in 4", we can assume that 4" is topologically a
product .4 xI. Since f: 04™ x % — 04™ x A is a PD triangulation commut-
ing with projection onto 94™, then by employing the usual method of exten-
ding triangulations from boundaries (Munkres [8], 10.6), we may find a PL
n-ad 2, with formal boundary & and total space combinatorially equivalent
to 4 xI, such that there exists a PD triangulation f: 94™xZ

"= 4™ x A" which extends f and commutes with projection onto 94™. The

set PD(Z, 4", B, m) is then well defined, being the set of all PD triangu-
lations 7: A™x % — 4™ x A" which extend § and commute with projection
onto 4™  Restriction to A™x%Z defines a continuous map
¢: PD(Z, &', B, m) - PD(%Z, #, B, m) and an easy argument using essen-
tially only the Kan condition for PD(Z, .#) shows that g is surjective. Let
PL(Z, 8)[m] denote the set of all PL automorphisms of 4™x 2% which
extend the identity on 4™ x % and commute with projection onto A™. There
is also a restriction map ¢: PL(Z, 8)[m] - PL(d)[m]. PL(Z, 0)[m] acts
freely on the right of PD(Z, 4, B, m) and the restriction maps give a
morphism of transformation groups thus;

PD(Z, &, B, m)x PL(Z, &)[m] - PD(Z, &, B, m)

exe ]

PD(Z, #, B, m)x PL(&)[m] ~ PD(Z, #, B, m)

Now let &, yePD(Z, .#, B, m) and let U be an open neighbourhood of
y in PD(Z, #, B, m). We seek an element ae PL(8)[m] such that £-aeU.
Choose £, 7 in PD(Z, 4, B, m) such that (&) =&, o(7) =y. Since ¢ is
continuous, ¢~ *(U) is an open neighbourhood of ¥ in PD(Z, .4, B, m).
Hence by the case already proved for n-ads, we may choose d€ PL(Z, 8)[m]
such that &-deg™*(U). Then ¢-aeU, so that the orbit of £ under PL(8)[m]
is dense in PD(Z, A, f, m). n

THEOREM 3.2. PD/PL = PD(Z, #)/PL(%) is contractible.

Proof. It is enough to show that =, (PD/PL) = 0 for all m. We begin
the proof by showing that ,, (PD/PL) = 0 for all m in the case where .# and
& are both O-ads.

Let aePD[0] be our distinguished triangulation, and let fePD[0].
Since we are supposing that .# and % are O-ads, we may apply Whitehead’s
originhl uniqueness theorem and conclude that there is a2 PD triapgulation -
F(f): I x4 — I x A commuting with projection onto I such that F(f), = f
and F(f), €a,(PL). Hence [f]=[«] in PD/PL, so that no(PD/PL) =0.

Suppose that m, (PD/PL) = 0 for r < m, and let xemn,, (PD/PL). We may
represent x as [f], for fePD[m] such that fIa mxgq 1S homotopically trivial
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in PD/PL. By induction on the faces of 04™, and using the facts that

7, (PD/PL) = 0 for r < m, and that 04™ has a product neighbourhood in 4™,

we may suppose that f, ., =1xa. To see this, add a collar I x 4™ onto

the boundary of 4™ so that {0} x 4™ is the new boundary, and {1} x 4™ is

the original boundary. Put V=(Ixd4™u 4™ and let V% = {0}x
a4m

x04" VI xS® UA™ <=V, where S® is the k-skeleton of 94™, so that
VD = {0} x 4™ U A™ and VU = V. Define g""V: VD& - VD x A
by setting g~ equal to 1 xa on {0} x d4™x 2 and equal to f on 4™ x &
Then ¢¢~? is a triangulation commuting with projection onto V. Moreover, the
composite of gt~ and the inclusion into V' x 4 is a PD immersion. Using
the fact that m,(PD/PL) = 0, we can extend ¢*~ % to a map g: VO xZ —
VO x # which is a triangulation commuting with projection omto V
and is a PD immersion into V x .. This is possible since the closure
V®—yr=1 is a union of cells of dimension (r+ 1) with intersections only in
the boundaries. The extension is then effected by a collection of null
homotopies. Eventually, since =, (PD/PL) is zero for r < m, we obtain a PD
triangulation t: V' x % —V x .# which commutes with projection onto V.
Identifying V with 4™ by squashing the collar into a product neighbourhood
of 0A™ we obtain an element tePD[m] which is 1 xa on 94™ x &, and, by
construction, represents the same element of =, (PD/PL) as [f].

Hence suppose that f restricts to 1 xa on 4™ x Z. By (2.1) and (2.2), we
can choose a neighbourhood U of f in C}(Z, #, 1xa, m) such that
U < PD(Z, #,1xa,m), and such that, for each geU, there exists a PD
isotopy G(f, g): IxA™XZ - I x 4™ x M with G(f, g9)o = f, G(/, 9), = g and
G(f, gyeU for all tel. By (3.1), we may choose hePL(d)[m] such that
(Lxo)oheU. Put F(f) = G(f,(1xa)oh). Then F(f) is a homotopy from

Lf] to [1 xe] in PD/PL. More accurately, the simplicial subdivision of I x 4™ .

“without extra vertices” plus the extension condition for PD gives, when

applied to F(f), a simplicial homotopy from [f] to [1xa] in PD/PL. The
details here are the same as in Lashof-Rothenberg ([7] pp. 363-364). Hence

n,,(PD/PL) =0 for all m in the case where & and .# are 0O-ads.

The remainder of the proof now goes by induction on the complexity of
the diagram scheme of 2 and .. Let P(n) and Q(n) be the statements

P(n): PD/PL is contractible if & and .# are r-ads and r < n.

Q(n): PD/PL is contractible if & and .# are formal boundaries of type
rand r<n.

Q(—1) is true since it is empty. Since P(0) is true, it suffices to prove the
two further steps :

0 PM&Q(n—1)=0(n) (i) Q(n)=>P(n+1).

Pm)&Q(n—1)=Q(n): Let ¥, .# be formal boundaries of type n and
let &: & — # be our distinguished PD triangulation. If f: A" x & — 4™ x M
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is an m-simplex of PD we wish to show that [f] is homotopic to [1x«] in
PD/PL. Define a sequence ' {rd>, 1 <r < n+1 as follows; 2 (1) is a 0-ad
with total space 2'(1). &' {r+1> is an r-ad with total space #(r+1) and
formal boundary of type (r—1) given thus; 6 <{r+1>: K, —PL,
b2 (b {r+1}). It may be more useful to remember that the union of the

vertex spaces of 64 <(r+1) is Z(r+1)n(U #()). Similarly we define
i=1

- (>, 1 <r < n+1. Restriction in the obvious manner gives PD triangu-
lations  aid: XY —» A Gy and  fE): A" XA - A" x M Dy, for
I<ign+l. ) :

Now, using hypothesis P(n), deform [f {1>] to [l xa] in PD(Z {1},
H1D)/PL(A 1)), This gives a deformation of Jiamxsreay 10 [1xa]. We
need to’ deform [ f {257 to [1 x«] compatibly with the deformation already
given on 4™ x 44 (2). This situation recurs. Typically we are in the position
of having deformed [f{id] to [1xa] for 1<i<r, compatibly on the
intersections of the domains of the [f¢id]. This gives a deformation of
f<r+1>|4'"xm N to [1xa]. To proceed, we wish to extend this defor-
mation to a ‘éeformation of [f<{r+1)] to [1xa]. We show how to solve
this problem.

Let N be a product neighbourhood of 62 (r+1) in & {r+1>. By hy-
pothesis P(n), we can choose a deformation off<r+1)mew<r+1>“lmm)) to
[1 xa]. This gives a deformation to [1xa] at each end of 4™ x N, but with
no deformation defined on 4™ x Int(N). Using hypothesis @(n—1), we can
extend this deformation to [1xa] over 4™ x N, giving a deformation of
[f¢+1)>] to [1xa], which is compatible with the one already defined
on A™x3% {r+1). Notice that the most complicated of the Z {r)’s
is ' {n+1), whose formal boundary is of type (n—1), all other boundaries
of the # {r)’s having lower type. Hence we can legitimately apply hypothesis
Q(n-1). :

When we have finally deformed [f{n+1)] to [1xa] in PD(Z'{(n+
+1%, M {n+13)/PL(4 {n+1}), then we have completed a deformation of
[f]1to [1xa] in PD(#, .4)/PL(%) = PD/PL. Hence PD/PL is contractible,
and P(m&Q(n—1)=(n). )

Q(n)=>P(n+1): Let &', .# be (n+1)-ads and let a: & —.# be our
distinguished triangulation. If f: 4" x % — A" x .# is an m-simplex of PD
= PD (¥, .#), we wish to deform [/] to [1xa] in PD/PL. Let N be a
product neighbourhood of 2X in §4'. Since P(0) is true, we may deform
A . to [1 xo] in PD/PL by considering Z —Int(N) as a O-ad. By
147 (= (N . .
hypothesis Q(n), we may choose a deformation of fI gy 0 [1xa] in
PD/PL. This gives a deformation to [1xa] at each end of 4™xN, but
no deformation over A™xInt(N).. By hypothesis Q(rn), we may extend
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the deformation over the whole of 4™ x N, thus giving a deformation of [f7]
to [1xa]. Hence PD/PL is contractible, completing the proof that
Q(n)=P(n+1), and hence also of Theorem (3.2). =

COROLLARY 3.3. Let A be either a DIFF n-ad or formal boundary, and let
a: & — M be a PD triangulation. Then a,: PL(%Z) - PD(Z, A) is a homo-
topy equivalence, where o, (f) = (1 x@)o f for f e PL(Z)[m].

Proof. Put PL = PL(%) and PD = PD(%, .#). By general simplicial
nonsense, the natural map PD — PD/PL is a Kan fibration, so that, since
PD/PL is contractible, the inclusion of the fibre over [a]e(PD/PL)[0] is a
homotopy equivalence. However, this inclusion is just a,: PL—PD. =

At this point it is as well to remind the reader that it is part of our
definition of n-ads and formal boundaries that all vertex spaces be compact.
Though this is not necessary, it is technically simple. Though the following
result is thus not the most general possible, it is enough for our purposes.

- CorROLLARY 3.4 (EXTENsION THEOREM). Let .# be either a (compact) DIFF
n-ad or (compact) DIFF formal boundary. Let % be either a PL n-ad or formal
boundary over the same diagram scheme as M, and suppose that there exists a
PD triangulation a: &' — A .

Then for each PD triangulation f: 84™ x & — d4™ x M which commutes
with projection onto 0A™, there exists a PD triangulation F: A™x %
~ A™ x H, commuting with projection onto A™such that f_lF|aamxw is a PL
automorphism of 0A™x %. Note that f 'IF“7 amxy automatically commutes
with projection onto 04™.

Proof. Put PL=PL(Z) and PD=PD(Z, #). Let f: ddA"x &
— 04™ x # be a PD triangulation commuting with projection onto 4™ By
taking a product neighbourhood of the boundary, we may represent 4™ as
4™ x [0, 1] ‘;J 4™. Consider a deformation of f into o, (PL). This gives a PD

4
triapgu_lation G: 04™ x[0, 11x & — 04™ x [0, 1] x .4 which commutes with
projection onto  94™x[0,1], and such that Gy=f and G,
=(1, mxa)r for some PL automorphism t of d4™"x%&. Define
a PD triangulation F as follows; F: (94™x[0, 1] u 4™) X & — (94" x
x[0,1] U 4™ x 4, oan
a4m

F(s,t, ) =G(s, t, x)(Axt™Y), (s,t, x)e04™x[0, 1] x &,
Fr,x)=(r,a(x), (r,x)ed"x2X.
F commutes -with projection onto (A4™x [0, 1] U 4™). Equating 4™ with
(847 [0, 1] U 4") gives the result. u o

§4. Triangulating smooth fibre bundles. Let % be either 2" or K,. By a
DIFF ¢-bundle we mean a triple (£, B, p) where &#: % — DIFF is a functor
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which is either a smooth manifold n-ad, if € = 2" or formal boundary, if ¥

= K,, where B is a smooth manifold, and p: & — B is a natural transform-
ation from & to the constant functor x++B, such that, for each xeObj(%),

p: #(x) — B is a smooth, locally trivial fibre bundle. Moreover, for this §, we
relax our convention that n-ads and formal boundaries must be compact. We
do not insist that each vertex space of & be compact, but only that each fibre
of p: &(x) - B be compact, for all xeObj(%). It is easy to see that the fibre
over each beB is then either a (compact) smooth manifold n-ad or formal
boundary, depending upon the category %.

If K is a compact polyhedron, then by a PL bundle with fibre K we
mean a triple n = (X, B, p) where X, B are polyhedra and p: X—>Bis a
locally trivial PL map with fibre homeomorphic to K such that, for some
admissible triangulation (L, h) of B, the coordinate transformations of h*(r)
over each simplex of Llie in the simplicial group PL(K). As in the smooth
case, if % = 2" or K,, then by a PL %-bundle we mean a triple (2, B, p)
where B is a polyhedron, % is either a PL n-ad or formal boundary, depend-
ing on %, and p: % — B is a natural transformation to the constant functor
B, such that, for each yeObj (%), p: &' (y) — B is a PL bundle with compact
fibre. ‘

We shall allow ourselves to confuse the total space, i.e. the union of the.
vertex spaces, of an n-ad or formal boundary with the notation for the
functor itself. We have already made this obfuscation in §3.

Let 2 be either a PL n-ad or formal boundary with total space K.
Suppose that p: X — B is a PL bundle with fibre K, and that the group of
coordinate -transformations reduces to PL(J¢). Then any such reduction
imposes on X the structure, &, of either a PL. n-ad or formal boundary,
having the same type as . 4 is determined thus; let 2¢": ¢ — PL. Ifoisa
simplex in some admissible triangulation of B, then, given a trivialisation
hy: o= A —p t(o), we get a functor p~'(s): ¥>PL by taking
P 0)y) = h,(ox A (y)). We then define Z:¥—PL by Z()
=J p~*(0)(y), where o runs through the simplices of some admissible tri-

angﬂulation of B. It is easy to see that this definition depends only on
the particular reduction to PL(#).

Before stating the next theorem, it will ease matters to introduce some
terminology. ‘

DEeFINITION. Let ¢ = (&, B, m) be a DIFF %-bundle, where 4 = 2" or K,
let «: L— B be a PD triangulation, and lei n =(&, L, p) be a PL %-bundle.
By a PD triangulation of ¢ by n over « we mean a PD triangulation
B: ¥ — & making the following commute

‘ x Y ]
I I
L B

z —


GUEST


52 F.E. A, Johnson

Suppose that n; = (4, L, p;) (i =0, 1) are PL bundles, and that we have PD
triangulations over «, h;: n; = &. We say that (1o, ho) and (yy, hy) are PD
isotopic iff there is a PD triangulation ¥: %'y x [0, 1] -~ & %[0, 1] such that

(&) (% Idio, 1) ¥ = (0 po) x Idpo 1y,

(d) if P(x, 1) =(¥(x), t), then ¥, = hy,

(c) hito¥,: ny—ny is a PL equivalence of. bundles.
¥ is then called an isotopy from (ng, ho) to. (1, hy).

More generally, suppose that L, = L is a subpolyhedron, and that, if £,
. =my, . ¥ is a PD isotopy from ({, ho) to ({y, h,). We say that (1o, ho) and

(U hﬁ are isotopic relative 'to W iff there is a PD isotopy ¥ from (7, ho) to
(11, hy) which extends .

Tueorem 4.1 (Uniqueness of PD triangulations). Ler % be either 2" or K,
and let & = (&, B, n) be' a DIFF %-bundle with compact fibre . Let (L, Ly)
be a simplicial pair, and let «: |L| - B be a PD triangulation. Suppose that, for
i‘= 0,1, by: n;— & is a PD triangulation over o, and that, if {; = My, Wisa
PD isotopy from (Lo, ho) to ({1, hy). Then (no, ho) and (n,, h,) are PDoisotopic
relative to . ‘

In particular, taking Lo = ©, (1o, ho) and (ny, hy) are PD isotopic.

Proof. Let P(k) be the statement of the theorem modified to read that
the isotopy ¥ can be extended over I U L,, where I® is the k-skeleton of L.
Let ¢ (k) denote the statement of the theorem in the case where L = B = 4%,
Lo = 4% and « is the identity. It will suffice to prove the following three
statements. .

() P(0) is true.

(i) Each Q(k) is true.

(U1} P(k—1)&Q (k)= P(k).

We shall confuse L with its geometrical realisation.

() P(0) is true: For each O-simplex x of L, x¢ Ly, put #, = n~! {oe(x)).
{70 and hy each give a PD triangulation of #,, and we must produce PD
1sotopies between the two. That we can so do is the content of the original
Whitehead Theorem on the uniqueness of PD triangulations ([11], [8],
.10.5), once it is realised that PD triangulations which are close enough are
1sotopic, by Theorem (2.2) and the fact that PD triangulations are open in
ttfrlgespace of piecewise C! maps, by Proposition (2.1). Hence P(0) is

() Each Q(k) is true: Here L= 4% L, =24* and we must extend a
PD isotopy given over 24* to one over the whale of 4*. Since 4* is contract~
ible, by taking a DIFF trividlisation of ¢ and PL trivialisations of n,, 1,, we
may without loss of generality assume that & is the product bundle (4* x #
— 4% and that 5, = 5, = 7 is the product bundle {(4¥x 4 - 49, that ho, h
are distinct PD triangulations of ¢ by 5 over the identity and tha’t, 1i,f

4
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{=(04*xH — 04",  is a PD isotopy from (¢,hy) to ((. hy) thus;
Y1 04 x A X1 — 04 x A xI. Define §: (4*x AT U dd* x Iy x . H — (4 x
x U dd xI)x F by

V(x, 0, y) = ho(x, y)
F(x, 1, y) = hy(x, y),
B(x, s, p) =9(x, y,9),

xedt, yed,

(x, 5, Yedd* xI x X .

Then ¢ is a PD triangulation, commuting with projection onto (4* x
x 01 4% x I) = (4* x I). Since (4**', 24**1) is PL equivalent to (4*xI,
d(4*x 1)), we may apply the Extension Theorem (3.4) to conclude that,
possibly after a PL bundle isomorphism of (3(4*xI)x 4 — d(4*x D)),
extends to a PD triangulation ¥: 4*xIx # — 4% x I x & .commuting with
projection onto 4*xI. However, a bundle isomorphism of (#(4*x1I)x
x A — d{4*¥x 1)) in effect changes the chosen trivialisations of #,, #,. Thus
choosing the correct trivialisations at the outset, we can ensure that ¥ is a
true extension of Y, ¥ now provides the desired PD isotopy from (1, i) to
(ny, hy) relative to ¢ after the following sequence of aliases; A*x[Ix
XA A A xT =X, xI, where n;=(Z;, 4% p) and A*xIxF =& x1.
Thus each Q(k) is true. .

(III) P(k—1)& Q(k)=> P(k): Originally, we are given an isotopy ¥ over
Ly. By P(k—1) we can extend this to an isotopy, still denoted by ¥, over
Iy Ly. Let (6;);.4 be the set of k-simplices of L. For each o,, each
proper face of ¢, lies in I*" D U L,. For each A such that o, ¢ Ly, we are
given two PL bundles over o, and PD triangulations of &, by each of
them, related by the PD isotopy ¥ defined over Jo,. Appealing to Q(k), we
may extend each of these isotopies over the whole of ¢;. Glueing together
the extended isotopies gives the required extension of ¥ over I¥ U Ly. Thus
P(k—1)& Q (k)= P(k). m ‘

Notice that (4.1) has the following easy but important consequence.

COROLLARY 4.2. Let 6 be either 2" or K,, let & be a trivial DIFE %-
bundle ¢ = (B x F, B, ng) with compact fibre 7, and let n be a PL ¥-bundle
admitting a PD triangulation of &, h: n —»&. Then n is PL trivial.

Proof. By (4.1), any two PL bundles which PD triangulate the same
DIFF bundle are PL  equivalent. However, choosing PD' triangulations
L-B and &' — #, we see that the trivial bundle (L x ", L, n;) PD tri-
angulates the trivial DIFF %-bundle ¢. Hence 5 is PL trivial. =

To establish the existence of PD triangulations we need a criterion for
recognising polyhedra. We use the following folk theorem (c. . [10], Exercise
2.2.8, p. 42). Since the proof does not appear explicitly in the literature, we
provide one.


GUEST


54 F.E. A. Johnson

LemMA 4.3. Suppose given a pushout diagram of locally compact spaces
and proper maps thus

A—1 4B
lw ; iw
C —> D

in which A, B, C are polyhedra, i, ¢ are PL maps, and i is injective. Then D
admits a polyhedral structure for which j and  are PL. Moreover, j is
injective.

Proof. Since we are dealing with a pushout, it suffices only to show
that 4, B, C admit triangulations with respect to which i and ¢ are simul-
taneously simplicial. First triangulate 4, C by 4,, C, $o that ¢: 4,
— Cy is simplicial. Then triangulate 4, B by A4;, B, so that 4, subdivides 4,
and i: A; — B, is simplicial. Then ¢: A; — C, is linear on each simplex so
we may choose (e.g. by [4], p. 16, Lemma 1.9) triangulations A,, C, of 4, C
such that ¢: A, — C, is simplicial, and 4, subdivides A4,. Finally, since i is
injective, we can subdivide B; to B, so that i: A, — B, is simplicial ([4],
p. 10, Lemma 1.3). Then i: 4, —B; and ¢: A, - C, are simultaneously
simplicial, m

Finally, we have the main theorem of this §.

THEOREM 4.4 (Existence of PD triangulations). Let % be either 2" or K,
let {=(&, B, n) be a DIFF €-bundle with compact fibre &, and let o: |L|
— B be a PD triangulation. Suppose also given the following; Lq is a subcom-
plex of L; &o = &iaqrgns hot & —&o is a PD triangulation over o, where { is
some PL @-bundle over Ly. Then there exists a PL €-bundle , a PD rri-
angulation h: n— ¢ over a, and a PL ¥-bundle isomorphism ¢: { — Mo SHch
that hy = h,. In particular, taking Ly = ©, £ admits a PD triangulation h:
— & over o.

Proof. Again we shall confuse L with its geometrical realisation. Let
R(k) denote the statement of the theorem modified to read that the bundle #

and PD triangulation h can be constructed over I™ U L, where I® is the k-
skeleton of L.

R(0) is true: Let f: 4" — # be a PD triangulation of the fibre F of &,
We may extend { over I'” U L, by taking, for each vertex v of L such that
v¢ Lo, a copy 7, of A" and a PD triangulation h,: %', — F o> Where F,,
is the fibre of { over a(v)eB. This proves R(0).

R(k—1)= R(k): Let (0;);c4 be the set of k-simplices of L such that
0, ¢ Lo. Then I® UL, is a pushout thus;

Ilaalc i——>Hcr,1

AeA Aed
r(l:~l1(; J J;:w .
L ULy ———— E)UL():‘—I_]_I’Q @i, o)
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Moreover, j is injective. Now since L triangulates the finite dimensional

‘manifold B, L is locally finite, so that ¢: I ée, = ¥ YU L, is a proper

Aed
PL map. Consider the PL bundle #n which, by induction, is already con-
structed over [*"P U L,. We claim that ¢*(n) is PL trivial. For, by induc-
tion, # PD triangulates j*(o* (é)| L(")uLo)’ hence ¢*(n) PD triangulates

() (% (&), by ) = * (* (2 () 0,1, .))- Which bundle is DIFF trivial, since
each o, is contractible. Thus ¢*(y) is PL trivial by Corollary (4.2). Thus
there is a PL bundle isomorphism i,: ¢*(n) = (1] 6;) x o such that the PD

triangulation already given on ¢*() extends “over i, to a PD bundle
triangulation & of (] ] o,)x & by ([] ;) x #, by (34). Take Z to be defined
A

4

by the pushout diagram

D e xx

i
1% Jw*

‘ Jx
Y —— Z = lim (i, ¢,

where X (resp. Y) is the total space of @*(r) (resp. n). Z is a polyhedron by
(4.3). Moreover, there is a natural map of pushouts Hu: lim(i,, @,)
— lim (i, @) which is clearly a PL %-bundle with fibre . (Z, I¥ U Ly, b) is
the sought after exténsion of n over I¥ U L,. To define the extension of h to
a PD triangulation over IM U L,, put & =a* (‘é)lL(“)ULO’ and decompose the
total space Z' of ¢ as a pushout

x— ([ o)x#
l A
Y — 5 7
where Y’ (resp. X') is the total space of j*(&) (resp. (j@)*(£"). There is a PD

triangulation Z -1 Z' obtained by taking y = h (already constructed, by
induction) on Y, and y = A (¢onstructed above) on ([_[ o)x Ay is the
i

required extension of h over I¥ U Lo. Hence R(k—1)=R(k). u

The final triangulation theorem we prove is a relative version of the
above. Given a compact DIFF n-ad #, its formal boundary .# has a class
of prodﬁct neighbourhoods, the prismatic neighbourhoods of [1]. If N is a
closed prismatic neighbourhood of 6.4, let DIFFy(.#) be the simplicial
group whose k-simplices are n-ad diffeomorphisms f: A% x M — A% x =/”
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which commute with projection on A* and satisly f(4* x N) = A* x N. Observe
that DIFFy () is a simplicial subgroup of DIFF(.#). We first prove

ProrosiTioN 4.5. The inclusion DIFFy(.#) < DIFF (.%) Is a homotopy
equivalence,

Proof. Dealing with O-simplices first, suppose given a diffeomorphism
f: M~ A, then f(N) is a prismatic neighbourhood of f(5.#) = §.4. By
the uniqueness theorem for prismatic neighbourhoods, we can ambient
isotop f(N) onto N by an isotopy h: .4 — .# such that hg=1 and
hy (f(N)) = N. Then f is isotopic to h; o feDIFFy(.#). For the main step,
take a k-simplex f: 4*x .4 — A*x .4 such that f(04*x N) = d4*x N. We
wish to show that f is isotopic relative to 04*xN to an element of
DIFFEy(.#)[k] via an isotopy which at each stage commutes with projection
on 4% Consider f(4*xN). It is certainly a prismatic ncighbourhood of
f(d¥x6.M) = 4*x5.#. Since f commutes with projection onto 4* then, for
each xed* f({x}xN) is a prismatic neighbourhood of {x)x45.#. Equi~
yalently, puiting N, =7, ({x} x N) where r, is projection onto .4, (N,)_ ,
is a continuous family of prismatic neighbourhoods of §.#, with N. = N xfc;'r
all xeod*. ”

Now prismatic neighbourhoods of §.# are associated with Ricmannian
metrics on .# which are adapted to 8.4. We refer to [1] (3.3.2, Theoréme 3
p. 2§2 or its analogue in our setting). Thus we rnuy'réplace (Ny). . by cl
continuous family of Riemannian metrics (R,)_ , such that e?xgil’ R, is
adapted to 8.4 and gives rise to the prismatic ngiéhbourhood Ny, and ‘;xuch
th.at R, Fakes the constant value R for xed4* However, the sxr;ace 0} all
Rlemanrl.lan'metrics adapted to 4.4 is a convex set in the space of all
§ymmetnc bilinear forms on T.# (see [6], Chapter 1V, for the case where .4
is u.nbounded), and hence is contractible. Thus. the fémily (R,) is hon';o—
topic relative to d4* to the constant R. At the level of p;igffi‘;tic neigh-
!)ourhoods,lthis gives an isotopy of J(4*XN) to A*x N by means of an
isotopy of 1mbeddings into 4*x .#, the isotopy being constant on LM" xN
and commuting with projection onto 4% at each stage. By the Isoto
Extension Theorem, we may extend this to an isotopy (hl)‘: A% 1 kx P{);
su'ch thaF ho =1, hy (f(4*xN)) = 4*x N, and such that cach h cm;\mutcs
Wlth]prmectxon onto 4% (k) now provides the necessary dcforme'uion of 1hL~
:1::11; g:ry‘f .EDIFFW/) [kl to | h; ofeDYFEy(.#)[k), rclative to ils

Finally we get our main theorem

THEOREM 4.6 (Relative Triangulability of smooth fibre -bundles). Let ¢
= (&, B, p) be DIFF 2"-bundle with compact fibre F. Let Eo = (08 B )‘ be
the DIFF K,_;-bundle determined by thejbrm.ui boundary of 3}’ and ;er :xp !LIV
— B be a PD triangulation. If n, is a PL K,_i-bundle over L ’f'or which ;here
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exists a PD triangulation Bo: no— &, over «, then there exists a PL
-bundle n = (A, |L|, p) with formal boundary én = (8%, |L|, p), and a PD
triangulation B: n— & over a whose restriction to &y is PL -equivalent to
(10, Bo)-

Proof. It suffices to triangulate the bundle a* (£) relative to the triangu-
lation already given on «*(&o). Let N be a prismatic neighbourhood of 6.7.
N is a product neighbouthood. Specifically, there is a homeomorphism
8.# %[0, 1] N which is the identity on % x {0} and is a smooth immer-
sion on each face of 8:# x [0, 1], recalling that faces of 6% x [0, 1] are of the
form F x [0, 1], where F is a face of 6.7 . Considering o*(§) = (¥, |LI, =) as
a bundle with structure group DIFF (), we see from (4.5) that «*(£) admits
a reduction to DIFF(#). This means that we can decompose #°, the total
space of a*(), as ¥ = ¥'ouU ¥y, where m: ¥, —|L| is a DIFF(N) bundle,
m: ¥’y —|L| is a DIFF(#—N) bundle, and =m: ¥,n7", —|L] is a
DIFF(5.%) bundle, corresponding to the 3. x {1} end of N, and isomorphic
{o a* (&o). Put m, = m|¥";. We are given a triangulation of the 6% x {0} end of
my: ¥ o —|L|. By (4.4), we can construct a triangulation of my: ¥7y —|L|.
We now have a triangulation at each end of my: ¥7p —|L|. Since the fibre
of my is 8% x [0, 1], then by uniqueness of PD triangulations up to isotopy,
ie. (4.1), we can extend the triangulations given at each end of my to a
triangulation of the whole of mg: #7'o —|L]. Glueing the triangulations of
m: ¥ L} for i =0, 1, together along # oM 7¥7y, we achieve the.desired
result. m

In proving (4.4) and (4.6) we have attained the stated goals of this paper.
However, in conclusion we relate our results to those of Lashof and
Rothenberg [7]. The main result of [7] is the construction of a map of
classifying spaces BO, —BPL,, even though there is no corresponding homo-
morphism of simplicial groups O, — PL,. This is the famous “functorial
triangulation of vector bundles” theorem. The analogous result in our
context is the construction of a map «,: BDIFF(#) — BPL(:4), where o A&
— % is a PD triangulation of n-ads or formal boundarics. The details are
very similar to the Lashof-Rothenberg construction, Put PL = PL(A),
DIFF = DIFF(#), and PD = PD(#, #). Let (PL—~EPL —BPL) be the
universal principal simplicial bundle with structure group PL acting freely on
the right of EPL. If PL acts diagonally on PD x EPL, then since PD/PL is
contractible, so also is (PD x EPL)/PL. DIFF acts freely on the left of (PD x
% EPL)/PL via the trivial action on EPL and composition on PD. We get a
universal principal simplicial DIFF bundle (DIFF — EDIFF — BDIFF)
where EDIFF = (PD x EPL)/PL and BDIFF = DIFF\(PD x EPL)/PL. The
projection PD x EPL — EPL induces a simplicial fibre bundle (DIFF\PD —
- BDIFF — BPL).
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Algebraic theories and varieties
of functor algebras

by
Jan Reiterman (Prague)

Abstract. We prove that the concept of a variety of functor algebras [13] is equivalent to
that of a Linton’s equational theory [9] satisfying a certain condition called locally small
basedness. We show that this condition ensures reasonable properties of algebras.

0. Introduction. We shall compare two categorical approaches to al-
gebras in the category of sets: Linton’s equational theories [9] and author’s
varieties of functor algebras [13] restricted to the case that the base category

. is the category of sets. Both approaches are more general than triples in sets

including also algebraic theories not admiting free algebras, such as that of
complete Boolean algebras and that of complete lattices. ‘

Linton’s equational theories provide a natural and efficient generaliz-
ation of Lawvere’s theories [8]. The price which equational theories pay for
their generality and elegance is that they include also theories which are not
of nature. For instance, for the theory generated by a proper class of
operations subject to no equations, no non-trivial algebra can be described
by a set of data and the number of all algebras exceeds the cardinality of the
universum we work in.

On the other hand, dealing with functor algebras does not lead to any
non-Jegitimacy of that kind. Categories of functor algebras have been in-
vestigated in a lot of papers (see [11] for references) as a categorical |
generalization of categories of algebras of a given type. Theydisadvantage of
the approach is that selection of varieties ([13], see section g in a category of
functor algebras is complicated.

The basic concept of our paper is as follows: an equational theory is
locally sinall based if it is generated by a subcategory which is locally small.
The main result states that a concrete category can be represented as o
variety of functor algebras iff it can be represented as the category of
algebras for a locally small based equational theory, see 3.3 and 3.9. This
solves the problem of the relation between the two approaches. Further, this
gives a simple characterization of varieties of functor algebras. Finally, this
provides a natural restrictive condition on an equational theory to ensure
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