The degree sets of connected infinite graphs

by

Frank Harary (Ann Arbor, Mich.) and Egbert Harzheim (Düsseldorf)

Abstract. The degree set of a (finite or infinite) graph is the set of degrees of its vertices. We determine precisely which sets of cardinals constitute the degree set of some connected graph.

Throughout this note the concept of graph is used in the sense [2] of a graph without loops and multiple edges, except that also infinite graphs are studied here. The degree of a vertex \(v \) of a graph \(G \) is the cardinality of the set of all vertices of \(G \) adjacent to \(v \). It is denoted by \(\text{deg}(v) \), and the set of all cardinals \(\text{deg}(v) \), where \(v \) is a vertex of \(G \) is called the degree set of \(G \). The degree sequence of a denumerable graph \(G \) is the nondecreasing sequence of the cardinals \(\text{deg}(v) \), such degree sequences were studied in [1].

A basic question immediately suggests itself: Given any set \(D \) of cardinals, which graphs (or which graphs of a special class of graphs) have \(D \) as degree set? Several results in the case of finite degree sets of finite numbers were obtained by Kapoor, Polimeni, and Wall [4] and Sipka [5].

It is trivial that every set of cardinals is the degree set of a graph. For if \(D = \{ a_i \mid i \in I \} \) is a set of cardinals, then the union of complete graphs \(G_i \), \(i \in I \), having pairwise disjoint vertex sets, and where \(G_i \) has \(a_i + 1 \) vertices has \(D \) as its degree set. Our object is to determine precisely which sets \(D \) of cardinal numbers are the degree sets of connected graphs.

In the following, small Greek letters denote ordinals, \(\alpha \) the least infinite ordinal and \(n \) a nonnegative integer. We shall always make free use of the Axiom of Choice. So if \(D \) is any set of cardinal numbers we can represent it in the form,

(1) \[D = \{ a_\mu \mid \mu < \alpha \} \text{ for an ordinal } \alpha \text{, where } \mu < \nu < \alpha \text{ implies } a_\mu < a_\nu. \]

Using transfinite induction, (1) easily yields

(2) \[a_\nu \geq |\nu| \text{ for } \nu < \alpha. \]

We partition \(D \) into the subsets \(D_f \) and \(D_\infty \), where \(D_f \) contains all finite
cardinals of \(D \) and \(D_1 \) the infinite ones. The case where \(D_1 \) is empty is very easy. It is settled by the following immediate observation.

Lemma 1. If \(a_\alpha, 0 < \alpha < \omega \), are positive integers (not necessarily pairwise different) with \(a_\alpha > 1 \) for \(\alpha > 1 \), then there exists a rooted tree such that the root vertex \(r \) has degree \(a_\alpha \), all vertices of the 1-sphere of \(r \) have degree \(a_\alpha \), all of the 2-sphere of \(r \) have degree \(a_\alpha \), and so on.

Corollary. Every set \(D \) of positive integers is the degree set of some tree.

If \(D \) is finite this follows from the lemma because we can repeat an element \(> 1 \) of \(D \) infinitely often in \(a_\alpha \), \(0 < \alpha < \omega \). Of course, for finite \(D \), one can derive more special results (see [4]).

It remains to discuss the situation \(D_1 \neq \emptyset \). We split it into two cases, namely where \(D_1 \) (and hence \(D \)) has a greatest element or not.

Lemma 2. Let \(D \) be a set of cardinals which has a greatest infinite cardinal. Then there exists a connected graph \(G \) having \(D \) as degree set.

Proof. Let \(D \) be represented as in (1) and \(D_1 = \{a_\alpha \mid \beta \leq \alpha < \omega \} \). Then there exists an ordinal \(\alpha \) such that \(\alpha + 1 = \alpha \). For every \(\alpha \) satisfying \(\beta \leq \alpha < \omega \) let \(G_\alpha \) be a complete graph whose vertex set \(V_\alpha \) has cardinality \(\alpha \). Further we can assume that the sets \(V_\alpha \), \(\beta \leq \alpha < \omega \), are pairwise disjoint. We choose a fixed element \(u_\alpha \in V_\alpha \). Then we construct the union of the graphs \(G_\alpha \), \(\beta \leq \alpha < \omega \), and add to it an edge linking \(u_\alpha \) for every \(\beta \) with \(\beta \leq \alpha < \omega \). The resulting graph \(G^* \) is connected and still has \(D_1 \) as its degree set since \(a_1 + 1 \) = \(a_1 \) for infinite cardinals \(a_1 \) and since the degree of \(u_\alpha \) in \(G^* \) is increased at most by \(|u_\alpha| < a_\alpha \), (see (3)). Then it is easy, using the method of Lemma 1, to implant \(G^* \) in a suitable tree for \(D_1 \) by replacing a branch of this tree in such a way that the resulting graph \(G \) is connected and has \(D_1 \) as its degree set.

For the discussion of the remaining case where \(D_1 \) is non-empty but has no greatest element we have to recall some basic concepts and theorems of set theory which were stated by Hausdorff (2, p. 130–131).

According to von Neumann’s approach, an ordinal \(\alpha \) is the set of all ordinals \(\beta \) satisfying \(\beta < \alpha \). A subset \(S \) of an ordinal \(\alpha \) is called cofinal in \(\alpha \) if for every \(\beta \in \alpha \) there exists an element \(s \in S \) such that \(s \leq \beta \). If \(\alpha \) is a given limit ordinal, then among the (well-ordered) sets \(S \subset \alpha \), which are cofinal in \(\alpha \), there is one whose corresponding ordinal type is minimal. This latter is denoted by \(\text{cf}(\alpha) \). A limit ordinal \(\alpha \) is called regular if \(\text{cf}(\alpha) = \alpha \), otherwise \(\alpha \) is singular. A regular limit ordinal must be an initial ordinal \(\alpha_\alpha \). An initial number \(\alpha_\alpha \), with \(\alpha > 0 \) and \(\alpha_\alpha < \alpha \), is singular if \(\alpha_\alpha \) and \(\alpha \) are a limited number. All \(\alpha_\alpha \) where \(\alpha \) is a limit number are regular. If \(\alpha > 0 \) is a limit number then \(\alpha_\alpha \) is regular only if \(\alpha_\alpha = \alpha \).

Lemma 3. Let \(D = \{a_\alpha \mid \alpha < \omega \} \) be an infinite set of cardinals where \(a_\alpha < \alpha_\alpha \), for \(\mu < \nu < \lambda \), and \(D \) has at least one infinite cardinal, but no greatest cardinal, so that \(\lambda \) is a limit ordinal. We put \(\omega_\lambda = \text{cf}(\lambda) \). If there exists an ordinal \(\tau < \lambda \) such that \(a_\tau \geq \omega \), then there exists a connected graph having \(D \) as its degree set.

Proof. The set \(D_1 \) of infinite cardinals of \(D \) is representable as \(D_1 = \{a_\alpha \mid \beta \leq \alpha < \lambda \} \) for a suitable \(\beta \). Let \(B = \{\nu \mid \beta \leq \nu < \lambda \} \). Then there exists a subset \(C \subseteq B \) of order-type \(\omega_\lambda \), which is cofinal in \(\lambda \). For every \(\nu \in B \) let \(G_\nu \) be a complete graph of order \(a_\nu \). We can assume that the corresponding vertex sets \(V_\nu, \nu \in B \), are pairwise disjoint. For every \(\nu \in B \) we choose an element \(u_\nu \in V_\nu \). We write \(U \) for the union of the graphs \(G_\nu, \nu \in B \). Now let \(\tau \) be an ordinal satisfying our assumption. Without loss of generality we can assume that \(\tau \in C \). Then for every \(\nu \in C \) which is different from \(\tau \) we join \(u_\nu \) with \(u_\tau \). So there are \(|C| = \omega_\lambda \), additional edges having \(u_\tau \) as vertex. But this does not increase the degree \(a_\tau \), \(\tau < \omega_\lambda \), of \(u_\tau \) in \(U \).

Further, if \(\mu \in B \setminus C \), we join \(u_\mu \) with \(u_\tau \), where \(\tau \) is the first ordinal in \(C \) which satisfies \(\mu < \tau \). For every \(\nu \in C \) this introduces at most \(|\nu| < a_\nu \) new edges having \(u_\tau \) as vertex. But this does not increase the degree \(a_\nu \) of \(u_\nu \). Also the degrees of the vertices \(u_\nu \), \(\nu \in B \setminus C \), are not changed by one additional edge. So we have constructed a connected graph having \(D_1 \) as degree set. As in Lemma 2 we can now accomplish the proof for the entire degree set \(D \).

Now we can give a complete characterization of those sets of cardinals which are the degree set of a connected graph as our main result.

Theorem 1. Let \(D = \{a_\alpha \mid \alpha < \lambda \} \) be a set of cardinals, where \(\mu < \nu < \lambda \) implies \(a_\mu < a_\nu \). If \(\lambda \) is a regular initial number \(\alpha_\alpha \), with \(\alpha > 0 \) and \(\alpha_\alpha < \alpha \), for all \(\nu < \lambda \) then \(D \) is not the degree set of a connected graph. In all other cases \(D \) is the degree set of a connected graph.

Proof. According to the three lemmas, we can restrict ourselves to the discussion of the following case:

\(\lambda \) is a limit ordinal and \(D \) contains infinite cardinals.

Now, if \(\lambda \) is singular, then because of (2) there exists an ordinal \(\tau < \lambda \) such that \(a_\tau \geq \omega_\lambda \), \(\omega_\lambda = \text{cf}(\lambda) \). Hence by Lemma 3 there exists a connected graph with degree set \(D \).

Suppose now that \(\lambda \) is regular. Then \(\lambda \) is a regular initial number \(\alpha_\alpha \). If \(\alpha = 0 \) there is an ordinal \(\tau < \lambda = \omega_\lambda \) such that \(a_\tau \geq \omega_\lambda \) and again Lemma 3 can be applied.

So finally we have to handle the case where \(\lambda \) is a regular initial ordinal \(\alpha_\alpha \), with \(\alpha > 0 \) and \(\alpha_\alpha < \alpha \), for all \(\nu < \lambda \).

Assume that \(G \) is a connected graph having \(D \) as degree set. Its vertex set \(V \) clearly satisfies \(|V| \geq \omega_\lambda \). We well-order \(V \) and consider the subset \(V^* \) of the first \(\lambda \) vertices in this well-ordering:

\[V^* = \{v_\alpha \mid \alpha < \lambda \} \]

Since \(G \) is connected, for every \(\tau \) with \(0 < \tau < \lambda \) there is a path joining \(v_\alpha \) with \(v_\tau \). The lengths of these paths are natural numbers, and since \(\lambda \) is
regular it follows from the Pigeonhole Principle that there are \(N_n \) pairwise different vertices \(w_i, \tau < \lambda \), such that the corresponding paths \(P_i \), joining \(w_i \) with \(v_0 \), all have equal length, say \(n \).

Let \(w_i = b_i^0, b_i^1, \ldots, b_i^n = v_0 \) be the vertices of \(P_i \), listed in their path order. Then the set \(\{ b_i^{n-1} : \tau < \lambda \} \) has cardinality less than \(N_n \) because \(\deg(v_0) < N_n \). Again according to the Pigeonhole Principle there exists a subset \(S_1 \subset \lambda \) with \(|S_1| = N_n \) such that all \(b_i^{n-1}, \tau \in S_1 \), are equal. Repeating this process we obtain a set \(S_2 \subset \lambda \) with \(|S_2| = N_n \) such that all \(b_i^{n-2}, \tau \in S_2 \), are equal, and after \(n-1 \) steps we arrive at a set \(S_{n-1} \subset \lambda \) of cardinality \(N_n \) such that all \(b_i^0, \tau \in S_{n-1} \), are equal, say \(z \). But since \(z \) is adjacent to all \(w_i, \tau \in S_{n-1} \), this contradicts the inequality \(\deg(z) < N_n \).

Using the concept of weakly inaccessible numbers we can reformulate our theorem as follows:

Theorem 2. Let \(D = \{ a_\nu : \mu < \lambda \} \) be a set of cardinals, where \(\mu < \nu < \lambda \) implies \(a_\mu < a_\nu \), then there exists a connected graph having \(D \) as degree set in all cases with the exception of the following: \(\lambda \) is a weakly inaccessible ordinal \(a_\nu \) and \(a_\mu < N_n \) for all \(\mu < \lambda \).

Proof. According to Theorem 1 in the exceptional case \(\lambda \) is a regular initial ordinal \(a_\mu \) with \(\mu > 0 \) and \(a_\mu < N_n \), for all \(\nu < \lambda \). Then \(\alpha \) must be a limit ordinal number. Otherwise there would exist an ordinal \(\beta \) such that \(\alpha = \beta + 1 \), and we would have \(a_\nu \leq N_n \) for \(\nu < \lambda \), which gives \(|D| < N_n + + |\beta| < N_n \) contradicting \(|D| = |\lambda| = N_n \). Now a regular initial ordinal \(a_\mu \) with a limit number \(\alpha \) as index is weakly inaccessible. Hence our statement follows from Theorem 1.

References

LIVRES PUBLIÉS PAR L’INSTITUT MATHEMATIQUE DE L’ACADÉMIE POLONAISE DES SCIENCES

H. Steinhaus, Selected papers (in press).

MONOGRAFIE MATEMATYCZNE

58. C. Bessaga and A. Pelczyński, Selected topics in infinite-dimensional topology, 1975, p. 553.
60. R. Engelking, General topology, 1977, p. 626.

DISSERTATIONES MATHEMATICAE

CCV. A. Skowroński, Projective abelian Hopf algebras, over a field, 1983, p. 46.

BANACH CENTER PUBLICATIONS

Sprzedaż numerów bieżących i archiwalnych w Pęczku Ośrodka Rozpoznawania Wydawnictw Naukowych PAN, ORPAN, Pałac Kultury i Nauki, 00-901 Warszawa.