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On a construction of perfectly normal spaces
and its applications to dimension theory

by

G. Gruenhage (Auburn, Ala) and E. Pol* (Warszawa)

Abstract. We present a method of construction of perfectly normal spaces by a modification of
topology of metrizable spaces.’ We apply this method to obtain some examples in the dimension
theory of perfectly normal spaces. ’

1. Introduction. Let (X, g) be a metrizable space, and let a be an ordinal

. number. Suppose we have a family {X,: B < «} of closed subsets of X such that

1) =X, cX,c..X;c...cX;
@ Xg=cl () X,) for every limit ordinal 8 < a; and
y<B

G) X=X,

Define a finer topology 7 on X by taking the family
{UnX,: U is open in (X, g) and f < a}

as a base for . In [13], R. Pol proved that if & = , and each X, is separable,
then (X, 1) is perfectly normal and collectionwise normal, but need not be
subparacompact. In this paper, we give a relativély easy proof that (X, 7) is
perfectly normal and collectionwise normal in the general case. We then apply
this result to obtain some examples in dimension theory. In particular, we
obtain perfectly normal spaces which are locally weakly infinite dimensional
(resp., countable dimensional or O-countable dimensional) but not weakly
infinite dimensional (resp., countable dimensional or O-countable dimen-
sional)(!). We also give an example of a perfectly normal, locally second

countable space X with loc dimX =0 which is not strongly countable

* This paper was written while the second of the authors was visiting Auburn University.
(*) See Section 3 tur the definitions of these notions.
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dimensional. In these constructions we use the methods developed in [8], [9]
and [10]. .
Our terminology follows [2], {3], and [5]

2. In this section, we prove that the space (X, t) defined in the introduction
is perfectly normal and collectionwise normal.

In our proof, the function »: X —a by %(x) = min {f: xe X, will ‘be
useful. Note that each point xe X has a local base in (X, 1) consisting of sets of
the form U n X, ,, where U is an open set in (X, g) containing x.

Proof that (X, t)is perfectly normal Let {#,},., be a development
for (X, g) such that for each new, %,., is a star-refinement of ¥,, and each
element of %,,, meets only finitely many members of #,.

Suppose H < X is closed in (X, t). For each Ge%,, let «(G)=
sup{f<a: GNX,nH=0}. If G Xyq N H# O, note that the cofinality
of «(G), denoted cf(x(G)), is countable (since X, = {J Xj if cf(y) > ). In this

. <

B<y
case, let {a,,(G)}neo be an increasing sequence of ordinals converging to a(G).
On the other hand, if G X, N H =0, let a,(G) =a(G) for each mew.

Define %y m ={G—X, ): Ge¥,}. Let U, = U %,m- We wish to show
that

N ek Un,w

n,mew

H= (N U,n=
nmeo

~

Let xeH, and fix n, mew. There exists Ge¥%, with xeG. Since
CnX,o"nH=0, x¢X, @ Thus xeG-X, G<U,, and so
Hce (§ Upw Now let xe ) cLU,,, and suppose x¢H. Then there

nmew n,meo
exists a set’ ¥ open in (X, ) containing x such that VnX,,nH=0.
Choose new such that st(st(x, ¥,), ¥,) <V, and choose Ge%,,, con-
taining x. :
Let Gy, Gy,...,Gy be the elements of %, which meet G. For each i <k
we have G; N X, N H = @, and 50 a(Gy) > x(x). If «(G;) Z %(x), there exists
m;ew such that a, (G) > x%(x), and so X, N(G,— X,lm(G‘,) =Q. If «(G)
= %(x), then a,,,(Gi) =a(G;) =x(x) for all mew. In either case, then, there
exists mew such that X, m(G Xam,tG) =0. Hence if m
> max {m;: i < k}, we have GO Xy N Uy = (. Then x¢cl U,,, contra-
diction. Thus xe H, and the proof is finished.

Proof that (X,7) is collectionwise normal Let {%,},., be as
above, and let 5 be a discrete collection of closed sets in (X, 7). For each
Ge%,, let

7(G) =sup{f <a: (c,G)n X p Mmeets at most one element of #}.

If (cl, G) N X5, meets more than one element of 3#, then cf (7(G)) = w, and
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we choose an increasing sequence |7,,(G);} e, of ordinals converging to y(G).
Otherwise let y,,(G) = y(G) for each mew.

Let ¥ 'm={GN'X, : Ge%,}. Then ¥, is locally finite, and the
closure of each member of 7" »m Meets at most one element of . Also, if
xe X, there exists new and xeGe¥, such that (cl, G) ~ X,,,, meets at most
one element of . Hence y(G) = »(x), and so there exists mew with y,,(G)
=2 x(x). Thus |) ¥, . covers X.

n,mew
Let {¥"ym: n,mew} ={W,: hew}. For xe He #', let n, be the least
such that xe W,.

integer such that er“llf ne Choose Wee#',
Let W(x) = -c],{U W': WeW,, (cl, W’)nH @, and k < n,). Let
Ug= U W(x). It is routine to verify that {Uy: Heo#) is a dlsjoint

xeH
collection of open sets with H « Uy for each He »#. Thus (X, 1) is collec-
tionwise normal.

3. Applications to dimension theory. By the dimension we understand
the covering dimension dim. A Tychonoff space X is said to be

a) countable-dimensional (cd.) iff X = () X, where dim X, < co,
i=1 :

b) O-countable-dimensional (0-c.d.) iff X = {J X;, where dim X; <0,

i=1
¢) strongly countable-dimensional (s.c.d) if X = (J F; where F; is closed
i=1
in X and dimF; < o0.

We say that a family {(4;, B)}/=, of pairs of disjoint closed subsets of a
space X is essential if whenever L; is a partition between 4; and B; in X,
then ﬂ L; # @. A space X is said to be strongly infinite dzmenszonal (sid.)iff .

i=1
there exists an essential family {(4;, B)}%; in X; X is weakly infinite-
dimensional (w.i.d.) if it is not strongly infinite-dimensional. Note that every
hereditarily normal c.d. space is w.i.d. (see [1; Ch. 10, § 5, Th. 21]). We say
that a space X is locally w.id. (resp., c.d, 0-c.d., s.c.d.) if each point xe X has
a closed neighbourhood which is w.id. (resp, cd. 0-cd, sc.d).

We consider an ordinal to be the set of its predecessors, and cardinals to
be initial ordinals of a given cardinality. If A is a cardinal, then let D(1) and 1
denote the spaces of all ordinals less than A with the discrete topology and
the order topology, respectively. A set S < 4 is stationary if S meets every
closed unbounded subset of A. The space D(4)* is called the Baire space of
weight A and denoted by B(4).

Now suppose that 4 is a regular cardinal(X, g) is a metrizable space of
weight A and {X,: B < A} is a family of subsets of X satisfying conditions
(1)43) such that
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4 w(X,, 0l Xp) < A

Then the new topology t determined by this faniily described in the
Introduction has the following property

for every f < 4.

(5) for each set A X the set x(cl,4\cLA) is not stationary in A.

To show this, it suffices to replace w, by A in the proof of Lemma 2 of [14].
As shown in [11; Example] if % is a regular cardinal, and ¢ is the usual
topology of the Baire space B(4), then family

Q) B B<d}

of subsets of B(J) satisfies conditions (1)-(3). In the sequel we will denote by
B(4) the set B(1) with the topology © determined by the family (6). As shown
in Section 2, the space B(4) is perfectly normal and collectionwise normal.
For any set S = 1 we put B(S) = x"*(S), where %: B(4)~ 1 is defined as in

Section 2, ie. x(x)=min{f: xeB(f)}. We put

B,=B@\' U B(f) -for a<A.
B<a

Lemma 1. Let A be a regular cardinal and M be a metrizable separable
space. If U is an open subspace of the space B(1)x M, then there exists a
nonstationary set K < A such-that the set U\(B(K)x M) is open in the
subspace (B(A)\B(K))x M is the space B(J)x M.

Proof. Let {U;}i<, be a countable base of the space M. For each ie N
let ¥; be the maximal open subset of the space B(4) satisfying ¥, x U; < U. By

(5), there exists a nonstationary set K; < such that the set ¥;\ B(K,) is open

in the subspace B(A)\B(K;) of the Baire space B(l). The set K = ] K;
satisfies ‘the required conditions. =

Lemma 2. Let B be a perfectly normal space and X be a subspace of the
Cartesian product Bx1® of B and the Hilbert cube I° such that every open
subset of Bx I which contains X contains a set {x,} xI® for some x,&B.
Then X is strongly infinite-dimensional.

Proof. Let {(4;, B)}/~, be an essential family in I°. The sets B x A; and
Bx B; are disjoint closed subsets of a perfectly normal space B x I, hence
there exist open subsets U; and ¥, of Bx I®, containing Bx A; and Bx B,
respectively such that clU;nclV, =@. We shall show that the family
{clU;n X, cl ¥, X)}j= is essential in X. Suppose that for i = 1, 2,..., there
exists a partition- L; between the sets clU;~X and ¢l ¥~ X in X such that

D: L, = . Then by Lemma 1.2.9 of [3], there exists a partition I; between
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the sets BxA; and BxB; in BxI® such that LnX < L;. We have
ﬁ I;n X = @, hence the set U'=(BxI°)\ [} L; is an open subset of Bx I?
i=1 i=1

i=
that contains X. Take xo,eB such that {x} xI® < U. Then for each i
=1,2,... the set Ij = I;n({xo} xI®) is a partition between {x,} X 4; and

. EA
{xo)xB; in the space {xo}xI® such that () Ij=@, which is a
i=1

contradiction. ‘

ExampLE 1. There exists a subspace Y of the Cartesian product
B(c*)yx I®, where c* is the first cardinal after the continuum ¢ such that

(a) every open subset of B(c*)xI® that contains Y contains a set
{xo} x I for some x,&B and *

(b) for each o < c¢* the subspace (B,x I“) Y has dimension zero.

We apply the construction given in [97]: let {S,: « < ¢} be a.decompo-
sition of ¢* into ¢ disjoint stationary sets and let I® = {x,: « < c}; then we
put

Y= L() (B(S2) x {x,})-
It was shown in [9] that the set Y with the subspace topology ¢’ of
B(c*)x1® is a strongly metrizable space such that for every open subset
V of B(c*)xI® that contains Y there exists xo€B(c*) such that {x,}xI®
c V (thus (Y, ¢) is strongly infinite-dimensional by Lemma 2), but each
separable subspace of (Y, ¢) is zero-dimensional. '

We will show that the same set Y with the subspace topology of
B(c™)x I satisfies the condition (a); the condition (b} is obviously satisfied.
Let U be an open subspace of B(c*)xI® containing Y. By Lemma 1 there
exists a nonstationary subset K of ¢t such that the set U\(B(K)xI®) is
open in the subspace (B(c*)\B(K))xI® of the Cartesian product B(c*)x I°
of the Baire space B(c*) and the Hilbert cube. Let U’ be an open subset of
B(c*)xI° such that U'\(B(K)xI®)=U\(B(K)xI®). For each « <c the
set U, = {yeB(c*): (¥, x,)eU'} is an open subspace of B(c*) containing
B(S,\K). Now, the intersection () U, contains a set B(S) for some station-

a<ec
ary set S; for the proof see [7; Corollary 3.5] and [13; Section 2.2 and 3.5],
compare also [10; Lemma 13]. Thus S\K # @ and for x,eB(S\K) we
have {x,} xJ® = U, which finishes the proof.

ExampLe 2. There exist perfectly normal spaces X,, X, and X, such
that -
" ‘a) X, is locally w.id., but is not wid,

b) X, is locally c.d., but is not cd,

¢) X, is locally 0-cd, but is not O-c.d.

Let Y be a space from Example 1. By Lemma 2, Y is strongly infinite-
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dimensional, hence is not c.d. and is not 0-c.d. Let ag = min {$: Y N (B(f)x
xI®) ig strongly infinite-dimensional}. We have cf(xo) > w, because, by a
theorem of Lev3enko (see [1; Ch. 10, § 5, Theorem 21]), a perfectly normal space
which is the union of countably many w.i.d. subspaces is w.i.d. Thus, the space
Xo=Yn(B(ag)xI?) is locally wid, but is not wid. Similarly, if
we take «, =min{f: YN (B(F)xI®) is not cd.} and a, =min{f: ¥n
N(B(B)xI®) is not O-cd.}, then the spaces X, = Y n(B(e,) xI°) and
X, = Y n(B(xz) x1°) have the required properties.

In a similar way, we can construct a perfectly normal locally s.c.d. space,
which is not s.cd., but we have a stronger example:

ExampLE 3. There exists a perfectly normal, locally second-countable
space X with locdim X = 0 which is not strongly countable dimensional,
There exists a compact metrizable countable-dimensional space Z which
is the union of a family {I'},y of disjoint subsets homeomorphic with i-
dimensional Euclidean cubes and of a subset P =Z\ | I' homeomorphic

i=1
. with the space of irrationals, and such that

(7) each open subset of Z contains infinitely many of the cubes If

(see [1;Ch. 10,§ 3] or [4;Rerr_1ark 14)).Foreachi=1,2,...andm =0, 1,...,i
let Ry be the set of points in I' exactly m of whose coordinates are rational ; we
n i .
have I' = (J Rl" and dimR}* =0 (see [2; Ex. 7.2.11]). Let us split w,; into
m=0

countably many disjoint stationary sets S;,.i=1,2,... and let §; = O ST,
0

. s . i . m=
where SI* are also disjoint and stationary sets for m=0, 1,...,i. Let

X =

=
C~

i

[B(S")x(R"U PY] < B(w,)xZ
Im=0
be the subspace of the Cartesian product of the space B(w,) and Z. Then the

space X is perfectly normal (see [2; Problem 4.5.16]). For each ¢ < w,, the
subspace

K3 i
(BOYXZ)nX = -U1 Uou (B, x(RI'UP): a <& and aeSP)
=1m=

is a second-countable and zero-dimensional (as the union of countably many

closed zero-dimensional sets of the form B, x(R™U P)) open subset of X.
Thus, the space X is locally second-countable and zero-dimensional.
We shall prove now that the space X is not strongly countable-

dimensional. Let Y = B(w,) x P be the subspace of X and let Y = B(w)x P
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be a metrizable space which is the Cartesian product of the Baire space
B(w,) and the space P. We will show that

(8) If Fy, F,,... is a sequence of closed subsets of ¥ such that Y = U F,
i=1

then there exist an open subset U of the space 1’ apd a nonstationary
set K < @, such that U\(B(K)x P) = F;  for some ipeN.

Indeed, let F, be the closure of the set F, in the space Y'. Since the space
Y’ is completely metrizable, there exists a set U oper in Y’ such that U F,
for some ioe N. By Lemma 1, there exists a nonstationary set K < o, such
that F; \F;, = B(K)x P. Then

U\(B(K)x P) = F,o\(B(K) x P)c F; \(F;\F;o) = Fi.
To show that X is not strongly countable-dimensional suppose on the

contrary that X = U F;, where F; are closed in X and dim F; < co. Then Y
i=1

= L/J (F;~ Y) and thus by (8) there exists an open subset U of the space Y’
i=1

and a nonstationary set K < , such that U\(B(K)x P) = F;, for' some
ipe N. Let us take an open subset ¥ of the space B(w,) and an open subset
W of P such that (V\B(K))x W = U\(B(K) x P) < F,,. Since the set P is
dense in Z, then there exists a non-void set W’ open in Z which is contained
in cl,W. We have

X [(V\BK)x W] = cly[(V\B(K)) x W] = Fy,.

By the properties of the space Z there elxist i; <i, <...such that W' = I*
for each keN. Then X n[(V\B(K))xI*] < F;, for each ke N. We shall
show that for every ke N

dim (X ~ [(V\BK) xI']) > i,

which contradicts the assumption that F;  is finite dimensional.
The set V contains an open subset B'(w,) of B(w,) of the form

B'(w,) = {x = (&) eBlwy): &= for i=1,2,..., no}

for some ngeN and ay, az,...,a,,oeD(wo. i

Let ot = Max [y, Gz,..., 0, and denote L= 1€ <y E<ay). Let
h: B'(w,)— B(w;) be a homeomorphism defined by the formula h((&4)
= (&), whete & = &y, for keN. For an arbitrary set §  w; \L we have
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.‘B‘(S)r\ B wlj = h~ 1 (B(S)). Thus we have

Xn[(V\B(K))xI"‘] =N U B(S3) x RE, ]m[B (cul)\B(K))xI"‘]

= L_j [(B(S)\K\ L) B'(wy)) x REY]

i

= goh L(B(ST\K\L)x R

i
5 U B xRy
where the sets S, -S"‘\K\L for m=0,1,.
subsets of .

Let X, = U B(S,,) x R}
which completes the proof. :
" By a theorem of Dowker (see [8; Theorem 11.17]), for any hereditarily
normal space X with locdim X = 0 there exists a hereditarily normal space

X* obtained by adding a point to a space X such that dim X* = locdim X.
Thus, we obtain

ExampLE 4. There exists a hereditarily normal Lindeldf space X* with
" dimX* =0 containing a perfectly normal and locally second-countable
subspace X which is not strongly countable-dimensional,

Remark 1. It is a question whether there is an analogue of the
theorem of Dowker for countable-dimensional, 0-c.d. or sc.d. spaces. In
particular, we do not know whether it is possible to add a point to the space
X, (or X;) from Example 3 in such a way that the obtained space is

., i, are digjoint stationary

%> as was shown in [11] we have dim X > iy,

bereditarily normal and countable-dimensional (0-countable-dimensional). It -

is easy to see that we can obtain a hereditarily normal w.id. space X3}
= X, u {p} containing X,. However, there exists a much better example
showing that weakly infinite-dimensionality is not monotone: R. Pol [15]
constructed a metrizable separable w.i.d. space containing a subspace which
is not wi.d. (this subspace is not, however, open).

Let us note that every closed subspace of a normal w.id. (s.c.d) space is
w.id. (s.cd) and every closed subspace of a hereditarily normal countable-
dimensional (0-c.d.) space is c.d. (0-c.d.). We do not know the answer to the
question whether every closed subspace of a normal c.d. (0-c.d) space is c.d.
(0-c.d). However, one can give an example of a Tychonoff space of dimen-

sion zero, containing a functionally closed subspace which is not wi.d. (resp. -

cd, 0-cd, scd) — see [5]).

Remark 2. Under the assumption: of the continuum hypothesis there
exists a perfectly normal, locally compact, locally countable, hereditarily
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separable and first countable space X which is strongly infinite-dimensional
(hence, is not c.d)(?). The one point compactification X* of the space X is
the example of a compact, hereditarily normal and hereditarily separable
space of dimension zero, containing a perfectly normal subspace X which is
not w.id. (hence is not c.d.).

Let us take the Hilbert cube I° with the usual topology ¢ and let 7 be a
finer perfectly normal topology in I obtained by method described in [6;
§11. We will show that (I 1) is strongly infinite-dimensional. Let

(4, By)}i=1 be an essential family in (I, ) and let U; and V, be open
subsets of (I, g) containing 4, and B; respectively such that clU; ncl ¥, = Q.
We will show that the family {(cl,(Uy), cl, (W)} » is essential in (I°, 7). Let L,
be a partition in (I, t) between the sets cl Uyand el ¥ for i =2, 3,... Then
there are closed subsets C; and D; of (1%, r) such thdt c,Ui=C, e Ve Dy,

C;uD;=1° and C;nD; =L, Therefore the set L; —cl Cincl, Di is a

partition between the sets 4; and B; in (I%, g) for each i = 2, 3,... and hence

dim((l} L) > 0. Since the topology © has the property that |cl, A\cl. 4| <

for any A = X, we have |ﬂ L\ ﬂ L) < and thus ﬂ L; # Q.

Note that the above proof shows that if (X, g) is a metrlzable separable.
strongly infinite-dimensional space, then Kunen’s. modification (X, ) of this
space is strongly infinite-dimensional.

Remark 3. Let (X, 7) be the modification of a metrizable space (X, o)
described in the Introduction, with a a cardinal. Then, under some additional

_assumptions about the cardinal a and on the dimension of subspaces of

(X, o) of weight less than o, the dimensional properties of (X, t) are closely
related to the dimensional properties of the space (X, Q)
Namely, we have the following:

ProrosiTioN. Let Y be a subset of X. Then
a) if o =w,, then

dim(Y, 7|¥) < Ind(Y, 1|¥) < Ind(Y, g|Y)+1 = dim(Y, oY) +1

and if dim(Y, @) =0, then dim(Y, 7) =
b) if every subspace of (Y, ¢) of wezqht <a ha.s dimension not greater than
m, then
dim(Y, 7) >

¢) if every subspace of (Y, @) of weight o is weakly infi mte-dzmenszonal, then f
Y, g) is strongly mﬁmte-d:menswnal then so is (Y, 1:)

dim(Y, g)—m—1,

(¥ This remark was also made by van Douwen.
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Squares of Q sets
by

William G. Fleissner* (Pittsburgh, Pa))

Abstract. A Q set is an uncountable separable metric space in which every subset is a Gy
We show the following statement is consistent with ZFC: There is a Q set of cardinality w, but
no square of a space of cardinality w, is a Q set.

A Q set is an uncountable separable metric space in which every subset
is a G,. The existence of Q sets is consistent with and independent of ZFC.
The existence of Q sets is equivalent to several propositions of set theory and
topology and is central in a web of interesting implications — see [T], [P],
[F]. One concept investigated recently is that of a strong Q set, defined to be
a Q set all of whose finite powers are Q sets. The main results are:

If X is a strong Q set, then the Pixley-Roy space built from X is a
normal nonmetrizable Moore space [PT].

Conversely, if X is a separable metric space whose Pixley—Roy space is a
normal nonmetrizable Moore space, then X is a strong Q set [K].

If there is a Q 'set,» then there is a strong Q set of cardinality w,, [P].

We complement this last result with )

THEOREM. It is consistent, relative to ZFC, that there be a Q set of
cardinality w,, but no square of a space of cardinality w, is a Q set.

We sketch the proof of the theorem below. We start with a model, M, of
GCH. We define a notion of forcing P which adds a set Y of w, Cohen reals
and makes Y into a Q set in the manner of [FM]. Let Z = {z;: § < w,} be
a set of reals of cardinality w,. We will 'show that 4 = {(z;, zp): f < p*
< w,} is not a Gy in ZxZ. Let % = {U,: kew} be a family of open sets
containing 4. Using counting arguments (Lemma 3), we find a large subset H
of w, such that z,;, fe H, are independent over % (mutually Cohen generic
over %, in some sense). Choose , §* € H. There must be kew and reP such

* Partially supported by NSF grant MCS79-01848.
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