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Indecomposable continua and the fixed
point property II

by

Tadeusz Maékowiak * (Saskatoon, Sas.)

Abstract. It is proved that if X is a hereditarily unicoherent Hausdorff continuum and if
F: X > X is a continuum-valued upper semi-continuous mapping, then there is an indecom-
posable continuum Q < X such that Q < F ()N

1. Introduction. The main purpose of this paper is to prove a theorem
which shows that for every hereditarily unicoherent Hausdorff continuum X
and for every continuum-valued upper semi-continuous mapping F from X into
itself there is an indecomposable continuum Q = X such that @ = F(Q). This
theorem is a generalization of the main result of [5] to the nonmetric case and it
implies the fixed point theorems contained in [4] and [6].

The theory of irreducible continua used in the proofs of mentioned theorem
is investigated here in more general setting and in a such way that it also gives a
theory of Whyburn’s cycle which are here indecomposable in some sense. This
general approach, also by results of [1] and [8], shows that the fixed point
theorems are strongly connected with indecomposable continua.

2. Notations and lemmas. Let X be an arbitrary Hausdorff and let U be a
fixed family of subcontinua of X which satisfies the following conditions:
() XeU and {{x}: xeX}<=U,
(i) if A and B belong to U and AnB# @, then AUBeU,
(iii) if A and B belong to U and B\A =M N where M and N are
separated, then {Aw M, Ay N}eU,
(iv) if A and B belong to U and B\A is connected, then cl(B\4)e U,
(v) if # = U, then N {4: AePlelU,
.(vi)if #<U and 2 is directed by the inclusion <, then
c(U{A: Ae?heU. ‘
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If Ae U, then sometimes we say A is a U—continuuln. It follows from (v) that
for every two disjoint U-subcontinua 4 and B of X there is a unique minimal U-
continuum C which intersects both 4 and B. Every such C is called U-
irreducible between A and B; we denote it by AB. In particular, ab denotes a
unique continuum U-irreducible between points @ and b. One can easily
check.

(2.1)  AB is U-irreducible between every point of ABnA and every point of
AB N B.

(22 IfDeU, AnD#®#BnD, then AB L.D

(23) If X =uab, beC < U, then X\C is connected and cl(X\C)eU.
The set of all points of a U-continuum K which can be joined with a set

A = K by a proper subcontinuum L of K such that A = Le U is called a U-

composant of A in K and we will denote it by C(4, K). We say a continuum

CeU is U-indecomposable if C can not be decomposed into two proper U-

subcontinua. Put

I(a, b) = (cl(ab\C): beC'=ab# C and CeU}.
It follows from (v) and (2.3)
(2.4) acl(a, by)eU and Ia,b)<ab.
Moreover, i
(2.5) ab = C(b, ab) L I(a, b).

Indeed, let € ={ceU: beC < ab # C}. Then ab = C ucl(ab\C), for Ce¥.
Therefore, :

ab={J{C: Ce¥}u{cl(ab\C): Ce¥} =
We have (compare [2], p. 210-211).
(2.6)  I(a, b) is a boundary set in ab if and only if I(a, b)) C(b, ab) = Q.

C(b, ab)uI(a, b).

In fact, suppose I(a, b)n C(a, ab) # Q. Then there is Ce U such that
beCcab##C and Cnl(a, b)+#Q; thus ab=CuUI(a, b) and since C is a
proper subset of ab we conclude 1(a, b) is not a boundary set, a contradiction.
Conversely, suppose the interior of I(a, b) is nonempty in ab. Then, by (2.3), D
=cl{ab\I(a, b))eU and D is a proper subset of ab containing b. Hence
D<=C(b,ab). But DnI(a, b)# @, because ab=DUlI(a,b). Therefore,
I(a, by C(b, ab) # @, a contradiction.

(27) If I(a, b) is not a boundary sel in ab, then it is a U—indecomposable
continuum which has at least two U-composants.

Indeed, it follows from (2.3) that if D = cl (ab\I(a, b)) thenbeDeUand Disa-
proper subset of ab. Suppose I(a, b)) = AU B where A and B are proper U-
subcontinua of I(a, b) and aeB. Then ab=DUAUB. If BN D % @, then ab
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=DuUB, thus I(a,b)<=cl(ab\D) =B, a contradiction. If BnD= Q,
then AnD#@., Moreover, beAuDeU and AuD#ab, thus
I(a, b) = cl(ab\(D v A)) = B, a contradiction.

(28) - If DeU and C({a, ab)nbD = @, then aD = ab UbD.
Moreover, if D = {d}, then C(b, abyubd = C(d, ad) and I(a, d) < I(a, b).

In fact, since ab L bD is continuum intersecting {a} and D which belongs to
U, we infer aD = abu bD by (2.2). Then aD = (ab m aD)u (bD naD). This
equality and the connectedness of aD imply that there is a. point
ze(@bnaDyn(bDnaD). Then zeab\C(a, ab) because zebD and
C(a, abynbD = Q. Therefore az =ab. Since {a,z} < aD, we conclude,
az < aD;thus ab < aD. Conscquently a, b} = aD which implies ab U bD < aD.
Therefore aD = abw bD. If D = {d}, then equalities C(a, ab) N bd = @ and ad
= abu bd imply that bd is a proper subcontinuum of ad containing d and
belonging to U;'thus bd = C(d, ad). If xeC(b, ab), then xb = ab\{a}. We
conclude that xb U bd is a proper U-subcontinuum of ad containing d, because
xb U bd = ad\ {a}. Therefore xeC(d, ad) because xb L bde U. Consequently
C(b, abyu bd = D(d, ab). Moreover, if beCeU and ab% C <ab, then
I(a, d) = cl(ad\(C U bd)) = cl(ab\ C). This implies I (a; d) = I(a, b) which com-
pletes the proof of (2.8).
(29 If{K,L}cU, KcLnI(b,a)#I(b,a) and K C(a, ab)
L C(a, ab) = Q.

Suppose LNC s @ for some CeU such that aeC < ab # C. Then
ab = Cu L. Therefore I(b, a) =cl(ab\C) = L, a contradiction.

10) If I, d<Ib,a)#I(c,d) and I(c,d)nC(a, ab) =@, then
cdCla, ab) = Q.

Since I(c, d) < I(b, a) # I(c, d), there is a continnum DeU such that
deD < cd# D and cl(cd\D)nI(b, a) # I(b, a). Therefore, if E = cl(cd\D),
then EnC(a, ab)=Q by (29). We conclude c¢d = EuD. Suppose that
D~ C(a, ab) # @ and let Fe U be a proper subcontinuum of ab containing a
and intersecting D. If FAE % @, then ab < F U E, thus

=Q, then

1(b, @) = cl(@b\F)~ I(b, @) = En I(b, a) # (b, ),

a contradiction. Thus let F n E = (), We have ab = F U D U E. The continuum
(FuD)~ab is a proper U-subcontinuum of ab containing a (otherwise, if
(Fu D) ab = ab, then I(c, d) < En(Fu D);in particular ce D, a contradic-
tion). Thus I(b, a) = cl(ab\(FUD)) < E. But EnI(b, a)+# I(b,a) by the
construction, a contradiction.

(211)  If C is a U-composant of a in KeU and it is not closed in K, then it

is dense in K.
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In fact, the collection of all proper U-subcontinua of K containing ais
“directed by the inclusion ; thus cl Ce U. According to the assumptions ¢l C # C;
thereby C =K.

(2.12) Different U-composants in a U-indecomposable subcontinuum K of X are ’

disjoint and if K # L< K and LeU, then L is a boundary set in K.

Remark. Let X be a metric continuum. Applying Kuratowski’s proof
used in [3] one can prove that point a€ X is a point of U-irreducibility of X if
and only if there do not exist two proper U-subcontinua P and R of X such that
X = PUR and ae P R. As a corollary we can obtain many theorems known
for ordinaty irreducible metric continua ; for example: X is U-indecomposable if
and only if every proper U-subcontinuum of X is a boundary set; if X is U~
indecomposable, then the collection of U-composants of K is an uncountable
collection members of which are pairwise disjoint and boundary in X ; every U-
indecomposable continuum is U-irreducible between some points etc.

" Acorollary of it is also the fact that the closure of the union of an increasing
family of subcontinua ab, is always U-irreducible between a and some point b.
This last theorem we will prove in the nonmetric case (compare [4], Lemma (i)).

(2.13) Let a point ae X be fixed and # be a nested family of U-irreducible
subcontinua ab of X. If & =cl(|) {ab: abe P}), then there is a point p and a U-
indecomposable subcontinuum. P of X such that apU P = and every U-
composant in P is equal to P. :

Proof. First note that .#eU by (vi). We may assume that ab # # for
abe 2. Moreover

(1) #\ab is connected for abe?.

Suppose that .#\ab = M U N where M and N are separated. Then abu M
and ab U N belong to U by (iii). If ceab u N and ace 2, then there isdeab u M
such that ac < ad € # (otherwise all ad € 2 such that ac = ad are contained in
abu N, thus # < abu N because 2 is nested). But then ad < abu M; thus
ac = abu M for ace#P, which means # < abu M, a contradiction.

Let C = (){cl(#\ab): abeP}. 1t follows from (1) and (iv){v) that

(2) CeU and cl(f\ab)eU for abe 2.

Moreover, we obviously have (compare the prdof of (2.5)).

(3) F = {ab: abe P} uC =abucl(F\ab) for abes.

If cl(#\ ab) is U-indecomposable for some abe 2, then, if cl(.# \ ab) has
more than one U-composant, we can take a point pecl(#\ab)\C(abn
ncl(F\ab), cl(F\ab)) we obtain ap = abucl(#\ab) — ¥, which completes
the proof. If cl(#\ab) has only one composant, taking p=b and P = cl(.#\ab)
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we also find # =apuUP. Therefore we may assume that cl(#\ab) are
U-decomposable for abe 2. We claim that '

@ abNnC=Q for abef.

In fact, suppose abnC # @ for some abe. Since cl(F\ab) is U-
decomposable there are proper U-subcontinua Q and P of cl(.#\ab) whose
union is c1(# \ ab). If ab » Q N R is nonempty, we obtain, the same arguments as
in the proof of (1), that .#\ (ab U (Q  R)} is connected, a contradiction, because
F\(@bU(@NR)=@\RUR\Q. Assume abNR =@. If for each ace? there
is ade# such that deQ, then accad cabu Q and thus .f cabuL @, 2
contradiction. Therefore there is ac e such that ab < ac and if ac < ade 2,
then de R. Bat then ac U R contains all ade 2. Thus £ < ac U R. We conclude
C = cl(#\ac) c R. Since abn R = (@, we conclude abn C = @, a contradic-
tion, ie. (4) holds.

Now it suffices to show that .# = ac for ce C. Clearly ac = #. So it will
suffice to show that ab < ac for abe 2. From {4) we conclude that there is ade &
such that ab ~cl(F\ad) = @. It follows from (3) that there is aze 2 such that
abcaz and zecl(F\ad). Therefore ab < az < ac ucl(F\ad). Consequently
beac, i.e. ab < ac. This inclusion completes the proof.

(2.14) Let a point ac X be fixed and P be a nested family of U-irreducible
subcontinua ab of X and P =} {ab: abe#}.If ac = cl P, I(c, a) is a boundary set
in ac and ab # ac for abe P then C(a, ac) = P.

The inclusion 2 < C(a, ac)is obvious. Let ee C(a, ac). Then ae < ac # ae.
Since I (c, a) is a boundary set in ac, we infer that C(a, ac)n1(c, a) = @ by (2.6),
thus there is a proper subcontinuum L of ac such that aeLeU and
aencl{ac\L)=@. Since Lucl(ac\L)=ac, there is abe? such that
becl(ac\L). The equality abucl(ac\L) = ac implies that eeab, thus ec P.

3. Fixed point properties. Recall that F: X — X is upper semi-continuous
(us.c) provided each point image F (x) is closed set and whenever U is an open set
containing F(x), there exists an open set V containing x such that F(f) = U for
each teV, We say the mapping F is U-valued if for each KeU we have F(K)eU.
Such a mapping has a fixed point if there is a point xeX such that xeF(x). If
F: X =X is U-valued and AeU then we put

P (a) = {ab: bF(b)n C(a, ab) = @}.
and ) '
P(a, A) = {ab: abe P (a) and I(a, b) = A}.
We have

(3.1) Theorem. If a mapping F: X — X is U-valued and u.sc, Jor each
nondegenerate U-indecomposable subcontinuum K of X, the set K NF(K) is a
proper subcontinuum of K and if 2?(a, 4) # Q, then there is a maximal element in
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P(a, A). Moreover, if ab is a maximal element in P(a, A), then
I(b, ) "F(I(b, a)) # .

Proof. It follows from (2.8)
(1) X abe#(a), then aF (b) = abu bF ().
Moreover,

(2 U PP, B=cl({ab: abeP}), ab # B for abe#, then B is U-
decomposable.

Indeed, fix aboe . Then aF (b) < aby w boF (bo) v F(B) for each abe .
Therefore B < abg U boF (bo) WF(B) by (1). It implies the equality B
= (aby " B) U (boF (bo) N B} U (F(B) n B). All these continua in.the decompo-
sition of B are proper in B and belong to U, thus (2) holds.

3 I 2<P(a), B=cl({ab: abeP}), ab # B for abe? and # is nested,
then there is a point ¢ such that ac = B and I{c, a) is a boundary set
in ac. -

In fact, it follows from (2.13) that there is a point ¢ and U-indecomposable
subcontinuum C of X such that ac u C = B and every U~composant in C is
equal to C. Suppose ac # B. We may assume that ac is U-irreducible between a
and C and ac < ab # ac for each abe#. Then C(c, cb) = C(a, ab), thus
cbe #(c). Moreover cb  C, because C has only one composant. From (2) we
obtain C is U-decomposable, a contradiction. Therefore ac = B. Suppose I (¢, 4)
is not a boundary set in ac; then, by (2.7), it is a U-indecomposable continuum
and abynI(c, a) # @ for some abye P by (2.6). Let ad be a continnum U-
irreducible between a and I(c, a). Then ad < ab,, ad ~ I (c, a) is a boundary set
in I(c, a) and ad U I(c, a) = ac. We may assume that ad < ab # ad for each
abe?. Then C(d, db)c C(a, ab); thus dbeP(d) for abe?P. Moreover
db # I(c, a) because c¢ db. From (2) we obtain a contradiction as above. We will
now prove

@) IfP<P(a, A),ac=cl({ab: abe P}), ab # acfor abe P and & is nested,
then I(a, ¢) < A.

It follows from (3) that I (c, a) is a boundary set in ac. We can assume that
I{c, @) n A = @ (otherwise ac = A by (2.6)). Then there is a U-subcontinuum D
of ac such that aeD = ac # D and I(c, a) = C = X\ A where C = cl(ac\ D).
Obvipously we have ceC = C(c, ac). We can assume that beC if abe 2. It is
clear that C(b, ab) c C(c, ac) for abe P because ac = abu C for abe P,

Now, if KeU and BeKcab#K, then KuCeU and
ceKuC < ac# KuC. Therefore '

I{a, ¢) =clac\(K L C)) = cl{ab\(K L C)) = cl(ab\ K);

thus I(a, ¢) < I(a, b), which proves (4).
According to (3) and (4) we obtain

g,
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(5y P <P(a, A), B=cl({ab: abeP}), ab # B for abe P and 2 is nested,
then there is a point ¢ such that ad = B and ade #(a, A) for some
del(c, a).

Since ac = ad, C(a, ac) =C(a, ad) and I(c, d) = I(d, a), it remains to
prove that dF (d) n C(a, ac) = @ for some del{c, a). X I(c, ayn F(I(c, a)) # O,
then taking del{c, a) such that F(d)nI(c, a) # ¢ we obtain dF (d) = I(c, a)
which gives (5). Further we assume that sets I (c, a) and F (I (c, a)) are disjoint.
Since F is usc, we can find, by the definition of I(c, @), Pe U such that
aeP < acs Pand QN F(Q) =@ where @ = cl(ac\ P). We may assume be Q
for abe?. U QF(Q)nC(a,ac) =, then taking d=c we have
cF(e)=I(c, ) UF(Q)UQF(Q), thus cF(c)nC(a, ac) =@ (because also
F(Q)n C(a, ac) = P), i.e. (5) holds.

Therefore we can assume that the set QF(Q)n C(a, ac) is not empty.
According to (2.14) we may assume that QF (Q)nab # @ for each abe P
(because 2 is nested). But QF (Q) < bF (b) for each ab e 2. There are ab, ab” €
such that ab = C(a, ab”); thus b"P (")~ C(a, ab’) # @, a contradiction.

Condition (5) implies that if 2(a, A) # (, then there is a maximal element
in 2(a, A). To finish the proof of Theorem (3.1) we shall show that if ab is a
maximal element in 2(a, A), then I(b, a) " F(I (b, a)) # .

Suppose, on the contrary, sets I (b, a) and F (I (b. a)) are disjoint and let rs
be a continuum U-irreducible between these sets with rel(b, a) and
seF(I(b, a). Since abe P (a, A), we have
(6) C(a, ab)nrs=Q.

Consider five cases.

(@) I(r, s)nF(I(r, 5)) # © and I(r, s) is not a boundary set in rs. It follows
from (2.7) that I (a, b)is U-indecomposable continuum which has at least two U-
composants. If ceF(I(r, ) nC(r, I(r, s)) then rs = rcUF(I{r, s)) because
rcUF(I(r,s) is a U-continuum intersecting both I(b, a) and F(I(b, a)).
Therefore I(r, s) =rcu F(I(r, s)); thus I(r, s)\rec = F (I (r, 5)). Consequently
cl(I(r, s)\rc) =1I(r, s) because rc is a boundary set in I(r, s) by (2.12). It implies
the inclusion I(r,s)< F(I(r,s)} contrary to the assumptions. Hence
F(i(r,s)nC(r, I(r,s))=O and take wel(r,s)nF(I(r,s)). Then
I, )N F(I(r, s)) = C(w, I(r,s)) and rw=1I(r, s). From (6) and (2.8) we
conclude aw = aburw and I(a, w) < A. Since C(a, aw) =abu C(r, I(r, s))
and. wF (w) < F (I(r, 5)) we infer aw e(a, 4); a contradiction to the maximal-
ity of ab.

. ®) I(r, )" F(I(r,s)) #@ and I(r, 5) is a boundary set in rs. From (2.6) the
continuum rs is U-irreducible between s and every point of I(r, s).

let R be a minimal subcontinuum of I(r,s) with respect to
the property: reReU and RNF(R)#®. Let teRnF~'(R). Since
Ftynl(r,s) #@ # F(rtynF(I(b,a), we conclude I(r,s) < F(rt); thus rt
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=R and -if S is a proper subcontinuum of rt such that reSeU then
F(s)nI(r,s) =@. Therefore I(r,s)< F(rt\C(r,rt)}. In particular I(t,7)
< F(I(t,n)); thus I(z,7) is a boundary set by (2.7) and the assumptions. It
follows from (2.6) that I(t, ) " C(r, rt) = (. There is a point welI(t, r) such that
FwnI(t,r)+# @." Since wF(w)c I(t, r), we conclude awe#(a, A); a
contradiction.

© I(r,s) nF(I(r, 5)=0@ and I(r,s)=rs. Put Q= F(I(b, @) W F(I(r, s)).
Since Q = X\ C(r, rs) and Q is a U-continuum intersecting both {s} and F(s),
we conclude sF(s)c Q@< X\C(r,rs) As in case (a) obtain as
=abuUrse P (a, A), which contradicts the maximality of ab.

(d) I(r, s nF(I(r,5))= @, I(r, s) # rs and I (r, s) is not a boundary set in
rs. Then there is a point w such that we I (r, s)\ab,rw = I(r, s),rs = I(r, ) Uws
and ws is U-irreducible between I(r, s) and s. Since ws~ab = (), we have
abs#abulI(r,s). One can easily check that aw =aburweP(a, 4),
contradiction. .

() I(r, )" F(I(r, s)) =@ and I(r, s) is a bounddry set in rs. The upper
semi-continuity of F and the definition of I (r, s) implies that there is Q € U such
that QN F(Q) =@, I(r,s)<Qcrs and Q\I(r, s) # @. Since I(r,s) is a
boundary set in rs, we infer psnI(r, s) = @ for peQ\I(r, s). Let rw be a
continuum in Q which is U-irreducible between r and ps 0 Q. It is easy to show
that awe 2(a, A), which contradicts the maximality of ab.In this way the proof
of Theorem (3.1) is complete.

The main result of the paper is the following:

(3.2) TueoreM. If amapping F: X — X is U-valued and u.s.c., and every U-
indecomposable subcontinuum of X ‘has only dense U-composants, then there is a
U-indecomposable subcontinuum K of X such that K = F(K).

Proof. Consider the following family #  of subcontinua of X: Qe
provided )

(1) QeU;(2) QN F(Q) * @ and (3) if A is a proper U-subcontinuum of Q
and abe 2 (ab), then ab = Q. Firstly, we have

(4) if ab is a maximal element in 2 (a, 4), and I(b, a) is a boundary set in
ab, then I(b, a)e W,

Conditions (1) and (2) of the definition of #" are satisfied by Theorem (3.2).
Now, let K be a proper U-subcontinuum of I (b, a) and cde 2 (c, K). It follows
from (2.10) that C(a, ab)ncd = @; then ad = ab U cde P(a, A) by (2.8). Thus
the maximality of ab in 2(a, A) implies (3).

Now we claim that

(5) if aphy is a maximal element in 2 (a,, A,), then there is a continnum ~

Qe such that Q < apby\ C(ay, aghy).
According to (4) and Propositions (2.6) and (2.7) we may assume that Qo is

an U-indecomposable subcontinuum with at least two U-composants where Q,
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= I(by, a). By assumptions we obtain Qo N F (Q,) is.a proper subcontinuum of
Q,. Since aghge#(ay, Ao) we infer

(Qo NF(Q0) N Claq, aghy) = @.

Take a point a; from @\ (Qo N F(Qo)) which belongs to the composant of
Q,.containing Qo N F(Q,) (we can find a,, because U-composants in Qg are
dense by assumptions). Let a,b, be a continuum U-irreducible between a; and
Qo F(Qo). Then a,d; @ C(ay, Qo) and a,d, € #(a,, a,d,). By Theorem (3.1)
there is'a maximal element a,b, in #(ay, a,d,). Then a,b; = C(a;, Q,) by the
maximality of aybg and conditions (2.8) and (2.10). We find Q; = I (b, a;) = Qo-
If Q, is a boundary set in a, by, then Q; e % by (4). Thus we can assume that @,
is an indecomposable continuum and as above we find Q,, a, and d, etc. Take Q

ﬂ 0,. We will check that Q e #. Since @, e U and @, 1 F(Q,) # @, we infer

QqU and Q N F(Q) # @, ie. (1) and (2) hold. Now let K be a proper U-
subcontinuum of Q and cde#(c, K). Then K is a proper subcontinuum of Q,,
for each n. Moreover, K n C(a,, a,b,) =@ for each n. Thereby, a,d
=a,b,ucde?(a,, ad,) by (28) and (2.10). The maximality of a,b, in
P(a,, a,d,) implies cd = 1(b,, a,) = Q,. This means that c¢d < Q, i.e. condition
(3) of the definition of #" holds. The proof of (5) is complete.

Now, let Q be a continuum in X which is minimalin %" and L be a minimal
subcontinuum of Q with respect to the properties: Le U and L F(L) # O.
Then L = aF (a) for some 4. If L is degenerate, then L = F (L) and Theorem (3.2)
is proved. So let L be nondegenerate. If L is U-decomposable, then I (a, F (a)) is
a proper U-subcontinuum of Q and Le #(a, I{a, F (a)). If L is U-decomposable,
then LA F(L) is a nonempty proper U-subcontinuum of L (otherwise
L < F(L)), and taking a,eC(LnF(L), L)\(Ln F(L)) (L has at least two
composants, and therefore they are dense in it) and a continuum a,b; U-
irreducible between @, and LN F(L) we find a,by € #(a;, a;b;) because
F(b;) = F(L) and a,b, n F(L) = a;b;\C(a;, a,b;). Therefore in both cases we
have a proper U-subcontinuum D of Q such that 2(d, D) # ®. A maximal
element in #(a, D) is contained in Q, because Q € #°; but then, there is a proper
U-subcontinuum @, of @ such that Q; € #” by (5). It is a contradiction to the
minimality of Q in #". Therefore Q is degenerated and @ < F(Q) which finishes
the proof of Theorem (3.2).

Remark. The main and some parts of the proofs of Theorems (3.1) and
(3.2) are almost the same as in [5]. We repeat them only for the completness of
this paper.

4. Universal subcontinua. We say that a subcontinuum K of X is universal
provided its intersection with every subcontinuum of X is connected. The family
of all universal subcontinua of a continuum X satisfies conditions concerning U
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without (iv) and (vi). But it is easy to see that if X is either locally connected or
hereditarily , unicoherent then these two conditions also are satisfied. If a
continuum X is locally connected, then universal subcontinua of X are exactly
these subcontinua of X which are unions of Whyburn’s cycles (compare [87),
and a universal continuum which is not the union of two proper universal
subcontinua (i.e. indecomposable in the class of universal subcontinua) is some
Whyburn’s cycle. If X is hereditarily unicoherent, then all its subcontinua are
universal and then indecomposable continua satisfy the additional assumption
from Theorem (3.2). According to Lemma 3 in [7], p. 161 from Theorem (3.2) we
obtain

(4.1) CoroLLARY. If X is a hereditarily unicoherent Hausdorff continuum,
F: X — X isu.s.c. and such that F(x) is a continuum for each xe X, then there is a
indecomposable continuum K such that K < F(K).

This result is a generalization of Theorem 1 from [5] to the nonmetric case.
The following problems remain open:

For which collections U it is true that if every U-indecomposable

subcontinuum of ¥ has a fixed point property then X has it also?
Some answers are given by Corollary (4.1) (compare [57), some others are
contained in [1] and [4]
- If U denotes the family of all universal subcontinua of X, then the theory of
U-irreducible continua investigated in previous sections to obtain some fixed
point theorems is not so nice. It can be see from the following examples.

(4.2) ExaMpLE. Let I, denote a straight line interval lying in the Euclidean
plane E? and joining a =(0, 1) with a point b, where by = (0, 0) and b,
=(1/n, 0) for n =1, 2,... Consider a continuum X which is a union of I, for n
=0,1,2,... and disjoint lines C, such that b, is a beginning of C, and C,
approxnnates I, for n=1,2,.... Then X is U-indecomposable and X

U ab; where ab; is a U-irreducible continuum in X between a and b;.
i=0

(4.3) ExamrLe. Let I, denotes a straight line interval joining points a, and
b, where ay = (0, 0), by = (0, 1), a,=(1/n, 0) and b, = (I/n, 1) for n =1, 2,...
For eachn = 1, 2,... take two disjoint lines A, and B, lying in the strip 1/(n+1)

< x < 1/n such that both approximate I, a, is 2 beginning of 4, and b, is a

beginning of B,. Put
X={ 4,uBul)ul,."
i=1

Then X is U-irreducible between ao and a;; the point a, is not
a point of U-irreducibility of X, but X can not be decomposed into two
proper U-subcontinua each of which contains a,.

icm
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