Perfect set theorems for $\tilde{\mathcal{U}}_{2}^{1}$ in the universe without choice by ## Zofia Adamowicz (Warszawa) Abstract. We work in the theory ZF. We prove the following Theorem 4: if there is a regular ordinal number \varkappa such that there is no function from the continuum onto \varkappa , then every $\underline{\Pi}_2^1$ set either is well-orderable or has a perfect subset in a boolean extension of the universe. Hence we obtain under the assumption (x) (x^* exists) and 0^{\dagger} does not exist the following Theorem 5: if there is a regular ordinal \varkappa such that there is no function from the continuum onto \varkappa , then every $\underline{\Pi}_2^1$ set either is well-orderable or has a perfect subset. As one of the corollaries we obtain Theorem 7: if (x) (x^* exists) and 0^{\dagger} does not exists, then from every $\underline{\Pi}_2^1$ set there is a function onto ω_1 . All these results follow from a construction, for a given $\underline{\Pi}_2^1$ set A, of a certain tree, the notion of a tree which we use being somewhat different from the usual one. A is the projection of that tree. This method was introduced in [2] and the present paper shows how it can be applied. In §0 we give a review of the present state of knowledge about perfect subsets of Π_2^1 sets, we prove several easy remarks and give the discussion of our theorems. In §1 we give a construction of a special tree for a given Π_2^1 set. In further sections we prove the theorems. § 0 By the perfect set theorem for a class Γ of subsets of ω^{ω} we mean the following: every set in Γ either is countable or has a perfect subset. Let us first recall the well-known perfect-set theorems. For $\underline{\Pi}_1^1$ or $\underline{\Sigma}_2^1$ sets this is the Mansfield-Solovay theorem. Let us formulate it as follows (see [5], [8]): if $(x) \subseteq_{\omega} (\omega_1^{L(x)})$ is countable, then every $\underline{\Pi}_1^1$ set either is countable or contains a perfect subset. The proof of this theorem uses the existence of a tree T for a given $\underline{\Pi}_1^1$ set A such that $T \subseteq \omega^{<\omega} \times \omega_1^{<\omega}$ and $A(x) = (Ef) (\langle x, f \rangle)$ is a branch of T) (see [9]). This characterization of A has the following absoluteness property: if $M \subseteq N$ are inner models and T^M , T^N are defined for A in M, N respectively, then $T^M = T^N \cap (\omega^{<\omega} \times (\omega_1^M)^{<\omega})$. Hence (*) if for x there is an f such that $\langle x, f \rangle$ is a branch of T^M for an inner model M, then A(x). If T, M have property (*) we shall say that T has property (*) w.r.t. M. Let us discuss other perfect-set theorems. If there is exactly one measurable cardinal and $P(\omega) \cap L[\mu]$ is countable, then we have the perfect set theorem for Π_2^1 (see [6]). Again for a Π_2^1 set A we have a tree with property (*) w.r.t. $L[\mu]$. If there is a measurable cardinal and $P(\omega) \cap \text{HOD}$ is countable, then the perfect-set theorem holds for Π_2^1 . Moreover, for every Π_2^1 set A there is a tree T with property (*) w.r.t. HOD. Also under the assumption of $\underline{\mathcal{A}}_2^1$ -determinancy the perfect-set theorem holds for $\underline{\mathcal{H}}_2^1$, even for $\underline{\mathcal{H}}_3^1$ and $\underline{\mathcal{L}}_4^1$ sets. Again in this case every $\underline{\mathcal{H}}_2^1$ set is a projection of the set of branches of a tree. There is also another method of finding a perfect subset of a Π_2^1 set A. Consider the following remarks. If M is a class, $\Pi_2^1(M)$ denotes Π_2^1 in a parameter from M. REMARK 1. Let M be an inner model and P a set of forcing conditions in M, $P^M(P) \simeq \omega$. Let A be $\Pi_2^1(M)$. Let $\underline{\alpha} \in M^P$ be such that $M^P \models A(\underline{\alpha})$ and for every $p \in P$ there are $q_1, q_2 \leqslant p$ and $n, m_1, m_2 \in \omega$ such that $m_1 \neq m_2, q_1 \models (\underline{\alpha}(\tilde{n}) = \tilde{m}_1)$ and $q_2 \models (\underline{\alpha}(\tilde{n}) = \tilde{m}_2)$. Then A has a perfect subset. Proof. By the assumption that $P^M(P) \simeq \omega$ we can enumerate all dense subsets of P belonging to M as D_0, D_1, \ldots Let us define the following mapping σ from $2^{<\omega}$ into P. Let $\sigma(\emptyset)$ be any condition in D_0 . If $\sigma(s)$ is defined, $\sigma(s) = p$, then let $\sigma(s^{\wedge}(0))$, $\sigma(s^{\wedge}(1))$ be such conditions $q_1, q_2 \leq p$ that (1) there are n_s , m_1 , $m_2 \in \omega$ such that $$q_1 \Vdash 2(\underline{\alpha}(\check{n}_s) = \check{m}_1), \quad q_2 \Vdash (\underline{\alpha}(\check{n}_s) = \check{m}_2),$$ - (2) q_i determines the values of $\underline{\alpha}$ at dom s+1, - $(3) q_i \in D_{\text{dom } s+1}.$ To find q_1 , q_2 we first take \tilde{q}_1 , \tilde{q}_2 satisfying (1) (they exist by the assumptions), next we take $q_1' \leq \tilde{q}_1$, $q_2' \leq \tilde{q}_2$ so that q_1' , q_2' satisfy (2) and then we take q_1 , q_2 so that $q_i \leq q_i'$ and q_i satisfies (3). By definition, $\sigma(s) \in D_{\text{dom }s}$. Define an induced mapping $\sigma^*: 2^{\omega} \to \omega^{\omega}$ as $$\sigma^*(f)_{(n)} = m$$ iff $\sigma(f_{|n+1}) \models (\underline{\alpha}(n) = m)$. We shall show that - (i) $\sigma^*: 2^\omega \to A$, - (ii) σ^* is continuous, - (iii) σ^* is 1-1. Consider (i). Notice that $\{\sigma(f_{\mid n})\}_{n\in\omega}$ generate a P, M-generic filter, G. Indeed, this follows by the fact that $\sigma(s) \in D_{\text{doms}}$. Moreover, $\sigma^*(f) = i_G(\alpha)$. Hence $\sigma^*(f) \in A$ because $M^P \models A(\alpha)$ and A is absolute. Consider (ii). Let t be an initial segment of $\sigma^*(f)$, dom t = n+1. Then by the definition of σ^* , $\sigma(f_{\lfloor n+1 \rfloor}) \Vdash (\check{t} \subseteq \underline{\alpha})$. Hence, for every f', if $f'_{\lfloor n+1 \rfloor} = f_{\lfloor n+1 \rfloor}$ then $\sigma(f'_{\lfloor n+1 \rfloor}) \Vdash (\check{t} \subseteq \underline{\alpha})$ and thus $t \subseteq \sigma^*(f')$. Hence follows the continuity of σ^* . Consider (iii). Let $f \neq f'$. Let n be the first number such that $f(n) \neq f'(n)$. Then, by the definition of σ , $$\sigma(f_{\lceil n+1 \rceil}) \Vdash (\underline{\alpha}(\check{n}_{f \lceil n \rceil}) = \check{m}_1), \quad \sigma(f_{\lceil n+1 \rceil}) \Vdash (\underline{\alpha}(\check{n}_{f \lceil n \rceil}) = \check{m}_2)$$ for different m_1 , m_2 . Hence $\sigma^*(f) \neq \sigma^*(f')$. By (i), (ii), (iii), the image of 2^{ω} under σ^* is a perfect subset of A. Remark 2. Let M be an inner model and C a complete boolean algebra in M, $P^M(C) \simeq \omega$. Let A be $\Pi^1_2(M)$ and assume that there is a G generic over C, M such that A has an element in M[G]-M. Then A has a perfect subset. Proof. Let α and G be such that $A(\alpha)$, G is generic over C, M and $\alpha \in M[G]-M$. Then, by the absoluteness of A, $M[G]\models A(\alpha)$. Let $\underline{\alpha} \in M^C$ be such that $M^C\models\underline{\alpha} \in \omega^\omega$ and $i_G(\underline{\alpha})=\alpha$. Let p be such that $p\in C\cap G$, $p\models A(\alpha)$. We can assume that p is the 1 of C because otherwise we can restrict C to p. Consider the following subalgebra of C, C'. Work in M. Let C' be the complete subalgebra of C generated by the values $||\underline{\alpha}(n)| = |\underline{m}||$ for $n, m\in\omega$. We shall show that there is a $p\in C'$ such that C' restricted to p is atomless. Suppose the converse, i.e. that under every element of C' there is an atom of C'. Then every filter generic over C', M is principal. Consider G. Let $G'=G\cap C'$. Then G' is generic over C', M. Hence G' is principal in C'. Thus $G'\in M$. But $\alpha=i_G(\underline{\alpha})$ belongs to M[G'] — having G' we know all the values of α . Hence $\alpha\in M$. Contradiction. So let p be an element of C' such that C' restricted to p is atomless. Again, we can assume that p is the 1 of C'. Now we shall show that C' satisfies the assumptions of Remark 1. We can treat $\underline{\alpha}$ as an element of $M^{C'}$. Then $M^{C'} \models A(\underline{\alpha})$ because $M^{C} \models A(\underline{\alpha})$ and C' is a complete subalgebra of C. To prove the main assumption of Remark 1, take $p \in C'$. By the fact that C' is atomless, there are G', G'' which are different and generic over C', M, $p \in G' \cap G''$. Then there is a generator of C' of the form $||\underline{\alpha}(\check{n}) = \check{m}||$ which is in G' - G'' or in G'' - G' because otherwise G', G'', being equal at the generators, would be equal. Let $q_1 = p \wedge ||\underline{\alpha}(\check{n}) = \check{m}||$, $q_2 = p \wedge ||\underline{\alpha}(\check{n}) = \check{m}'||$ $\leq -||\underline{\alpha}(\check{n}) = \check{m}||$. Then q_1, q_2 are as required in Remark 1. Thus, by Remark 1, A has a perfect subset. In [1], [2] we studied Π_2^1 sets for which there is a tree T and a family \mathscr{D} of its dense subsets such that A is the collection of the family of \mathscr{D} -generic branches of T or is a projection of such a collection. If this characterization is absolute in the following sense: (**) if M is an inner model and T^M , \mathcal{D}^M are defined in M for A and (Ef) $(\langle \alpha, f \rangle)$ is a \mathcal{D}^M -generic branch of T^M) then $A(\alpha)$, then we can infer that A is countable or has a perfect subset in V^c where C enumerates with natural numbers the family \mathcal{D} and $P(\omega)$. Indeed, in this case, if A is not countable then the assumptions of Remark 2 are satisfied in V^c with M = V. In this paper we shall define an arbitrary Π_2^1 set A, a tree T and a collection $\mathcal D$ of its dense subsets such that A is a projection of the collection of $\mathcal D$
-generic branches of T (Theorem 1). However, this representation does not have the absoluteness property (**). Nevertheless, it will help us to prove a certain theorem about perfect subsets in ZF without choice. That theorem is the main result of the paper and states the following (Theorem 4): If there is a regular ordinal \varkappa such that there is no function from the continuum onto \varkappa , then every $\underline{\Pi}_2^1$ set either is well-orderable and of power less that \varkappa or has a perfect subset in a boolean extension of the universe. Now we will discuss the question how our theorem is related to the present knowledge about perfect subsets of $\underline{\mathcal{I}}_2^1$ sets. Consider again the known perfect-set theorems for a class Γ . They are of the following form: "if certain assumptions hold, then for every set A in Γ there is a tree T of height ω such that A is a projection of the set of branches of T and T has the property (*) w.r.t. a certain inner model M. Then if $P(\omega) \cap M$ is countable, every set in Γ either is countable or has a perfect subset". In fact, we can derive more from a theorem of this type. From the existence of T for a set A we can infer that the sentence (Ex)A(x) is absolute w.r.t. M. Moreover, without the assumption $P(\omega) \cap M \simeq \omega$, we can infer another theorem about perfect sets, namely: every set A in Γ either is included in M or has a perfect subset. Thus we have: - (1) Every $\Pi_1^1(\{x\})$ set either is included in L(x), and thus is well-orderable, or has a perfect subsets; - (2) If a measurable cardinal exists, then every $\Pi_2^1(\{x\})$ set either is included in HOD(x), and thus is well-orderable, or has a perfect subset. In both cases we have a complementary theorem to Theorem 4. Consider the following definitions: DEFINITION 1. Let M be an inner model. We say that M is Σ_3^1 -correct if, for every $\Pi_2^1(M)$ set A, the sentence $(E\alpha)A(\alpha)$ is absolute in w.r.t. M. Let M be called Σ_3^1 -correct if the above absoluteness holds for Π_2^1 sets. DEFINITION 2. Let M be an inner model. We say that M is generally Σ_3^1 -correct if, for every real β such that β is generic over L, the universe $M[\beta]$ of sets relatively constructrible from β and the class M is Σ_3^1 -correct. DEFINITION 3. Let K be Jensen's core-model. Let K^M be the core-model of an inner model M. If y is a real then by K_y we mean the relativization of the core-model to y, i.e. the union of mice relativized to y. Analogously we define K_y^M . If x is a real then K[x], $K_y[x]$, $K^M[x]$, $K_y^M[x]$ denote the class of sets relatively constructible from x and the classes K, K_y , K^M , K_y^M respectively. Consider the following remark: REMARK 3. Let $M \models ZFC$ be an inner model. Let \varkappa be the cardinality of $P(\omega)$ in M. Let $C \in L$ be the usual algebra collapsing \varkappa^{+L} onto ω . Assume that, in V^C , M is generally Σ_3^1 -correct. Then every $\Pi_2^1(M)$ set either is included in M or has a perfect subset in V^C . Proof. Let C' be the subalgebra of C collapsing \varkappa onto ω . Work in V^C . Let f be a function enumerating \varkappa in type ω , generic over C', M. Note that f is generic over L. Then in M[f] there is a function g such that $g: \omega \xrightarrow{\text{ento}} P^M(\omega)$. Let A be $\Pi_2^1(M)$. Suppose that $A \not\subseteq M$. Then $(\mathbb{E}\alpha) (A(\alpha) & (n)(\alpha \neq g(n)))$. By the Σ_3^1 -correctness of M[f], in M[f] $$(E\alpha)(A(\alpha)\&(n)(\alpha\neq g(n))).$$ But then the assumptions of Remark 2 are satisfied in V^c . Hence A has a perfect subset. \blacksquare The following theorem was proved by Jensen in [4]: If (x) (x^* exists) and 0^+ does not exist, then K is Σ_3^1 -correct. The relativized version of this theorem is the following: If (x) $(x^*$ exist) and y^+ does not exist where y is a real, then K_y is Σ_3^1 -correct. We have the following remark: REMARK 4. If (x) (x^* exists) and 0^+ does not exist and C is a boolean algebra, then V is Σ_3^1 -correct in V^C . Proof. Let A be $\underline{\mathcal{M}}_2^1$. Let y be the parameter of the definition of A. Assume that $(\mathbf{E}\alpha)A(\alpha)$ holds in V^c . Consider K_y . Then K_y in the sense of V^c is the same as K_y . By the fact that K_y is $\underline{\Sigma}_3^1$ -correct in V^c we have $$K_{y} \models (\mathbf{E}\alpha) A(\alpha).$$ Hence $(\mathbf{E}\alpha) A(\alpha)$. Consider the following conjecture: (***) If (x) (x^* exists) and y^* does not exist where y is a real, then K_y is generally \sum_{3}^{1} -correct. Assume (***). Then we have the following remark: REMARK 5. If (x) (x^* exists) and 0^t does not exist, then every Π_2^1 set A either is included in K_y where y is the parameter of the definition of A or has a perfect subset in a boolean extension of the universe. Proof. We apply Remark 3 with $M = K_{\nu}$. COROLLARY If (x) (x^* exists) and 0^{\dagger} does not exist, then every Π_2^1 set is well-orderable or has a perfect subset in a boolean extension of the universe. Thus, under the assumption (x) $(x^*$ exists) and 0^* does not exist and under the hypothesis (****), we have proved a theorem similar to Theorem 4 by other methods than those used in this paper. By all that we have said: Theorem 4 is most interesting in the case where (Ex) (x^* does not exist) — note that if 0° exists then Mansfield's theorems [6] work. Returning to the assumption (x) $(x^*$ exists) and 0^* does not exist observe that in this case the conclusion of Theorem 4 can be stated as follows: every Π_2^1 set is well-orderable or has a perfect subset (in the universe). Indeed, in this case V is Σ_3^1 correct in V^C by Remark 4. But "having a perfect subset" is Σ_3^1 for a Π_2^1 set. Thus if a Π_2^1 set has a perfect subset in V^C , it just has a perfect subset. Hence we have proved the following (under (***)): If (x) $(x^*$ exists) and 0^t does not exist, then every Π_2^1 set is either included in K or has a perfect subset, every $\Pi_2^1(\{y\})$ set is either included in K_y or has a perfect subset. Thus we see that, as in the case of L for Π_1^1 sets and in the case of HOD for Π_2^1 sets under the assumption of the existence of a measurable cardinal, in the case of K as well the property of Σ_3^1 -correctness is connected with the fact that the perfect set theorem for Π_2^1 of the second form holds w.r.t. K (although we do not know whether there is a tree for a Π_2^1 -set in K). Finally, we observe that if there are arbitrarily large regular numbers then the assumption of Theorem 4 is satisfied. This follows from Remark 6 below. Notice that if (Ex) $(x^*$ does not exist), then, by the covering lemma w.r.t. the appropriate L(x), there are arbitrarily large regular numbers. Thus if (Ex) $(x^*$ does not exist) then the conclusion of Theorem 4 holds. Consider REMARK 6 (ZF). There is a cardinal $v \in On$ such that there is no function from the continuum onto v. Proof of the remark. Let us define the following function f from $\mathcal{P}(P(2^{\omega}))$ into On as follows: $$f(\mathscr{A}) = \begin{cases} \overline{\mathscr{A}} & \text{if } \mathscr{A} \text{ is well-orderable,} \\ 0 & \text{otherwise.} \end{cases}$$ Let $B = \{\beta \colon (\mathbb{E}\mathscr{A})_{P(n,2^{\infty})}(f(\mathscr{A}) = \beta)\}$. Then by replacement B is a set. Let ν not belong to B. Let us show that ν is as required. Indeed, suppose that there is a function g from the continuum onto ν . Let $B_{\xi} = \{x \in 2^{\infty} \colon g(x) = \xi\}$. Let $\mathscr{A} = \{B_{\xi}\}_{\xi \in \nu}$. Then \mathscr{A} is well-orderable and $f(\mathscr{A}) = \nu$. Hence $\nu \in B$. Contradiction. Let \varkappa be regular $\varkappa > \nu$. Then \varkappa is as required in Theorem 4. To end this section consider a few remarks concerning the theory ZF without the axiom of choice. In this theory we can develop a large part of the theory of projective sets. We consider the following projective hierarchy: $\sum_{n=1}^{\infty} a_n = 1$ sets definable by an arithmetical formula with a parameter. If the class of $\sum_{n=1}^{\infty} a_n = 1$ sets is defined, then $\prod_{n=1}^{\infty} a_n = 1$ is the class of projections of $\prod_{n=1}^{\infty} a_n = 1$ sets. Note that this does not necessarily coincide with the topological hierarchy, for instance there may be borel sets that are not Δ_1^1 . For simple families of sets there are selectors because of the Kondo-Addison theorem. §1 First we shall introduce auxiliary notions and notation. Let us recall from [1] what we mean by a tree in a topological space. Let $\langle \mathcal{X}, \mathcal{O} \rangle$ be a topological space in the sense that \mathcal{O} is a basis in a topology in \mathcal{X} . Any subset $T \subseteq \mathcal{O}$ is called a *tree*. An $x \in \mathcal{X}$ is called a *branch of a tree* T iff $$(p)_{\mathcal{O}}(x \in p \to (\mathbf{E}q)_T (x \in q \subseteq p)).$$ Let $A\subseteq \mathscr{X}$ be called g. G_{δ} (see [2]) if there is a tree $T\subseteq \mathscr{O}$ and a family \mathscr{D} of dense sections of T such that: $\overline{\mathscr{D}}<\overline{\mathscr{X}}$ and A is the set of \mathscr{D} -generic branches of T. The reals are identified with elements of ω^{ω} and will be denoted by $x, y, z, ..., \alpha, \beta, ...$ If a variable of this type runs over another set, we shall indicate this. If $y \in 2^{\omega}$ is a well-ordering as a characteristic function of a set of pairs, then let \overline{y} denote its type and $[y]_n$, for $n \in \omega$, the characteristic function of the ordering $$\{\langle m, k \rangle \colon
y(\langle k, n \rangle) = 0\}.$$ If α is a real, let $F_{\xi}(\alpha)$ be the ξ th set constructible from α in the Gödel ordering. By a cardinal we mean an initial ordinal. If \varkappa is a cardinal, then $\bigotimes_{\zeta \in \varkappa} a_{\zeta}$ denotes the weak product, i.e. the set of finite functions $f: \varkappa \to \bigcup_{\zeta} a_{\zeta}$ such that $f(\zeta) \in a_{\zeta}$. If A is a set of pairs, then by a projection of A we mean its projection onto the first coordinate. The symbol $\langle .,. \rangle$ always denotes a pair (of integers or of reals) and $(.)_0$, $(.)_1$ denote the coordinates of a pair. Now, in the main part of this section we shall carry out in ZF without choice a construction which is the technical basis of the paper. Assume that we have a $\underline{\Pi}_2^1$ set A. Let us construct a sequence of trees $(T_\xi)_{\xi \in \omega_1}$ and of families $(\mathcal{D}_\xi)_{\xi \in \omega_1}$ such that $T_\xi \subseteq \omega^{<\omega} \times \xi^{<\omega} \times \omega^{<\omega}$, \mathcal{D}_ξ consists of dense subsets of T_ξ , and $A(\alpha) \equiv (\xi) \omega_1$ (Ef, g) $(\langle \alpha, f, g \rangle)$ is a \mathcal{D}_ξ -generic branch of T_ξ). Let $A(\alpha) = (x)(Ey) R(\alpha, x, y)$ where R is Π_1^0 . We ignore the parameters of A. FACT 1. $A(\alpha) \equiv (L[\alpha] \models A(\alpha)) \equiv (\xi) \omega_1(F_{\xi}(\alpha) \text{ is } a \text{ real } \Rightarrow (Ey) R(\alpha, F_{\xi}(\alpha), y)).$ This fact follows from the Shoenfield absoluteness lemma [9]. FACT 2. There is a Σ_1^1 formula ψ (0, y) where y is a parameter such that if y is a well-ordering then $$\psi(\alpha, y) \equiv (n) \left[F_{\overline{[y]_n}}(\alpha) \text{ is a real } \Rightarrow (Ey') R(\alpha, F_{\overline{[y]_n}}(\alpha), y') \right].$$ Proof. We shall give an outline of the proof. For details the reader is referred to [3] and [10]. Let $F(w, z, \alpha)$ be the Δ_1^1 formula with the property that, for a well-ordering z, $F(w, z, \alpha) \equiv (w \text{ codes the set } F_z(\alpha))$ where coding can be done as in [10]. We have $$(n) \left(F_{\overline{[y]_n}}(\alpha) \text{ is a real } \Rightarrow (Ey') R(\alpha, F_{\overline{[y]_n}}(\alpha), y') \right)$$ $$\equiv (n) (Ez) (Ew) \left[z = [y]_n \& F(w, z, \alpha) \right]$$ & (w does not code a real \vee (Eu)(w codes u & (Ey') $R(\alpha, u, y')$)]. Consider the formula "w does not code a real". Let us indicate how to prove that it is Σ_1^1 . We have "w does not code a real" iff there is an n' in the collection of almost maximal vertices of w which is not a code of a pair of integers or there are two codes of pairs in this collection which have the same first coordinate and different second coordinates or there is an m for which there is no n such that the code of $\langle m, n \rangle$ is an almost maximal vertice of w. Consider the formula "w codes u". We have "w codes u" iff the collection of almost maximal vertices of w consists of codes of pairs of integers that are in u. It follows that the formula $$(n)(Ez)(Ew)\left[z = [y]_n \& F(w, z, \alpha) \& (w \text{ does not code}\right]$$ $$\text{a real } \lor (Eu)(w \text{ codes } u \& (Ev') R(\alpha, u, v')))\right]$$ is equivalent to a Σ_1^1 formula. Let ψ be this Σ_1^1 formula. FACT 3. If $\theta(\alpha, y)$ is a Σ_1^1 formula of α in a parameter y, then there is a tree $T \subseteq \omega^{<\omega} \times \omega^{<\omega} \times \omega^{<\omega}$ such that $$\theta(\alpha, y) \equiv (Ez)(\langle \alpha, y, z \rangle \text{ is a branch of } T).$$ Proof. We have $$\neg \theta(\alpha, y) \equiv (z) (\mathbf{E} n) Q(\alpha, z, n)$$ where $Q(\alpha, z, n)$ is recursive in y. Thus $(En)Q(\alpha, z, n)$ is recursively enumerable in y. But, by the definition of relative recursive enumerability, there is a recursive $Q' \subseteq \omega^{<\omega} \times \omega^{<\omega} \times \omega^{<\omega}$ such that $$(\mathbf{E}n)\,Q(\alpha,\,z,\,n)\equiv(\mathbf{E}k)\,Q'(\alpha_{\mid \mathbf{k}},\,z_{\mid \mathbf{k}},\,y_{\mid \mathbf{k}},\,k).$$ Thus $$\theta(\alpha, y) \equiv (Ez)(k) (\neg Q'(\alpha_{\uparrow k}, z_{\uparrow k}, y_{\uparrow k}, k)).$$ Let $$T = \{ \langle s, t, u \rangle \colon \text{dom } s = \text{dom } t = \text{dom } u$$ $$\& (Es', t', u') (s \subseteq s', t \subseteq t', u \subseteq u'), \text{dom } s' = \text{dom } t' = \text{dom } u'$$ $$\& O'(s', t', u', \text{dom } s') \}.$$ Then we have $$\theta(\alpha, y) = (Ez)(\langle \alpha, y, z \rangle \text{ is a branch of } T). \blacksquare$$ Combining Fact 2 and Fact 3 we obtain FACT 4. There is a tree $T \subseteq \omega^{<\omega} \times \omega^{<\omega} \times \omega^{<\omega}$ such that $$\psi(\alpha, y) \equiv (Ez)(\langle \alpha, y, z \rangle \text{ is a branch of } T).$$ Consider the formula $$\varphi(\alpha, \xi)$$: $(\eta)_{\xi} (F_{\eta}(\alpha) \text{ is a real } \Rightarrow (Ey') R(\alpha, F_{\eta}(\alpha), y'))$ We show the following Fact 5. There is a tree $T_{\xi} \subseteq \omega^{<\omega} \times \xi^{<\omega} \times 2^{<\omega} \times \omega^{<\omega}$ and a family \mathscr{D}_{ξ} of its dense subsets such that $$\varphi(\alpha, \xi) \equiv (Ef, y, z)(\langle \alpha, f, y, z \rangle \text{ is a } \mathcal{D}_{\xi}\text{-generic branch of } T_{\xi}).$$ Proof. Let $\psi(\alpha, y)$ be the Σ_1^1 formula defined in Fact 2 and let T be the tree such that $$\psi(\alpha, y) \equiv (Ez)(\langle \alpha, y, z \rangle \text{ is a branch of } T).$$ Let us define T_{ξ} as follows: $$\langle s, t, v, u \rangle \in T_{\xi}$$ iff (1) $$s \in \omega^{<\omega}, t \in \xi^{<\omega}, v \in 2^{<\omega}, u \in \omega^{<\omega}$$ & dom $$s = \text{dom } t = \text{dom } v = \text{dom } u$$, (2) $$\langle s, v, u \rangle \in T$$, (3) $$v(\langle m, n \rangle) = 0 \equiv t(m) < t(n),$$ (4) $$(E\alpha, f, y, z)_{\omega^{\omega} \times \xi^{\omega} \times 2^{\omega} \times \omega^{\omega}} (\langle s, t, v, u \rangle \subseteq \langle \alpha, f, y, z \rangle \& \langle \alpha, y, z \rangle$$ is a branch of $$T\&(m, n)(y(\langle m, n\rangle) = 0$$ $$\equiv f(m) < f(n)) & f: \omega \xrightarrow{\text{onto}} \xi',$$ i.e. we require that through every element of T_{ξ} there should go a branch of T_{ξ} . Let $\eta \in \xi$. Let $$D_{\eta} = \{ \langle s, t, v, u \rangle \in T_{\xi} \colon \eta \in \operatorname{rg} t \}.$$ By (4) D_n is dense in T_c , $$\mathscr{D}_{\boldsymbol{\xi}} = \{D_{\boldsymbol{\eta}}\}_{\boldsymbol{\eta} \in \boldsymbol{\xi}}.$$ We must show that T_{ζ} is as required, i.e. $$\varphi(\alpha, \xi) \equiv (Ef, y, z)(\langle \alpha, f, y, z \rangle)$$ is a \mathcal{D}_{ξ} -generic branch of T_{ξ}). We have: $$\varphi(\alpha, \xi) \equiv (Ey)(y \text{ is a well-ordering of } \omega \text{ in type } \xi \& \psi(\alpha, y)).$$ Thus assume $\varphi(\alpha, \xi)$. Take y such that y is a well-ordering of type ξ and $\psi(\alpha, y)$. Then there is a z such that $\langle \alpha, y, z \rangle$ is a branch of T. Define $f \in \xi^{\omega}$ as $$f(n) = \overline{[y]_n}.$$ Then $$f: \omega \xrightarrow{\text{onto}} \xi \text{ and } (m)(n)(f(m) < f(n) \equiv y(\langle m, n \rangle) = 0).$$ Hence $\langle \alpha, f, y, z \rangle$ is a branch of T_{ξ} . It is a \mathcal{D}_{ξ} -generic branch because f is onto ξ . Conversely, assume that there are f, y, z such that $\langle \alpha, f, y, z \rangle$ is a \mathcal{D}_{ξ} -generic branch of T_{ξ} . Then $\langle \alpha, y, z \rangle$ is a branch of T and thus $\psi(\alpha, y)$. Moreover, $$f: \omega \xrightarrow{\text{onto}} \xi \text{ and } (m)(n)(y(\langle m, n \rangle) = 0 \equiv f(m) < f(n)).$$ Hence y is a well-ordering of type ξ . Thus $\varphi(\alpha, \xi)$. We can join the last two coordinates of the elements of T_2 . So let us assume that $T_2 \subseteq \omega^{<\omega} \times \xi^{<\omega} \times \omega^{<\omega}$. We have FACT 6. $$A(\alpha) \equiv (\xi)_{\omega_1} \left(F_{\xi}(\alpha) \text{ is a real } \Rightarrow (Ey) R(\alpha, F_{\xi}(\alpha), y) \right)$$ $$\equiv (\xi)_{\omega_1} (\eta)_{\xi} \left(F_{\eta}(\alpha) \text{ is a real } \Rightarrow (Ey') R(\alpha, F_{\eta}(\alpha), y') \right)$$ $$\equiv (\xi)_{\omega_1} \varphi(\alpha, \xi)$$ $$\equiv (\xi)_{\omega_1} (Ef, g) (\langle \alpha, f, g \rangle \text{ is a } \mathcal{D}_{\xi}\text{-generic branch of } T_{\xi}).$$ Still, without choice, we can define the following tree: $$T\subseteq\omega^{<\omega}\times\bigotimes_{\xi\in\omega_1}(\xi^{<\omega}\times\omega^{<\omega}).$$ Let $$\langle s, \{\langle \xi_0, \langle t_{\xi_0}, v_{\xi_0} \rangle \rangle, \dots, \langle \xi_n, \langle t_{\xi_n}, v_{\xi_n} \rangle \rangle \} \rangle \in T$$ iff (1) $$s \in \omega^{<\omega}$$, $t_{\xi_i} \in \xi_i^{<\omega}$, $v_{\xi_i} \in \omega^{<\omega}$, dom $s = \text{dom } t_{\xi_i} = \text{dom } v_{\xi_i}$, - (2) $\langle s, t_{\xi_i}, v_{\xi_i} \rangle \in T_{\xi_i}$ - (3) $(\mathbf{E}\alpha, f_0, g_0, \ldots, f_n, g_n)(\langle s, t_{\xi_i}, v_{\xi_i} \rangle) \subseteq \langle \alpha, f_i, g_i \rangle$ & $$\langle \alpha, f_i, g_i \rangle$$ is a branch of $T_{\xi_i} \& f_i : \omega \xrightarrow{\text{onto}} \xi_i \& A(\alpha)$. Let $p \in T$. We introduce the following notation: $$\xi \in \text{dom } p \quad \text{if} \quad p = \langle s, \{\langle \xi_0, \langle t_{\xi_0}, v_{\xi_0} \rangle \rangle, \dots, \langle \xi_n, \langle t_{\xi_n}, v_{\xi_n} \rangle \rangle \} \rangle$$ and ξ is a ξ_i for an i $p(\xi)$ is the pair $\langle t_{\xi}, v_{\xi} \rangle$ if $\xi \in \text{dom } p$, $(p)_0$ is the first coordinate of p, s, $(p)_1$ is the sequence $\{\langle \xi_0, \langle t_{\xi_0}, v_{\xi_0} \rangle \rangle, \ldots, \langle \xi_n, \langle t_{\xi_n}, v_{\xi_n} \rangle \rangle \}$. Let us define the following family of dense subsets of T: if $\xi \in \omega_2$, $\eta \in \xi$ then $$D_{\xi,\eta} = \{ p \in T : \xi \in \text{dom }
p, \ \eta \in \text{rg } (p(\xi))_0 \}.$$ By (3) $D_{\xi,\eta}$ is dense in T. Let $\mathscr{Q} = \{D_{\xi,\eta}\}_{\substack{\xi \in \omega_1 \\ \eta \in \xi}}$. Then, using the axiom of choice, we can prove Theorem 1. Let A be $\underline{\Pi}_2^1$. Then there is a g. G_δ subset B of the space $\omega^\omega \times \prod_{\xi \in \omega_1} (\xi^\omega \times \omega^\omega)$ such that A is a projection of B onto the first coordinate. Proof. $$B = \left\{ \langle \alpha, f \rangle \colon \alpha \in \omega^{\omega}, f \in \prod_{\xi \in \omega_{1}} (\xi^{\omega} \times \omega^{\omega}), \\ (f(\xi))_{0} \in \xi^{\omega} \& (f(\xi))_{1} \in \omega^{\omega} \& (n, m)(\xi_{0}, \dots, \xi_{n})_{\omega_{1}} \\ \left\langle \alpha_{\upharpoonright m}, \left\{ \langle \xi_{0}, \langle (f(\xi_{0}))_{0 \upharpoonright m}, (f(\xi_{0}))_{1 \upharpoonright m} \rangle \right\rangle, \dots \\ \dots, \left\langle \xi_{n}, \langle (f(\xi_{n}))_{0 \upharpoonright m}, (f(\xi_{n}))_{1 \upharpoonright m} \rangle \right\} \right\} \in T \right\}.$$ Then, by definition, $\langle \alpha, f \rangle \in B$ iff it is a \mathcal{D} -generic branch of T. We show $$A(\alpha) \equiv (Ef)(\langle \alpha, f \rangle)$$ is a \mathcal{D} -generic branch of T). For a proof we first observe that by Fact 6 we have $$A(\alpha) \equiv (\xi)_{\omega_1} (Ef, g) (\langle \alpha, f, g \rangle \text{ is a } \mathcal{D}_{\xi}\text{-generic branch of } T_{\xi}).$$ Assume $A(\alpha)$. For every ξ choose one pair $\langle f_{\xi}, g_{\xi} \rangle$ such that $\langle \alpha, f_{\xi}, g_{\xi} \rangle$ is a \mathcal{D}_{ξ} -generic branch of T_{ξ} . Define $f \in \prod_{\xi \in \omega_1} (\xi^{\omega} \times \omega^{\omega})$ as $f(\xi) = \langle f_{\xi}, g_{\xi} \rangle$. Then $\langle \alpha, f \rangle$ is a \mathscr{D} -generic branch of T. Conversely, if there is an f such that $\langle \alpha, f \rangle$ is a \mathscr{D} -generic branch of T, then, for every ξ , $\langle \alpha, (f(\xi))_0, (f(\xi))_1 \rangle$ is a \mathscr{D}_{ξ} -generic branch of T_{ξ} . Hence $A(\alpha)$. ## **§2** In this section we prove a theorem about perfect subsets of \mathcal{I}_2^1 sets. Its proof is an illustration of the method used in §3 to prove a stronger theorem. THEOREM 2. Let A be Π_2^1 . Assume that ω_1 is regular and there is no function from A onto ω_1 . Then either A is countable or A has a perfect subset in some boolean extension of the universe. Let us first explain the idea of the proof. Consider the tree T defined for A in §1. It would be natural to treat T as a set of forcing conditions. Then a V-generic filter over T would provide a sequence $\langle \alpha, f_{\xi} \rangle_{\xi \in \omega_1}$ such that $\langle \alpha, f_{\xi} \rangle$ is a \mathscr{D}_{ξ} -generic branch of T_{ξ} , i.e. $$(\xi)_{\omega_1}(\eta)_{\xi}(F_{\eta}(\alpha) \text{ is a real} \Rightarrow (Ey')R(\alpha, F_{\eta}(\alpha), y')).$$ If the forcing T does not collapse ω_1 , then in the extended universe we have $$(\xi)_{\omega_1}^{L(\alpha)}(\eta)_{\xi}(F_{\eta}(\alpha) \text{ is a real } \Rightarrow (Ey')R(\alpha, F_{\eta}(\alpha), y')) \text{ and thus } A(\alpha).$$ We shall show that, under the assumptions of the theorem, T is c.c.c. The usual proof shows that c.c.c. together with the regularity of ω_1 implies in $\mathbb{Z}F$ (without choice) that ω_1 is not collapsed by T. Thus T enables us to add elements of A. We are not able yet to add a perfect set of elements of A, because T is not necessarily separable (for instance if A is provably a singleton) and generic filters over T can then provide α 's in V. The next idea will be to observe that either A is countable or there is a c.c.c. atomless separable non-empty subset of T, P, splitting at the first coordinate. Then, by standard methods, we show that A has a perfect subset in V^C where C is a boolean algebra enumerating with natural numbers the family of dense subsets of P. We introduce the following definition: DEFINITION 4. Let 22 $$p \in T$$, $p = \langle s, \{\langle \xi_0, \langle t_{\xi_0}, v_{\xi_0} \rangle \rangle, \dots, \langle \xi_n, \langle t_{\xi_n}, v_{\xi_n} \rangle \rangle \} \rangle$ and $\alpha \in \omega^{\omega}$. We say that α goes through p if there are $f_{\xi_0}, g_{\xi_0}, \ldots, f_{\xi_n}, g_{\xi_n}$ such that $s \subseteq \alpha$, $t_{\xi_i} \subseteq f_{\xi_i}, v_{\xi_i} \subseteq g_{\xi_i}, f_{\xi_i} \colon \omega \xrightarrow[]{\text{onto}} \xi_i \text{ and } \langle \alpha, f_{\xi_i}, g_{\xi_i} \rangle \text{ is a branch of } T_{\xi_i}.$ Notice that, by the definition of T, through every element of T goes an α in A. FACT 7. T is c.c.c. Proof. Observe first that if $$p = \langle s, \{\langle \xi_0, \langle t_{\xi_0}, v_{\xi_0} \rangle \rangle, \dots, \langle \xi_n, \langle t_{\xi_n}, v_{\xi_n} \rangle \rangle \} \rangle,$$ $$q = \langle s, \{\langle \eta_0, \langle t_{\eta_0}, v_{\eta_0} \rangle \rangle, \dots, \langle \eta_n, \langle t_{\eta_n}, v_{\eta_n} \rangle \rangle \} \rangle$$ and $\langle t_{\xi_0}, v_{\xi_0}, \dots, t_{\xi_n}, v_{\xi_n} \rangle$, $\langle t_{\eta_0}, v_{\eta_0}, \dots, t_{\eta_n}, v_{\eta_n} \rangle$ are compatible in $\bigotimes (\xi^{<\omega} \times \omega^{<\omega})$ and there is one and the same $\alpha \in A$ going through p and through q, then p, q are compatible in T. Indeed, let $$r = \left\langle s, \left\{ \left\langle \zeta_0, \left\langle \tilde{t}_{\zeta_0}, \tilde{v}_{\zeta_0} \right\rangle \right\rangle, \ldots, \left\langle \zeta_m, \left\langle \tilde{t}_{\zeta_m}, \tilde{v}_{\zeta_m} \right\rangle \right\rangle \right\} \right\rangle$$ where $$\{\zeta_0,\ldots,\zeta_m\}=\{\xi_0,\ldots,\xi_n\}\cup\{\eta_0,\ldots,\eta_n\}$$ and if $\zeta_i = \xi_j$ then $\tilde{t}_{\zeta_i} = t_{\xi_j}$, $\tilde{v}_{\zeta_i} = v_{\xi_j}$ and if $\zeta_i = \eta_k$ then $\tilde{t}_{\zeta_i} = t_{\eta_k}$, $\tilde{v}_{\zeta_i} = v_{\eta_k}$. Then the same α in A which goes through p and through q goes through r, and thus $r \in T$, $r \leqslant p$, $r \leqslant q$. Now suppose that there exists a family $F \subseteq T$ such that F consists of pairwise incompatible conditions and is of power ω_1 . By the regularity of ω_1 we can assume that all conditions in F have the same s at the first coordinate and the same length. Let $\alpha \in A$, and $F_{\alpha} = \{ p \in F : \alpha \text{ goes through } p \}$. Then F_{α} consists of pairwise incompatible conditions such that through every two of them goes the same α in A. Thus, by our observation, for every pair of conditions p, q in F_{α} , $(p)_1$ is incompatible with $(q)_1$ in $\bigotimes_{\zeta \in \omega_1} (\xi^{<\omega} \times \omega^{<\omega})$. Hence F_{α} is countable because $\bigotimes_{\zeta \in \omega_1} (\xi^{<\omega} \times \omega^{<\omega})$ is c.c.c. By the regularity of ω_1 there is a $\zeta < \omega_1$ such that $F_{\alpha} \subseteq T \cap (\omega^{<\omega} \times \bigotimes_{\zeta \in \omega_1} (\xi^{<\omega} \times \omega^{<\omega}))$. Let ζ_{α} be the least such ζ . So we have defined a function from A into ω_1 . By our assumption that there is no function from A onto ω_1 and by the regularity of ω_1 , $\sup_{\alpha \in A} \zeta_{\alpha} < \omega_1$. Let $\sup_{\alpha \in A} \zeta_{\alpha} = \eta$. Then, by the fact that $F = \bigcup_{\alpha \in A} F_{\alpha}$, $F \subseteq T \cap (\omega^{<\omega} \times \bigotimes_{\xi < \eta} (\xi^{<\omega} \times \omega^{<\omega}))$. Hence F is countable, contradiction. DEFINITION 5. Consider a subset P of T. We say that P splits at the first coordinate if, for every p in P, there are q_1 , q_2 in P such that $q_i \leq p$ and $(q_1)_0$ is incompatible with $(q_2)_0$ in $\omega^{<\omega}$. FACT 8. Either A is countable or there is a subset P of T such that P is non-empty and c.c.c. and that P splits at the first coordinate. Proof. We modify Solovay's idea [7]. Let us define $$T^0=T,$$ $$T^{\xi+1} = \left\{ p \in T^{\xi} : (\mathbf{E}\alpha_1, \alpha_2) \left(A(\alpha_i) \& \alpha_i \text{ goes through } p \& \alpha_1 \neq \alpha_2 \right) \right\}$$ & $$(q)_T (\alpha_i \text{ goes through } q \Rightarrow q \in T^{\xi})$$. For limit λ , let $T^{\lambda} = \bigcap \{T^{\xi}: \xi < \lambda\}$. Since T is well-orderable, the usual 25 cardinality argument shows that the minimum ξ such that $T^{\xi} = T^{\xi+1}$ is less that ω_2 . We denote this minimal ξ by $\xi(T)$. Let $P = T^{\xi(T)}$. We have: $p \in P$ iff $(E\alpha_1, \alpha_2)(A(\alpha_i)\&\alpha_i \text{ goes through } p\&\alpha_1 \neq \alpha_2$ & $(q)_T(\alpha_i \text{ goes through } q \Rightarrow q \in P)$. Suppose that $P = \emptyset$. We shall show that A is countable. Let α be such that $A(\alpha)$. Then there is a ξ such that there is a p in T^{ξ} such that α goes through pand $p \notin T^{\xi+1}$. Indeed, otherwise $(q)_T(\alpha \text{ goes through } q \Rightarrow q \in P)$ and hence $P \neq \emptyset$. Let ξ_{α} be the least such ξ that there is a p in $T^{\xi} - T^{\xi+1}$ such that α goes through p. Take the least such p. Then by defintttion we have (*) $$(q)_T(\alpha \text{ goes through } q \Rightarrow q \in T^{\xi \alpha}).$$ Let us show that α is the only member of A with property (*) going through p. Indeed, suppose that α' is another member of A with property (*). Then α , α' are such α_1 , α_2 as are required to make p belong to $T^{\xi_{\alpha}+1}$. But $p \notin T^{\xi_{\alpha}+1}$. Thus α is the only member of A going through p with property (*). Thus to every α in A corresponds canonically a pair $\langle \xi_{\alpha}, p \rangle$ such that $p \in T^{\xi_{\alpha}}$. Hence A has a well-ordering. Thus, by our assumption that there is no
function from A onto ω_1 , A is countable. Thus either A is countable or $P \neq \emptyset$. Let us show that **P** has the following properties: (1) if $p \in P$, $\xi \in \omega_1$, $n \in \omega$, $\eta \in \xi$ then there is a $q \leq p$, $q \in P$ such that $\xi \in \text{dom } q \& \eta \in \text{rg}(q(\xi))_0 \& n \in \text{dom } (q)_0$ (2) if $p \in P$, then there are q_1, q_2 in P such that $(q_1)_0$ is incompatible with $(q_2)_0$ and $q_i \leqslant p$, (3) **P** is c.c.c. Let us show (1). Let $p \in P$, $p = \langle s, \{ \langle \xi_0, \langle t_{\xi_0}, v_{\xi_0} \rangle \rangle, \dots \rangle$..., $\langle \xi_n, \langle t_{\varepsilon_n}, v_{\varepsilon_n} \rangle \rangle$. Then $(E\alpha_1, \alpha_2)(A(\alpha_i)\&\alpha_i \text{ goes through } p\&\alpha_1 \neq \alpha_2)$ & $$(q)_T(\alpha_i \text{ goes through } q \Rightarrow q \in P)$$. Take α_1 . Then there are $f_0, g_0, \ldots, f_n, g_n$ such that $\langle \alpha_1, f_i, g_i \rangle$ is a branch of T_{ξ_i} and f_i : $\omega \xrightarrow{\text{onto}} \xi_i$. Moreover, by the fact that $A(\alpha_1)$, there are f, g such that $f:\omega \xrightarrow{\text{onto}} \xi$ and $\langle \alpha_1, f, g \rangle$ is a branch of T_{ξ} . Let m be such that m > n, $n \in \operatorname{rg} f \upharpoonright m$. Let $$q = \langle \alpha_{1 \mid m}, \{ \langle \xi_0, \langle f_{0 \mid m}, g_{0 \mid m} \rangle \rangle, \dots, \langle \xi_n, \langle f_{n \mid m}, g_{n \mid m} \rangle \rangle, \langle \xi, \langle f_{1 \mid m}, g_{1 \mid m} \rangle \rangle \} \rangle.$$ Then $q \in T$, α_1 goes through q. Hence $q \in P$ because $(q)_T(\alpha_1 \text{ goes through } q \Rightarrow q \in P).$ To show (2) we define, respectively, q_1 , q_2 for α_1 , α_2 as above, where m is such that $\alpha_{1|m} \neq \alpha_{2|m}$. Let us show (3). Let $A' = \{ \alpha \in A : (q)_T (\alpha \text{ goes through } q \Rightarrow q \in P \}.$ We have $p \in \mathbf{P} \equiv p \in T \& (\mathbf{E}\alpha)_{\mathbf{A}'} (\alpha \text{ goes through } p).$ Then we can repeat the proof of Fact 7 with A' in place of A. COROLLARY. If G is generic over P, then G determines a sequence $\langle \alpha, f_{\xi}, g_{\xi} \rangle_{\xi \in \omega^{L(\alpha)}}$ such that $A(\alpha)$. Indeed, $\omega_1^{L(\alpha)} = \omega_1$ by Fact 8. By Fact 8, f_{ξ} : $\omega \xrightarrow{\text{onto}} \xi \& \langle \alpha, f_{\xi}, g_{\xi} \rangle$ is a branch of T_{ξ} . Then by §1 we have $A(\alpha)$. FACT 9. Assume that A is not countable. Let C collapse $\mathcal{P}(P)$ onto ω . Then A has a perfect subset in $V^{\mathbf{c}}$. Proof. Notice that the assumptions of Remark 1 are satisfied in V^c with M = V. By the corollary, a filter G-generic over P canonically determines a sequence $\langle \alpha, f_{\xi}, g_{\xi} \rangle_{\xi \in \omega_1^{L(\alpha)}}$. Hence there is a canonical name $\underline{\alpha}$ such that $\underline{\alpha}$ is realized as a in the extended universe. We have in V^c , $\mathscr{P}^M(\mathscr{P}) \simeq \omega$. Moreover, if $p \in P$ then there are $q_1, q_2 \leq p$ and n, m_1 , m_2 such that $q_1 \Vdash (\alpha(\tilde{n}) = \tilde{m}_1)$, $q_2 \Vdash (\alpha(\tilde{n}) = \tilde{m}_2)$. Indeed, this follows from the fact that P splits the first coordinate. Thus, by Remark 1, Ahas a perfect subset. Thus we have completed the proof of Theorem 2. **§3** Now we shall prove a stronger theorem by a similar but more complicated method. Theorem 3. Let \varkappa be a regular cardinal. Let A be Π_2^1 and assume that there is no function from A onto \varkappa . Then either A is well-orderable and of power less than \varkappa or A has a perfect subset in a boolean extension of the universe. Proof. First consider a purely combinatorial lemma. Lemma 1 (ZF). If \varkappa is regular then $\bigotimes \xi^{<\omega}$ is $\varkappa.c.c.$ Proof. We shall show by induction on n that if $F \subseteq \bigotimes_{\xi < \omega} \xi^{<\omega}$ is a family of pairwise incompatible functions with n-element domains then F is of power less than ω . If n=1 then every f in F has the same domain, i.e. there is a $\xi \in \varkappa$ such that $f \in F \Rightarrow \text{dom } f = \{\xi\}$. Thus $F \subseteq \{\langle \xi, t \rangle \colon t \in \xi^{<\omega}\}$. Hence $\vec{F} = \vec{\xi}$ and so $\vec{F} < \varkappa$. Assume the inductive assumption for n and let $F \subseteq \bigotimes_{\zeta < \kappa} \zeta^{<\omega}$ consist of pairwise incompatible functions with (n+1)-element domains. Suppose that $\overline{F} = \varkappa$. Fix $g \in F$. Let dom $g = \{\xi_0, \ldots, \xi_n\}$. Define $F_i = \{f \in F: \xi_i \in \text{dom } f\}$. Then $F = \bigcup_{i \in n+1} F_i$. There is an i_0 such that $\overline{F}_{i_0} = \varkappa$. Let for $t \in \xi_{i_0}^{<\omega}$ $F_{i_0}^t = \{f \in F_{i_0}: f(\xi_{i_0}) = t\}$. We have $F_{i_0} = \bigcup_i F_{i_0}^t$. Again by the fact that $\xi_{i_0}^{<\omega}$ is of power less than \varkappa and by the regularity of \varkappa , there is a $t_0 \in \xi_{i_0}^{<\omega}$ such that $F_{i_0}^{t_0}$ is of power \varkappa . Now define $F' = \{f_{|\text{dom} f^-(\xi_{i_0})}: f \in F_{i_0}^{t_0}\}$. If $f', g' \in F'$ then there are $f, g \in F$ such that $f(\xi_{i_0}) = g(\xi_{i_0})$ and $f' = f_{|\text{dom} f^-(\xi_{i_0})}, g' = g_{|\text{dom} g^-(\xi_{i_0})}$. As elements of F, f, g are incompatible. By the fact that $f(\xi_{i_0}) = g(\xi_{i_0})$, f', g' are incompatible. Hence $\underline{F'}$ consists of pairwise incompatible functions. Notice that if $f' \in F'$ then $\overline{\text{dom}} f' = n$. Thus, by the inductive assumption, F' is of power less than \varkappa . But $\overline{F'} = \overline{F}_{i_0}^{t_0} = \varkappa$. Contradiction. Thu we have proved that if $F \subseteq \bigotimes_{\xi < \kappa} \xi^{<\omega}$ consists of pairwise incompatible functions of power n then F is of power less than κ . Hence, by the regularity of κ , $\bigotimes_{\xi < \kappa} \xi^{<\omega}$ is κ .c.c. Now we carry out a construction similar to the construction of T. Let ξ be a countable ordinal. Let us recall the definition of T_{ξ} from Fact 5. Let $\psi(\alpha, y)$ be the Σ_1^1 formula such that whenever y is a well-ordering then $$\psi(\alpha, y) \equiv (n) \left(F_{\overline{[y]_n}}(\alpha) \text{ is a real} \right) \Rightarrow (Ey') R(\alpha, F_{\overline{[y]_n}}(\alpha), y').$$ Let $T \subseteq \omega^{<\omega} \times 2^{<\omega} \times \omega^{<\omega}$ be such that $$\psi(\alpha, y) \equiv (Ez)(\langle \alpha, y, z \rangle)$$ is a branch of T). Let T_{ε} be defined as $$\langle s, t, u \rangle \in T_s$$ iff (1) $$s \in \omega^{<\omega}$$, $t \in \xi^{<\omega}$, $(u)_0 \in 2^{<\omega}$, $(u)_1 \in \omega^{<\omega}$, dom $s = \text{dom } t = \text{dom } u$, (3) $$(u)_0(\langle m, n \rangle) = 0 \equiv t(m) < t(n),$$ (4) $$(\mathbf{E}\alpha, f, y)_{\omega \times \varepsilon \omega \times \omega}(\langle s, t, u \rangle \subseteq \langle \alpha, f, y \rangle)$$ & $$\langle \alpha, (y)_0(y)_1 \rangle$$ is a branch of $T \& f : \omega \xrightarrow{\text{onto}} \xi$ & $$(m, n)((y)_0(\langle m, n \rangle) = 0 \equiv f(m) < f(n)$$. Then, if $\varphi(\alpha, \xi)$ means $$(\eta)_{\xi} (F_{\eta}(\alpha) \text{ is a real } \Rightarrow (Ey') R(\alpha, F_{\eta}(\alpha), y')),$$ then $$\varphi(\alpha, \xi) \equiv (Ef, g)(\langle \alpha, f, g \rangle \text{ is a branch of } T_{\xi} & f : \omega \xrightarrow{\text{onto}} \xi)$$ provided that ξ is countable. Later let $T_{\xi}(\langle s, t, u \rangle)$ be the formula defining T_{ξ} . Let T_{ξ}^{M} be the relativization of this formula to a class M. Consider the following remark: Remark 7. If B_1 , B_2 are algebras such that $V^{B_i} \models \xi$ is countable, then $$V^{B_1} \models T_{\xi}(\langle s, t, u \rangle) \equiv V^{B_2} \models T_{\xi}(\langle s, t, u \rangle).$$ Proof. Let $\langle s, t, u \rangle$ be given. Assume that $V^{B_1} \models T_{\xi}(\langle s, t, u \rangle)$. Then, in V^{B_2} , $\langle s, t, u \rangle$ satisfies conditions (1)-(3) because they are absolute. Let us show that (4). Work in $V^{B_1 \times B_2}$. Then $V^{B_1} \subseteq V^{B_1 \times B_2}$ thus in $V^{B_1 \times B_2}$, $\langle s, t, u \rangle$ satisfies (4); Notice that, in $V^{B_1 \times B_2}$, (4) is a Σ_1 sentence with a countable parameter ξ . Thus, by Levy's lemma, (4) is satisfied in V^{B_2} because ξ is countable in V^{B_2} . Let $\xi \in \mathbb{X}$. Let B_{ξ} be the usual algebra collapsing ξ onto ω . Let us define T as follows: let $p \in T$ iff $$p = \langle s, \{\langle \xi_0, \langle t_{\xi_0} v_{\xi_0} \rangle \rangle, \dots, \langle \xi_n, \langle t_{\xi_n} v_{\xi_n} \rangle \rangle \} \rangle$$ and (1) $$s \in \omega^{<\omega}$$, $t_{\xi_i} \in \xi_i^{<\omega}$, $v_{\xi_i} \in \omega^{<\omega}$, $\xi_i \in \varkappa$, $$\operatorname{dom} s = \operatorname{dom} t_{\xi_i} = \operatorname{dom} v_{\xi_i},$$ $$(2) V^{B_{\xi_i}} \models T_{\xi_i}(\langle s, t_{\xi_i} v_{\xi_i} \rangle),$$ (3) $(\mathbf{E}\alpha)(A(\alpha))$ $$\& V^{\mathbf{B}_{\xi_i}} \models (\mathbf{E}f_0, g_0 a, \dots, f_n, g_n) (\langle s, t_{\xi_i}, v_{\xi_i} \rangle) \subseteq \langle \check{\alpha}, f_i, g_i \rangle$$ $$\& \langle \check{\alpha}, f_i, g_i \rangle \text{ is a branch of } T_{\xi_i} \& f_i \colon \omega \xrightarrow{\text{onto}} \check{\xi}_i).$$ Let dom p, $(p)_0$, $(p)_1$, $p(\xi)$ be defined as before. Let $p \le q$ if $$\operatorname{dom} p \supseteq \operatorname{dom} q \& (p)_0 \supseteq (q)_0 \& (\xi)_{\operatorname{dom} q} p(\xi) \supseteq q(\xi).$$ Definition 6. Let $p \in T$, $p = \langle s, \{\langle \xi_0, \langle t_{\xi_0}, v_{\xi_0} \rangle \rangle, \dots, \langle \xi_n, \langle t_{\xi_n}, v_{\xi_n} \rangle \rangle \} \rangle$. Let $\alpha \in \omega^{\omega}$. Let us say that α goes
through p if $$V^{\mathbf{A}_{\zeta_i}} \models (\mathbf{E}f_0, g_0, \dots, f_n, g_n)(\langle s, t_{\zeta_i}, v_{\zeta_i} \rangle) \subseteq \langle \check{\alpha}, f_i, g_i \rangle$$ & $$\langle \check{\alpha}, f_i, g_i \rangle$$ is a branch of $T_{\xi_i} \& f_i : \omega \xrightarrow{\text{onto}} \xi_i$. Notice that through every element of T goes an α such that $A(\alpha)$. The next facts show that T is non-empty if A is non-empty. The idea of including in T those p through which "goes a full branch" $\langle \alpha, f_0, g_0, \dots, f_n, g_n \rangle$ not actually in the universe but in a homogeneous boolean extension of the universe is an adaptation of an idea of Mansfield from [5]. Also the proof of Fact 11 and the use of Remark 7 in the proof of Fact 10 have much in common with Mansfield [5]. However, the derivation of the existence of a perfect subset of A in a certain situation, which is the content of the proofs of Fact 13 and also of Fact 8, Fact 9 of §2 and Remark 1 of §0, have more in common with Solovay's ideas from [7] than with Mansfield [5]. All these technical devices which come from other papers are applied to our very particular set of forcing conditions, which is characteristic only for the present paper. FACT 10. Let $A \in \Pi_2^1$. Let $\alpha \in A$. Then $$V^{B_{\xi}} \models (\mathbf{E}f, g)(f: \omega \xrightarrow{\text{onto}} \xi \& \langle \check{\alpha}, f, g \rangle \text{ is a branch of } T_{\xi}).$$ Proof. We have $V^{B_{\xi}} \models A(\check{\alpha})$ because of the absoluteness of A. Thus $V^{B_{\xi}} \models (\varphi(\check{\alpha}, \check{\xi}) \& \check{\xi} \simeq \omega)$. Hence follows the required conclusion. Fact 11. Let $p \in T$, dom $p = \{\xi_0, ..., \xi_k\}$, $\xi \in \varkappa$, $n \in \omega$, $\eta \in \xi$, $\eta_k \in \xi_k$, dom $p \subseteq \xi$. Then there is a $q \le p$ such that $\xi \in \text{dom } q$, $\eta \in \text{rg}(q(\xi))_0$, $n \in \text{dom } (q)_0$, $\eta_k \in \text{rg}(q(\xi_k))_0$. Proof. Let α be such that $A(\alpha)$ and α goes through p. Work in $V^{B_{\xi}}$. Assume that $$p = \langle s, \{\langle \xi_0, \langle t_{\xi_0}, v_{\xi_0} \rangle \rangle, \dots, \langle \xi_n, \langle t_{\xi_n}, v_{\xi_n} \rangle \rangle \} \rangle.$$ Let $f_0, g_0, \ldots, f_n, g_n$ be such that $p(\xi_i) \subseteq \langle f_i, g_i \rangle \& \langle \check{\alpha}, f_i, g_i \rangle$ is a branch of $T_{\xi_i} \& f_i \colon \omega \xrightarrow{\text{onto}} \xi_i$. There are such $f_0, g_0, \ldots, f_n, g_n$ because $V^{B_{\xi_i}} \subseteq V^{B_{\xi_i}}$. Let f, g be such that $\langle \check{\alpha}, f, g \rangle$ is a branch of T_{ξ} and $f : \omega \xrightarrow{\text{onto}} \xi$. There are such f, g by Fact 10. Let m be such that $\eta \in \operatorname{rg} f_{|m}, m > n$, $\eta_k \in \operatorname{rg} f_{k|m}$. Let $q = \langle \check{\alpha}_{|m}, \{\langle \check{\xi}_0, \langle f_{0|m}, g_{0|m} \rangle \rangle, \dots, \langle \check{\xi}_n, \langle f_{n|m}, g_{n|m} \rangle \rangle, \langle \xi, \langle f_{|m}, g_{|m} \rangle \rangle \} \rangle$. Then in $V^{B_{\xi}}$, q satisfies the conditions (1)-(2) of the definition of T, and $\check{\alpha}$ goes through q. By the fact that q is in $V^{B_{\xi}}$ an element of $\omega^{<\omega} \times \bigotimes_{\substack{\zeta \leqslant \check{\xi}}} (\zeta^{<\omega} \times \omega^{<\omega})$, there is an element q of $\omega^{<\omega} \times \bigotimes_{\substack{\zeta \leqslant \check{\xi}}} (\zeta^{<\omega} \times \omega^{<\omega})$ such that $\|q = \check{q}\|_{B_{\rho}} \neq \emptyset$. Thus $\|\check{q}$ satisfies (1), (2) and $\check{\alpha}$ goes through $\check{q}\|_{B_{\rho}} \neq \emptyset$. By the homogeneity of B_{ζ} , this value is 1. Thus q satisfies (1), (2) and α goes through q. Hence $q \in T$, $q \leq p$. Thus q is as required. FACT 12. T is $\varkappa.c.c$. Proof. We simply repeat the proof of Fact 7 with \varkappa in place of ω_1 and the notion of "going through a condition" determined by Definition 2. We use the regularity of \varkappa and Lemma 1. FACT 13. Either A is of power less than \varkappa or there is a subset **P** of T such that **P** is non-empty, \varkappa .c.c. and splits at the first coordinate. Proof. We repeat the proof of Fact 8 with κ in place of ω_1 and with the notion of "going through a condition" determined by Definition 6. Then, if A is not of power less than \varkappa , P has the following properties: (1) if $p \in P$, dom $p = \{\xi_0, \dots, \xi_n\}$, $\xi \in \varkappa$, $n \in \omega$, $\eta \in \xi$, $\eta_i \in \xi_i$, dom $p \subseteq \xi$, then there is a $q \leq p$, $q \in P$ such that $$\xi \in \text{dom } q, \quad \eta \in \text{rg } (q(\xi))_0, \quad n \in \text{dom } (q)_0, \quad \eta_i \in \text{rg } (q(\xi_i))_0.$$ - (2) if $p \in P$, then there are q_1, q_2 in P such that $(q_1)_0$ is incompatible with $(q_2)_0$ and $q_i \leq p$. - (3) P is \varkappa .c.c. We prove (1), (2) as Fact 11, and (3) as Fact 12 with $$A' = \{ \alpha \in A : (q)_T (\alpha \text{ goes through } q \Rightarrow q \in P) \text{ in place of } A \}.$$ Now let us derive the conclusion of the theorem from Remark 2, and Facts 12, 13. Assume that A is not of power less than κ . Let C enumerate all dense subsets of P. Work V^{C} . Let G be generic over P. Define $$\alpha = \bigcup \{s \colon \langle s \rangle \in G\},$$ $$f_{\xi} = \bigcup \{t_{\xi} \colon (Es, v_{\xi}) \Big(\langle s, \{\langle \xi, \langle t_{\xi}, v_{\xi} \rangle \rangle\} \rangle \in G \Big) \},$$ $$g_{\xi} = \bigcup \{v_{\xi} \colon (Es, t_{\xi}) \Big(\langle s, \{\langle \xi, \langle t_{\xi}, v_{\xi} \rangle \rangle\} \rangle \in G \Big) \}.$$ Then, by the property (1) of P in Fact 12, - (1) $\{\xi: f_{\xi} \neq \emptyset\}$ is cofinal in \varkappa , - (2) $f_{\xi} \neq \emptyset \Rightarrow f_{\xi} \colon \omega \xrightarrow{\text{onto}} \xi$, - (3) $f_{\xi} \neq \emptyset \Rightarrow \langle \alpha, f_{\xi}, g_{\xi} \rangle$ is a branch of T_{ξ} . Indeed, (1)-(2) are immediate. Let us show (3). We have: ξ is countable in V^c. Hence, by Remark 7, $$V^{c} \models \langle s, t, u \rangle \in T_{\xi} \equiv V^{B_{\xi}} \models \langle s, t, u \rangle \in T_{\xi}.$$ But $(n)(V^{B_{\xi}} \models (\langle \alpha_{in}, f_{\xi \mid n}, g_{\xi \mid n} \rangle \in T_{\xi}))$ by the definition of T. Thus $$(n) (V^{\mathbf{C}} \models (\langle \alpha_{\mid n}, f_{\xi \mid n}, g_{\xi \mid n} \rangle \in T_{\xi})).$$ Hence $V^{\mathbf{c}} \models \langle \alpha, f_{\xi}, g_{\xi} \rangle$ is a branch of T_{ξ} . By (1), (2), (3), there is a set B cofinal in \varkappa and such that $(\xi)_{R} \varphi(\alpha, \xi)$, i.e. $$(\xi)_B(\eta)_\xi(F_\eta(\alpha) \text{ is a real } \Rightarrow (Ey')R(\alpha, F_\eta(\alpha), y')).$$ Moreover, by the fact that **P** is κ .c.c. and by the regularity of κ , $\kappa = \omega_1^{L(\alpha)}$. Thus we can infer $A(\alpha)$. Now, as in Fact 9, we show that there is a perfect subset of A. As an immediate corollary we obtain the following theorem. THEOREM 4. Assume that there is an ordinal \varkappa such that \varkappa is regular and there is no function from the continuum onto κ . Then every Π_2^1 set either is well orderable and of power less that x or has a perfect subset in a boolean extension of the universe. On the basis of §0 we obtain THEOREM 5. If (x) (x^* exists) and 0^{\dagger} does not exist and there is a regular cardinal x such that there is no function from the continuum onto x, then every Π_2^1 is well-orderable and of power less than \varkappa or has a perfect subset, i.e. is of power C. Also we have THEOREM 6. Let M be Σ_3^1 -correct in any M^C and in V. Let A be $\Pi_2^1(M)$. Assume there is no function from A onto ω_1 in M. Then $A \subseteq M$ and A is countable in M. Proof. Define T for A inside M as in §1. Assume $A \nsubseteq M$. We shall show that, in M, $P \neq \emptyset$ where P is in M the intersection of derivators of T such as in Fact 8. Suppose that $P = \emptyset$. Then, by Fact 8, A is countable in M. Hence in M there is a function f from ω onto A^{M} . We have in the world $(E\alpha)(A(\alpha)\&(n)(\alpha\neq f(n)))$. By the Σ_3^1 -correctness of M, there is such an α in M. Contradiction. Thus $P \neq \emptyset$ in M and hence A has a perfect subset in M^{C} for a collapsing algebra C. But, by the Σ_3^1 -correctness of M, A has a perfect subset in M and thus there is in M a function from A onto ω_1 . Contradiction. Thus $P = \emptyset$ in M and hence A is countable in M. THEOREM 7. Assume that (x) (x^* exists) and 0^{\dagger} does not exist. Then, for every Π_2^1 set A either A is countable or there is a function from A onto ω_1 . Proof. Indeed, under the above assumptions, V is Σ_3^1 -correct in V^c (see Remark 4) where C enumerates $\mathscr{P}(\omega_1)$ with natural numbers. Suppose that there is no function from A onto ω_1 . Then, by Theorem 2, A is countable or has a perfect subset in V^{C} . Thus A is countable or has a perfect subset. But if A has a perfect subset, then there is a function from A onto ω_1 . So A is countable. REMARK 8. Compare Theorem 8 with the Π_1^1 case. We have: every Π_1^1 set A is countable or there is a function from A onto ω_1 (decomposition into constituents or, if A is borel, the function from a perfect subset of A onto ω_1). THEOREM 8. If A is a Π_2^1 set and it is consistent that there is a regular ordinal \varkappa such that there is no function from A onto \varkappa and A is not wellorderable, then it is consistent that A has a perfect subset (we identify A with its fixed Π_2^1 definition). This is a consistency version of Theorem 4. ## References - [1] Z. Adamowicz, A generalization of the Schoenfield theorem on
sets, to appear in Fund. Math. - [2] Continuous relations and generalized G_d sets, to appear. - [3] J. W. Addison, Some consequences of the axiom of constructibility, Fund. Math. 46 (1959). pp. 337-357. - [4] R. B. Jensen, Σ_3^1 absoluteness w.r.t. the core model, unpublished. - [5] R. Mansfield, Perfect subsets of definable sets of real numbers, Pacific J. Math. 35 (1970). pp. 451-457. - [6] A Souslin operation for Π_2^1 , Israel J. Math. 9 (1971), pp. 367-379. - [7] R. Solovay, A model of set theory in which every set of reals is Lebesque measurable, Ann. of Math. 92 (1970), pp. 1-57. - [8] Cardinality of Σ_2^1 Sets of Reals, Foundations of Mathematics, Springer, Berlin 1969. - [9] J. R. Shoenfield, The Problem of Predicativity, Essays on the Foundations of Mathematics, Magnes Press, Hebrew University, Jerusalem 1961.. - [10] P. Zbierski, Models for higher order arithmetics, Bull. Acad. Polon. Sci. 19 (1971), pp. 557-562. INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES Accépté par la Rédaction le 2, 12, 1980