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Perfect set theorems for I73
in the universe without choice

by

Zofia Adamowicz (Warszawa)

Abstract. We work in the theory ZF. We prove the following Theorem 4: if there is a regular
ordinal number x such that there is no function from the continuum onto s, then every [} set
cither is well-orderable or has a perfect subset in a boolean extension of the universe. Hence we
obtain under the assumption (x) (x* exists) and 0" does not exist the following Theorem 5: if there
is a regular ordinal » such that there is no function [rom the continuum onto s, then every T} set
either is well-orderable or has a perfect subset, As one of the corollaries we obtain Theorem 7: if (x)
(x™ exists) and 0" does not exists, then from every [T} set there is a function onto ;. All these
results follow from a construction, for & given IT3 set 4, of a certain tree, the notion of a tree which

" we use being somewhat different from the usual one. A is the projection of that tree. This method

was introduced in [2] and the present paper shows how it can be applied.

In §0 we give a review of the present state of knowledge about perfect subsets of I3 sets, we
prove several easy remarks and give the discussion of our theorems. In §1 we give a construction
of a special tree for a given [T} set. In further sections we prove the theorems.

§0

By the perfect set theorem for a class I' of subsets of w® we mean the
following: every set in I" either is countable or has a perfect subset.

Let us first recall the well-known perfect-set theorems. For II{ or 23 sets
this is the Mansfield--Solovay theorem. Let us formulate it as follows (see [5],
[81): if (%), (@™ is countable), then every IJ ! set either is countable or
contains & perfect subset. The proof of this theorem uses the existence of a tree
T for a given IJ] set 4 such that T & 0= xwr® and A(x) = (Ef) Kx, f>isa
branch of T) (see [97). This characterization of A has the following absoluteness
property: if M & N are inner models and T™, TV are defined for A in M, N
respectively, then T = TN (w*® x(w})“®). Hence

(%) if for x there is an f such that {x,f) is a branch of T™ for an inner
model M, then A(x).

If 7T, M have property () we shall say that T has property (%) wrt. M.
Let us discuss other perfect-set theorems.
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If there is exactly one measurable cardinal and P(w) L[u]is countable,
then we have the perfect set. theorem for 17} (see [6]). Again for a IT} set A we
have a tree with property (*) w.rt. L[u].

If there is a measurable cardinal and P(w) ~ HOD is countable, then the
perfect-set theorem holds for IT3. Moreover, for every I} set A there is a tree T
with property (*) w.r.t. HOD.

Also under the assumption of 43-determinancy the perfect-set theorem
holds for I75, even for IT} and 1 sets. Again in this case every IT4 set is a
projection of the set of branches of a tree. -

There is also another method of finding a perfect subset of a 7 1 set A.
Consider the following remarks. If M is a class, IT3(M) denotes IT in a
parameter from M.

ReMARK 1. Let M be an inner model and P a set of forcing conditions in M,
PM(P)~ . Let A be IT§(M). Let x.c M® be such that M"= A() and for every
pePthere areq,, q, < pand n, m;, my e w such that my #my, gy |- (2 () = 1ity)
and q; |~ (x(7) = h,). Then A has a perfect subset.

Proof. By the assumption that PM (P)~ w we can enumerate all dense
subsets of P belonging to M as Do, Dy, ... Let us define the following nmapping
o from 2= into P. Let ¢ (®) be any condition in Dy 1f o (s) is defined, o (s) = p
then let o(s7(0)), o(s"{1)) be such conditions 91, 93 < p that ’

(1) there are n,, m;, myew such that

al-2(@@) =), gl (2(%) = ),

(2) g; determines the values of a at dom s+1,

(3) qi eDdoms-!'l .

To .ﬁnd 41, g, we first take §,, 4, satisfying (1) (they exist by the
assumptions), next we take g} < 7,, 45 < 4, so that g, ¢, satisfy (2) and then
we take gy, g, so that g; < ¢} and q; satisfies (3).

By definition, o(s)eD,,,,.

Define an induced mapping o*: 2% - y® a5

o* N =m iff
We shall show that
() o*: 2> 4,
(i) o* is continuous,
(iii) o* is 1-1. .
Consider (i). Notice that {6 (i)} new ‘genETate 2 P, M-generic filter, G.

Indeed, this follows by the fact that a(s)eD, Mo
oms - reover, o* =i
Hence o*(f)e4 because M = A(®) and 4 i; asbsolute ") =le@).
Consider (ii). Let ¢ be an initial segment of o* (f) ‘d
de 12 sdom t = p4-1, The
by the d?ﬁmtlon 9f o*, o (far) - (f = @). Hence, for every f',if fyl ., = 1, hen
then o (f}},+1) |- (f < @) and thus t < o* (/). Hence follows the ¢ e o

O (fins D)l (2 7) = ).

ontinuity of *,
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Consider (iii). Let f s f'. Let n be the first number such that
f(n) # f'(n). Then, by the definition of o,

o (fla+1) - (Q‘(ﬁnn) = ’7'1), a(fne ) I (g(ﬁffn) = "‘52)

for different my, m,. Hence o*(f) # o*(f).

By (i), (i), (iii), the image of 2° under o* is a perfect subset of A. m

REMARK 2. Let M be an inner model and C a complete boolean algebra in M,
PM(C)=~ . Let A be I15(M) and assume that there is a G generic over C, M
such that A has an element in M[G]—M. Then A has a perfect subset.

Proof. Let « and G be such that A(x), G is generic over C, M and
ae MG]—M. Then, by the absoluteness of 4, M[G]l= A(x). Let ae M be
such that M€= aew® and ig(@) = a. Let p be such that peC NG, p|- A ().
We can assume that p is the 1 of C because otherwise we can restrict C to p.
Consider the following subalgebra of C, C’. Work in M. Let C’ be the complete
subalgebra of C genérated by the values ||¢ (%) = || for n, mew. We shall show
that there is a peC’ such that C’ restricted to p is atomless. Suppose the
converse, i.e. that under every clement of C’ there is an atom of C'. Then every
filter generic over C’, M is principal. Consider G. Let G' = G C'. Then G’ is
generic over C', M. Hence G’ is principal in C'. Thus G'e M. But a = ig(a)
belongs to M[G'] — having G’ we know all the values of «. Hence ae M.
Contradiction.

So let p be an element of C’ such that €' restricted to p is atomless. Again,
we can assume that p is the 1 of C'. Now we shall show that C’ satisfies the
assumptions of Remark 1. We can treat « as an element of M®. Then
M€ |= A(a) because M€= A(x) and €’ is a complete subalgebra of C.

To prove the main assumption of Remark 1, take pe C'. By the fact that C’
is atomless, there are G’, G” which are different and generic over C', M,
p&G'n G". Then there is a generator of C’ of the form ||a () = #|| which is in
G'—G" or in G"—~G' because otherwise G, G”, being équal at the gen-
erators, would be equal. Let g, =p A lla(?) =i, g, =p A [la() = 7|
< —|la(7) = mil|. Then q, g, are as required in Remark 1. Thus, by Remark 1,
A has a perfect subset. m

In [1], [2] we studied IT sets for which there is a tree T and a family & of
its dense subsets such that 4 is the collection of the family of %-generic
branches of T or is a projection of such a collection. If this characterization is
absolute in the following sense:

(%) if M is an inner model and T™, 9™ are defined in M for A4 and (Ef)
(Lo, f> is a DM-generic branch of T™) then A(x),

then we can infer that 4 is countable or has a perfect subset in V¢ where C
enumerates with natural numbers the family % and P(w). Indeed, in this case, if
A is not countable then the assumptions of Remark 2 are satisfied in V'€ with
M=V ‘
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In this paper we shall define an arbitrary IT§ set 4, a tree T and a
collection @ of its dense subsets such that A is a projection of the collection of
%-generic branches of T (Theorem 1). However, this representation does not
have the absoluteness property (#x ). Nevertheless, it will help us to prove a
certain theorem about perfect subsets in ZF without choice. That theorem is
the main result of the paper and states the following (Theorem 4):

If there is a regular ordinal » such that there is no function from the
continuum onto %, then every II} set either is well-orderable and of power less
that » or has a perfect subset in a boolean extension of the universe.

Now we will discuss the question how our theorem is related to the
present knowledge about perfect subsets of I} sets.

Consider again the known perfect-set theorems for a class I". They are of
the following form: “if certain assumptions hold, then for every set 4 in I" there
is a tree T of height w such that 4 is a projection of the set of branches of T
and T has the property (*) w.r.t. a certain inner model M. Then if P(w) ~ M is
countable, every set in I' either is countable or has a perfect subset”.

In fact, we can derive more from a theorem of this type. From the

. existence of T for a set 4 we can infer that the sentence (Ex) 4 (x) is absolute
wrt. M. Moreover, without the assumption P(w)~ M=~ w, we can infer
another theorem about perfect sets, namely: every set 4 in I' either is included
in M or has a perfect subset.

Thus we have: :

(1) Every IT}({x}) set either is included in L(x), and thus is well-orderable,
or has a perfect subsets;

(2) If a measurable cardinal exists, then every IT3({x}) set either is in-
cluded in HOD(x), and thus is well-orderable, or has a perfect subset.

In both cases we have a complementary theorem to Theorem 4. Consider
the following definitions: ‘

DEFINITION 1. Let M be an inner model. We say that M is Z}-correct if, for
every IT3(M) set A, the sentence (Ea)A(x) is absolute in wr.t. M.

Let M be called Zj-correct if the above absoluteness holds for I1 1 sets.

DEFINITION 2. Let M be an inner model. We say that M is generally Li-
correct if, for every real § such that f is generic over L, the universe M [$] of
sets relatively constructrible from # and the class M is Zi-correct,

DeriNiTioN 3. Let K be Jensen’s core-model. Let K™ be the core-model of
an inner model M. If y is a real then by K, we mean the relativization of the
co:’e~model to y, i.e. the union of mice relativized to y. Analogously we define
KM

If x is a real then K [x], K, [x], K™[x], K¥[x] denote the class of sets
relatively constructible from x and the classes K, K,, KM, KM respectively.

Consider the following remark : ’

REMARK 3. Let M= ZFC be an inner model. Let % be the cardi;mlity of
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P(w)in M. Let Ce L be the usual algebra collapsing x* - onto . Assume that, in .
V<, M is generally Zi-correct. Then every IT} (M) set either is included in M or
has a perfect subset in V.

Proof. Let C' be the subalgebra of C collapsing x» onto w. Work in V€.
Let f be a function enumerating » in type w, generic over C’', M. Note
that [ is generic over L. Then in M[f] there is a function g - such

onta

that g: @ = PM(w). Let A be IT3(M). Suppose that A $ M. Then
(Ea) (A (a)&‘(n)(a #* g(n)))A By the §§-correctqess of M[f], in M[f]

(Ea) (4 () & () # g ().

But then the assumptions of Remark 2 are satisfied in V<. Hence 4 has a
perfect subset, w

The following theorem was proved by Jensen in [4]:

If (x) (x* exists) and OF does not exist, then K is Zi-correct.

The relativized version of this theorem is the following:

If (x) (x* exist) and y* does not exist where y is a real, then K, is Z3-
correct.

We have the following remark:

REMARK 4. If (x) (x* exists) and O does not exist and C is a boolean
algebra, then V is Zi-correct in V€,

Proof. Let A be IT5. Let y be the parameter of the definition of A. Assume
that (Ex) 4 (@) holds in V. Consider K,. Then K, in the sense of V€ is the same
as K,. By the fact that K, is Zj-correct in ¥ we have

K, = (Bx) A ().
Hence (Eo) A(x). w

Consider the following conjecture:

(k) If (x) (x* exists) and y' does not exist where y is a real, then K is
generally Z3-correct.

Assume (#++). Then we have the following ,remark:

REMARK 5. If (x) (x*exists) and-0' does not exist, then every I} set A either
is included in K, where y is the parameter of the definition of A or has a perfect
subset in a boolean extension of the universe.

Proof. We apply Remark 3 with M =K,.

CoroLLARY If (x) (x* exists) and O' does not exist, then every 11} set is well-
orderable or has a perfect subset in a boolean extension of the universe.

Thus, under the assumption (x) (x* exists) and 0" does not exist and under
the hypothesis { *#x), we have proved a theorem similar to Theorem 4 by other
methods than those used in this paper.

By all that we have said:

Theorem 4 is most interesting in the case where (Ex) (x* does not exist)
— note that if O' exists then Mansfield’s theorems [6] work.
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Returning to the assumption (x) (x™* exists) and 0" does not exist observe
that in this case the conclusion of Theorem 4 can be stated as follows: every I3 !
set is well-orderable or has a perfect subset (in the universe). Indeed, in this case
'V is Z} correct in V¢ by Remark 4. But “having a perfect subset” is F'3 for a IT}
set. Thus if a IT} set has a perfect subset in V¢, it just has a perfect subset.

Hence we " have proved the following (under (##x)):

If (x) (x* exists) and 0" does not exist, then every II} set is either included
in K or has a perfect subset, every IT5({y}) set is either included in 'K, or has a
perfect subset.

Thus we see that, as in the case of L for IT} sets and in the case of HOD
for IT} sets under the assumption of the existence of a measurable cardinal,
in the case of K as well the property of Zi-correctness is connected with the
fact that the perfect set theorem for IT3 of the second form holds
w.r.t. K (although we do not know whether there is a tree for a ITi-set in K).

Finally, we observe that if there are arbitrarily large regular numbers then
the assumption of Theorem 4 is satisfied. This follows from Remark 6 below.
Notice that if (Ex) (x* does not exist), then, by the covering lemma
w.r.t. the appropriate L(x), there are arbitrarily large regular numbers. Thus if
(Ex) (x* does not exist) then the conclusion of Theorem 4 holds.

Consider

ReMARK 6 (ZF). There is a cardinal v e On such that there is no function from
the continuum onto v.

Proof of the remark. Let us define the following function f from

(P(Z"’)) into On as follows:
if o is well-orderable,

4
)= { otherwise.

Let B = {f: (E),,., (f(#) = B)}. Then by replacement B is a set. Let v not
belong to B. Let us show that v is as required. Indeed, suppose that there
is a function g from the continuum onto v. Let By = {x&2®: g(x) = ¢}.
Let of = {B;},. Then & is well-orderable and f(s/) =v. Hence veB.
Contradiction. n

Let 3 be regular » > v. Then » is as rcqulred in Theorem 4.

To end this section consider a few remarks concerning the theory ZF
without the axiom of choice. In this theory we can develop a large part of the
_ theory of projective sets. We consider the following projective hierarchy: Zhare
sets definable by an arithmetical formula with a parameter. If the class of zi
sets is defined, then I} is the class of complements of X} sets and Zipy ds the
class of projections “of o} sets.

Note that this does not necessarily coincide with the topological
hierarchy, for instance there may be borel sets that are not ./_I1

For simple families of sets there are selectors because of the Kondo-
Addison theorem.
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§1

First we shall introduce auxiliary notions and notation.

Let us recall from [1] what we mean by a tree in a topological space.

Let (%, ¢> be a topological space in the sense that ¢ is a basis in a
topology in Z'. Any subset T < € is called a tree. An xe & is called a branch of
a tree T iff

(Plo(x€p~ (Eg)r(xeq < p)).

Let A< & be called g. Gy (see [2]) if there is a tree T < O and a family 2
of dense sections of T such that:% < & and A is the set of P-generic
branches of T.

The reals are identified with elements of w® and will be denoted by x, y,
z, ..., &, B, ... If a variable of this type runs over another set, we shall indicate
this.

If y€2° is a well-ordering as a characteristic function of a set of pairs, then

let § denote its type and [y],, for new, the characteristic function of the
ordering

If a is a real, let Fy(x) be the £th set constructible from o in the Go&del
ordering.

By a cardinal we mean an initial ordinal. If % is a cardinal, then & ay
Eex

denotes the weak product, i.e. the set of finite functions f : % — () a, such that
H

f®ea;.

If A4 is a set of pairs, then by a projection of A we mean its projection onto
the first coordinate.

The symbol <.,.> always denotes a pair (of integers or of reals) and (.)o,
(.); denote the coordinates of a pair.

Now, in the main part of this section we shall carry out in ZF without
choice a construction which is the technical basis of the paper.

Assume that we have a II3 1 set A. Let us construct a sequence of trees
(Tdsew, and of families (fﬂ,_-)m,1 such that T, € 0 =® X £=“ x @=%, 9, comsists
of dense subsets of T, and A () = (§) w, (Ef, g) <o, f, ) is a Dy-generic branch
of T).

Let A(x) =
of A.

Facr 1.
R(x, Fu(@), y)).

This fact follows from the Shoenfield absoluteness lemma [9].

Facr 2. There is a £} formula wWere y is a parameter such that if y is

(x)(By) R(a, x, y) where R is II{. We ignore the parameters

A =(LlelFA@) = oy (Fi@) is a real = (Ey)

2 = Fundamenta Mulhematicao CXVIIL 1
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a well-ordering then

V(@) = () [For; (@) is a real = (EY)R(x, Fgj; (@), ¥')]-

Proof. We shall give an outline of the proof. For details the reader is
referred to [3] and [10]. Let F(w, z, o) be the 4] formula with the property
that, for a well-ordering z, F (w, z, ®) = (w codes the set F, +()) where coding
can be done as in [10]. We have

(n) (F[—m(a) is a real = (Ey)R{x, Figp (@), y'))
= (n)(E2) (Bw)[z = V], & F (w, 2, a)
& (w does not code a real v (Eu)(w codes u&(Ey)R(x, u, y))].

Consider the formula “w does not code a real”. Let us indicate how to prove
that it is . We have “w does not code a real” iff there is an n’ in the collection
of almost maximal vertices of w which is not-a code of a pair of integers or
there are two codes of pairs in this collection which have the same first
coordinate and different second coordinates or there is an m for which there is
no n such that the code of (m, n) is an almost maximal vertice of w.

Consider the formula “w codes u”.

We have “w codes u” iff the collection of almost maximal vertices of w
consists of codes of pairs of integers that are in u.

It follows that the formula

() (B2) (Bw) [z = [V, & F(w, z, %) & (w does not code
a real v (Eu)(w codes u& (Ey')R(x, u, y’)))]

is equivalent to a X} formula. Let  be this X} formula. m

Fact 3. If 0(a, y) is a 23 formula of o in a parameter Y, then there is a tree
TS w“°xw<?xw=° such that

0(a, y) = (E2)(<a, y, z) is a branch of T).
Proof. We have
10(, y) =(2) (EnQ (e, z, n)

yvhere Q(a, z, n) is recursive in y. Thus (En) Q (a, z, n) is recursively enumerable
in y. But, by the definition of relative recursive enumerability, there is a
recursive Q' S W X0 ® X0 ®x©»<® such that

.

(En)Q (e, 2, n) = (BK) Q' (@, Zys Ype» K.
Thus '

-0, y) =—‘;(EZ)(k)(_‘Q.’(G‘m, Zis Vi K)).
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Let '
T={(s,t,u): dom s =dom ¢t =domu
&Es, t,u)scs,tst,ucu),doms =domt' = domu
&Q'(s, t', o, dom s)}.
Then we have
0(a, y) = (Ez)(<a, y, z) is a branch of T). =

Combining Fact 2 and Fact 3 we obtain ‘
Fact 4. There is a tree TS 0=°xw0~® xw~® such that

W, ) = (B2, y, z) is a branch of T).
Consider the formula
o, &): (n);(F,,(a) is a real = (Ey)R(x, F,(®), y’)).
We show the following

Facr 5. There is a tree T, € 0= xE°° x 2% x 0~ and a family 2, of its .
dense subsets such that

o, &) =(Ef, y, 2, [, ¥, z) is a Dy-generic branch of Tp).

Proof. Let y(a, y) be the £} formula defined in Fact 2 and let T be the
tree such that

¥ (a, y) = (E2)({, y,.z) is a branch of T).
Let us define T; as follows:
(s, t,v,uyeT;
iff
(1) sew<® tef e, ve2*’, uen™" .
&dom s = dom t = ddm v =dom u,
@ <svupeT, '
@) o(im ) =0 = t(m <t(),
@ (Bt y, Z)wtox:mx;zmxwm(<s, t,o,ud S fo v, 2 &<a, y, 2>
is a branch of T&(m, n)(y({m, n)) =0
= fim) <f ()& : © =5 ¢),

i.e. we require that through every element of T; there should go a branch of T;.
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Let neé. Let
- D, ={{s, t,v,udpeT;: nerg t}.
By (4) D, is dense in T;,
Dy = '{D;l}ﬂﬁf'

We must show that T, is as ‘required, ie.

oo, &) =(Ef, y, 2)({a, f, y, 2) is a Dygeneric branch of 7).
We have: ]

o(, &) =(Ey)(y is a well-ordering of  in type &&y(z, ).

Thus assume ¢ (x, £). Take y such that y is a well-ordering of type £ and
¥ (2, y). Then there is a z such that (a, y, z) is a branch of T. Define fet”as
/() =D,

Then

onto

fro=¢ and (m)(n)(f(m) < f(n) = y(<m, np) = 0):

Hence <, f, y, z) isa branchof T;. Itisa 9,-generic branch because f is
onto &,

Conversely, assume that there are f, y, z such that o, f,9,2) is a Dy-

generic branch of 7;. Then (u, y,z) is a branch of T and thus W(a, y).
Moreover, '

onto

S o={ and M) (y(<m, m)) =0 = f(m) < £ (n).
Hence y is a well-ordering of type ¢. Thus o@ ¢). =

We can join the last two coordinates of the elements of T,. So let us
assume that T, S 0 x {<° x »<®, We have

Facr 6.
@)= O, (Fe(@) is 3 real = E)R(e, Fia) )

= (O, () (F,,(a) is a real = (EY)R(x, F, (), y’))

= (o, 0(, &) ,

= (8o, (B, 9)(<a, £, gD is a D,-generic branch of 7).
Still, without choice, we can define the following tree:

TSsw™x @ (¢ xw<e),
Let -
oo {<C0n o 139D, s oy 0 3D} DT
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(1) sew™ t el ufl,ea);“’, dom s = dom t;, = dom vy
@ st v e T,
B) (B, fo, Gos -0 fos 9 (<5, by 0> S oty £, g1d
& <o, f;, i) is a branch of T, & fi: 0 =5 & & A(w)).

Let pe T. We introduce the following notation:
tfedom 14 lf p = <Sa {<605 <t50’ U¢o>>, ey <5m <t¢n’ v¢n>>}>

and ¢ is a & for an i
p(&) is the pair {t;, v,> if éedom p,
(P)o is the first coordinate of p, s,
(p)y is the sequence {<{&o, <tzy Dz > D, ... s {&n <ty 05,00}
Let us define the following family of dense subsets of T':
if éew,, neé then

Dy, ={peT: Eedom p, nerg (P(O)o}-
By (3) Dy, is dense in T. Let & = {D;,}..,,- Then, using the axiom of
choice, we can prove nes

TueoreM 1. Let A be II§. Then there is a g. Gy subset B of the space

0®x [T (£°x @) such that A is a projection of B onto the first coordinate.
gewy

Prooﬁ

B= {(a,f): aew® fe J] (&% xw®),

gewy
(f (Dot &(f ()10 &(n, m)(&o, ..., Ea,
Catoms {<2or < Eorms (£ Eurmd D -
s Lo A Do (T EDNumd D} VeT).
Then, by definition, <a,f>eB iff it is a %-generic branch of T. We show
A(@) = (Bf)({a, f) is a @-generic branch of T).
For a proof we first observe that by Fact 6 we have
A(@) = (£)o, (Bf, 9o, f, g) is a Dy-generic branch of T;).
Assume A (a). For every ¢ choose one pair (f;, g;> such that {a, f;, g>
is a @,-generic branch of T;. Define fe [] (£ xw®) as f(£) = {fe> 92>. Then

sewy
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o, fdisa @-écneric branch of T. Conversely, if there is an f'such that(a, > @s
a 9-generic branch of T, then, for every ¢, a, (f ©)os (f (D)1 s @ Dy-generic
branch of T;. Hence A(x). w

§2

In this section we prove a theorem about perfect subsets of IJ 1 sets. Its
proof is an 'illustration of the method used in §3 to prove a stronger theorem.
" TueorEM 2. Let A be IT%. Assume that w, is regular and there is no function
from A onto wy. Then either A is countable or A has a perfect subset in some
boolean extension of the universe.
Let us first explain the idea of the proof. Consider the tree T'defined for 4
in §1. It would be natural to treat Tas a set of forcing conditions. Then a V-
generic filter over Twould provide a sequence {a, f;>zeu, Such that {a, fy>isa
De-generic branch of T, ie.

(€, (s (F,(@) is a real =(Ey) R (x, F, (), ¥))-
If the forcing T does not collapse w,, then in the extended universe we have
(O5 (n)g (Fy (@) s a real = (By)R(x, F,(®), y')) and thus A(x).

We shall show that, under the assumptions of the theorem, T'is c.c.c. The usual
proof shows that c.c.c. together with the regularity of @, implies in ZF (without
choice) that «, is not collapsed by T. Thus Tenables us to add elements of A.
We are not able yet to add a perfect set of elements of A, because T is not
necessarily separable (for instance if 4 is provably a singleton) and generic
filters over T can then provide o’s in V. The next idea will be to observe that
either A is countable or there is a c.c.c. atomless separable non-empty subset of
T, P, splitting at the first coordinate. Then, by standard methods, we show that
A has a perfect subset in ¥ where C is a boolean algebra enumerating with
natural numbers the family of dense subsets of P.
We introduce the following definition:

DeriNiTION 4, Let
peT p= s {<Co, Cleps 012Ds oovs CEw St 26,00})  and
We say that a goes through p if therc‘arefgo, Gegs - Jep g, such that s S a,
te, S fep Vg S Gep fyit @ > & and o, fy,, gy, is a branch of T;,. Notice that,

by the definition of T, through every element of T goes an a in A.
Fact 7. Tis ccc.

Proof. Observe first that if
p= <Ss {<60.: <t§o: U§0>>, (ERN] <£m <t¢na D¢">>}>’
g = s, {0, tags 0adDs - s Kty 05D

e,
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and ‘gtco, Vggs oo bey Vg?s Slygs Uygs =-» by,» Oy, > are compatible in
® (¢ xw™") and there is one and the same ae A going through p and
!

through g, then p, q are compatible in T,

Indeed, let
r= <S, {<C0: <Z;O> 6(0>>a ey <Cm> <2;m, ﬁcm>>}>

where

{CO: tevy zm} = {601 seey f,.}U{ﬂo, ey 'In}

and if {; = ¢, then , = tep B, =g, and if {; =, then B = by Dy = Oy

Then the same o in 4 which goes through p and through q goes through'r,
and thus reT, r<p, r<q.

Now suppose that there exists a family F < T such that F consists of
pairwise incompatible conditions and is of power w;. By the regularity of w,
we can assume that all conditions in F have the same s at the first coordinate
and the same length.

Let aeAd, and F, = {peF: a goes through p}. Then F, consists of
pairwise incompatible conditions such that through every two of them goes the
same a in A. Thus, by our observation, for every pair of conditions p, g in F,,
(p); is incompatible with (g); in {C:? (E<®xw<*). Hence F, is countable

1

because @ (£ xw<®) is ccc. By the regularity of w, there is a { <w;
Jewy
such that F, & Tn(w<*x ® (£ xw<).
<

§<g
Let £, be the least such {. So we have defined a function from 4 into w; .
By our assumption that there is no function from A onto w, and by the
regularity of w,, sup {, <w;. Let sup{, =#. Then, by the fact that F
acd aeA '
= F, FETn(0x® (€°x@*®)). Hence F is countable, contra-
§<n

wed
diction. ‘m

DeriNTION 5. Consider a subset P of T. We say that P splits at the first
coordinate if, for every p in P, there are gy, g, in P such that g; < p and (g)o is
incompatible with (g2)o in ®=°. '

Facr 8. Either A is countable or there is a subset P of Tsuch that P is non-
empty and c.c.c. and that P splits at the first coordinate.

Proof. We modify Solovay’s idea [7]. Let us define
T =T,
Té* ! = {pe T*: (Buy, a;) (A(w) & goes through p&ay # ay)
&(q)r (o goes through ¢ = qeT%)}.
For limit A, let T' = {T‘: & < ). Since T is well-orderable, the usual

»
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cardinality argument shows that the minimum ¢ such that T¢ = T**! is less
that w,. We denote this minimal ¢ by &(T).
Let P = T%D. We have:

peP iff
(Eay, o) (A(0) & goes through p&ay # 0,
& (q)r(oy goes through ¢ = geP).

Suppose that P = (. We shall show that A4 is countable. Let « be such that
A(a). Then thereisa ¢ such that there is a p in T¢ such that « goes through p
and p¢ T*1, Indeed, otherwise (g)r(x goes through ¢ = geP) and hence
P+ 0.

Let &, be the least such ¢ that there is a p in T~ T°*" such that o goes
through p. Take the least such p. Then by defintttion we have

(*) © {(g)s(x goes through g = gqeT%).

Let us show that o is the only member of 4 with property (*) going through p.
Indeed, suppose that o' is another member of 4 with property (*). Then «, «
are such a,, @, as are required to make p belong to T%«+1. But p¢ T*+1, Thus
a is the only member of A going through p with property (*). Thus to every o
in A corresponds canonically a pair (&,, p) such that pe T*. Hence A4 has a

well-ordering. Thus, by our assumption that there is no function from A4 onto
w;, A is countable. .

Thus either A is countable or P # Q.

Let us show that P has the following properties:

(1) if peP, écw;, ncw, nef then there is a g < p, qeP such that
edom g & nerg(g(d))o &nedom (g)o,

(2) if peP, then there are,q,, g, in P such that (g,), is incompatible with
(@2)0 and g; < p, ‘

(3) P is ccc.

Let us show (1). [Let
s <€m <t§na U¢">>}>. Then

(Eay, a)(A(o) &0y goes through p&ay # a,)

pEP: p= <S’ {<50’ <t8,'09 v¢0>>= e

&(g)r(o; goes through ¢ = geP).
Take a;. Then there ate fo, go, ..., fu, ga Such that {ay, f;, ¢;> is a branch of Ty,

onio

and f;: @ — ;. Moreover, by the fact that A(x,), there are f, g such that

- . onto s
f:o—¢ and <a‘1,f, g> is a branch of T,. Let m be such that m > n,
nergfm. Let

q= <a1rm’ {<€0’ <f0rma g?fm>>, ey <ém <f;;r'm, gn[m>>‘, <f, <ff"1’ gf"l>>}>
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Then qe& T, oy goes through . Hence geP because
(@)r (@, goes through g = qeP).
To show (2) we define, respectively, ¢,, g, for ay, a, as above, where m is

such that Oytm # Xatme
Let us show (3). Let

A = {acA: (q)r(x goes through g = qeP}.
We have
peP = peT&(Ea),(x goes through p).

Then we can repeat the proof of Fact 7 with A’ in place of 4. m
CorOLLARY. If G is generic over P, then G determines a sequence
{0t for 92, 1w Such that A(w).
Jewy

Indeed, wi® = w; by Fact 8. ,

By Fact 8, fy: coﬁ"—“lé&@c,fg_e, ge> is a branch of T. Then by §1 we
have A(x). . ;

Fact 9. Assume that A is not countable. Let C collapse 2(P) onto w. Then
A has a perfect subset in V. '

Proof. Notice that the assumptions of Remark 1 are satisfied in V¢ with
M=V.

By the corollary, a filter G-generic over P canonically determines a
sequence <a, fy, ga)geul®- Hence there is a canonical name a such that o is
realized as a in the extended universe.

We have in V€, #M (%) ~ . Moreover, if pe P then there are ¢;, 4, < p
and n, m,, m, such that g, | (x(®) =1,), q;I (@() =M,). Indeed, this
follows from the fact that P splits the first coordinate. Thus, by Remark 1, 4
has a perfect subset. m

Thus we have completed the proof of Theorem 2.

§3

Now we shall prove a stronger theorem by a similar but more complicated
method.

THeoREM 3. Let % be a regular cardinal. Let A be I ! and assume that there
is no function from A onto x. Then either A is well-orderable and of power less
than % or A has a perfect subset in a boolean extension of the universe.

Proolf. First consider a purely combinatorial lemma.

Lemma 1 (ZF). If x is regular then ‘:® E<° js w.ce.
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Proof. We shall show by induction on n that if F = & &< is a family of
<x

$
pairwise incompatible functions with n-element domains then F is of power less
than .
If n = 1 then every fiin F has the same domain, i.e. there is a £ € x such that
feF = domf = {£}. Thus F < (<, t): tef<?}). Hence F =& and so F
< x.

Assume the inductive assumption for n and let F ¢ ® £<“ consist of
<y
pairwise incompatible functions with (n+ 1)-element domains.

Suppose that F =x. Fix geF. Let domg = {{,, ..., £,}. Define F,
={feF: {,edomf}. Then F =1EL')|‘1 F;. There is an iy such that F‘o =,
Let for te&5® Fiy = {feFy,: f(§,) =t}. We have F,, = U Fy.

Again by the fact that {5 is of power less than x and by the regularity
of %, there is a to€&;,® such that F:g is of power x. Now define F’
= {j}dnm,_gio): feFS. If f',g'cF’ then there are f,geF such that

S i) =g(&) and f' = fusoms -1 ' = Gtdong- ;) AS elements of F, f, g are
incompatible. .

By the fact that f (&, ) = g(&ip), f' g’ are incompatible. Henct_e_:F_’_” goﬁsists
of pairwise incompatible functions. Notice that if f'eF’ then dom f' = n.
Thus, by the inductive assumption, F' is of power less than x. But
F' = F{% = ». Contradiction. ‘

Thu we have proved that if F = ® £<° consists of pairwise incom-
patible functions of power n then F is i;fxpower less than x. Hence, by the

regularity of %, & &<® is x.cc. n
&<

Now we carry out a construction similar to the construction of T Let 4
be a countable ordinal. Let us recall the definition of T, from Fact 5.

Let y(x, y) be the X} formula such that whenever y is a well-ordering
then

¥ (@, y) = (m)(Fi(a) is a real) = (EY)R(a, Fii-(a), ).
Let TS w0 x2°xw~® be such that
¥ (@, y) = (E2)(Ca, y, z) is a branch of T).
Let T; be defined as
s, t,upeT;
iff
1) sew™®, tef=?, (u)ye2~°, ), cw=?,

dom s = dom ¢ = dom u,

e ©
lm Perfect set theorems for IT} in the universe without choice
(2) <S, (u)Oa (u)1> € Tv

B)  (Wo(Km, nd)=0=1t(m) <t(n),

(4) (E(Z,f, y)‘wa£‘”me(<Sﬁ L u> = <C1,f, J’>

‘ onto

& (o, (1)o(y)y) is a branch of T& f: w —¢&

& (m, m)(¥)o (Km, m)) = 0= f(m) < f ().

Then, if ¢(a, ) means
(e (F,, (@) is a real = (Ey)R(a, F, (), y’)),
then
o, &) = (Bf, 9) (o, f, g) is a branch of & f: 0 =>¢)

provided that £ is countable.

Later let T;(¢s, t, up) be the formula defining T;. Let T;M be the relativ-
jzation of this formula to a class M. Consider the following remark:

Remark 7. If B,, B, are algebras such that VP =& is countable, then

VO Ty((s, 8 u)) = V2 TS, £ w)).

Proof. Let ¢s, t, u) be given. Assume that yhe Tx(¢s, t, uD). Then, in
v, (s, t, uy satisfies conditﬂio,{xg D3 becgilsc tl}e!yx gzre absol}xte. Lot s
show that (4). Work in V"'*"2 Then V<V thus in V"7,
s, t, u) satisfies (4); Notice that, in V 17 (4). is a z, sc_:nter}’cze with a
countable parameter £. Thus, by Levy’s lemma, (4) is satisfied in V" * because

Z is countable in V2. w

Let £ex. Let By be the usual algebra collapsing ¢ onto w. Let us define

T as follows:
let pe T iff

p = s, {CBor CtagtegdPs -+ » L <Eiy2e V1)

and o
(1) sew':m’ z§i€§i<w’ U{;E(D ’ gien:

dom s = dom ty = dom gy
@) V™ T, (G, t0e)):
(3) (Be)(4() .
& V™ (Efo, ot -+ » fuv 9(<5: tes 04) S <& fio G20

& <3, fi, g;> is a branch of T & fi: 0 —

Let dom p, (o, (P)1, P(&) be defined as before. Let p<gq if
dom p = dom ¢ & (p)o 2 ()0 & (L)iome P(8) 2 4(&)-
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DEFINITION 6. Let pe T, p-= s, {Cos Ctegr 5o s {tyy v¢”>>}>.
Let xew®. Let us say that a goes through p if

‘ i ~
|4 él}= (EfO: Gos --- sfm gn)(<sﬁzi=/5§i> < <a’ﬁa gl)
&<&, fi, ¢ is a branch of T &fi: w 5 ).

Notice that through every element of T goes an o such that A(x).

The next facts show that Tis non-empty if A is non-empty.

The idea of including in T those p through which “goes a full branch”
<@, fo, Gos -++ » fu» Gup DOt actually in the universe but in a homogeneous
boolean extension of the universe is an adaptation of an idea of Mansfield
from [5]. Also the proof of Fact 11 and the use of Remark 7 in the proof of
Fact 10 have much in common with Mansfield [5]. However, the derivation
of the existence of a perfect subset of A in a certain situation, which is the
content of the proofs of Fact 13 and also of Fact 8, Fact 9 of §2 and Remark
1 of §0, have more in common with Solovay’s ideas from [7] than with
Mansfield [5].

All these technical devices which come from other papers are applied to
our very particular set of forcing conditions, which is characteristic only for
the present paper.

Fact 10. Let Aell}. Let acA. Then
VEEES, 9)(f: 0 28 E& <A, S, g5 is a branch of Ty).
Proof. We have VB§}=A(0‘0 because of the absoluteness of 4. Thus
V¥ (0 H&E ~w).

Hence follows the required conclusion,

Facr 11. Let peT, domp={{, ..., &}, Eex, ne o, neé, mek,
dompc . Then there is a q<p such that Eedom 4, nerg(q(¢)
nedom (g)o, merg(q(&)o-

Proof. Let « be such that A(2) and a goes through p. Work in V™,
Assume that

03

P = <S, {<50: <t{0’ U€O>>’ ey <6n: <t4',,: U‘”>>}>.
Let fo, 9o --- 5 fus gu be such that p(&) < ¢, 90 & <&, f;, g;> is a branch of
Téx&f; w El_'_‘_’) E. There are such fO: gos - uj;n Gn because V’h & V.‘:. Let

/. g be such that (4, f; g)> is a branch of Trand f: w 5 ¢, There are stch
/. g by Fact 10. Let m be such that NEIL fim, m>n, METL fypm. Let
q= v<d’rm’ {<50’ <f0[m3 gorm>>, sy <Em <f;|[m’ gnfm>>’ <E: <frnn grm>>}>-
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Then in V"‘f, q satisfies the conditions (1){2) of the definition of T, and &
goes through ¢. By the fact that g is in V™% an element of w<®x

x % (£5®x@=%), there is an element g of ®<*x ® ({“® x w<*) such that
g <
1|qé=' qlls, # ©. Thus ||§ satisfies (1), (2) and & gocesithrough dls, # O.
By the homogeneity of B,, this value is 1. Thus g satisfies (1), (2) and «
goes through g. Hence geT, ¢ < p. Thus q is as required. w
Facr 12. Tis x.cc.
Proof. We simply repeat the proof of Fact 7 with x in place of w,; and

the notion of “going through a condition” determined by Definition 2. We
use the regularity of » and Lemma 1.

Facr 13. Either A is of power less than x or there is a subset P of T such
that P is non-empty, x.c.c. and splits at the first coordinate.

Proof. We repeat the proof of Fact 8 with x in place of w, and with

the notion of “going through a condition” determined by Definition 6.

Then, if A is not of power less than », P has the following properties :
() if peP, dom p={&, ..., &}, Eex, new, net, ne&, dompc,
then there is a ¢ < p, geP such that

(edomg, nerg (q()o,

nedom (9)o,  mye1g (7(&))o.

(2) if peP, then there are g,, g, in P such that (gy), is incompatible
with (g2)o and ¢; < p.

(3) P is x.cc.

We prove (1), (2) as Fact 11, and (3) as Fact 12 with

A'={aeA: (g)r(x goes through ¢ = geP) in place of A}.

Now let us derive the conclusion of the theorem from Remark 2, and
Facts 12, 13,
Assume that 4 is not of power less than ». Let C enumerate all dense
subsets of P. Work V°. Let G be generic over P. Define
a={ {s: {s)eG},
fi=U {te: Bs, 09(<s, (€8, <ty 00D} e6)),
ge=U {Uc: (Es, tg)(<s, {<&, <ty v¢>>}>eG)}.
Then, by the property (1) of P in Fact 12, '
| (1) {&: fy ¢ @} is cofinal in x,
Df#0 = fit 0S¢,
(3) fy # O = <La,fs, g2 is a branch of T;.
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Indeed, (1){2) are immediate. Let us show (3). We have: & is countable
in V¢ Hence, by Remark 7,

Ve (T upeTy= ViR G upe Th.
But (1) (V™= (Ctom Form Gzm> € B)) by the definition of T. Thus

) (Ve (s Sepme Gern> € T)-

Hence VCk=<a, f;, g«> is a branch of Ty. By (1), (2), (3), there is a set B
cofinal in » and such that (&)z @(a, &), ie.

(s () (F, (o) is a real = (Ey)R(x, F,(@), ¥)).

Moreover, by the fact that P is x.cc. and by the regularity of », x = @@,
Thus we can infer 4 (a). Now, as in Fact 9, we show that there is a perfect
subset of 4. m :

As an immediate corollary we obtain the following theorem.

THEOREM 4. Assume that there is an ordinal % such that » is regular and
there is no function from the continuum onto x. Then every II} set either is
well orderable and of power less that x or has a perfect subset in a boolean
extension of the universe. ‘

On the basis of §0 we obtain

THEOREM 5. If (x) (x™* exists) and O' does not exist and there is a regular
cardinal » such that there is no function from the continuum onto x, then every
IT} is well-orderable and of power less than % or has a perfect subset, i.e. is of
power &,

Also we have

THEOREM 6. Let M be E3-correct in any M€ and in V. Let A be IT5(M).
Assume there is no function from A onto w, in M. Then A< M and A is
countable in M. : ’ )

Proof. Define T for A inside M as in §1. Assume 4 & M. We shall
show that, in M, P O where P is in M the intersection of derivators of T
such as in Fact 8. Suppose that P = (. Then, by Fact 8, 4 is countable in
M. Hence in M there is a function f from @ onto A™. We have in the world
(Ea) (A(a)&(n)(a #f (n))). By the Xj-correctness of M, there is such an « in
M. Contradiction. Thus P % @ in M and hence A’ has a perfect subset in M€
for a collapsing algebra C. But, by the Xi-correctness of M, A has a perfect
subset in M and thus there is in M a function from 4 onto wy.
Contradiction. Thus P = @ in M and hence 4 is countable in M. =

THEOREM 7. Assume that (x) (x* exists) and O does not exist. Then, for
every IT3 set A either A is countable or there is a function from A onto .

Proof. Indeed, under the above assumptions, Vis Zi-correct in V¢ (see
Remark 4) where C enumerates #(w,) with natural numbers. Suppose that
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there is no function from 4 onto w,. Then, by Theorem 2, A4 is countable or
has a perfect subset in V€, Thus A4 is countable or has a perfect subset. But if

A has ‘a perfect subset, then there is a function from A4 onto wy. So A is
countable, m

RemArk 8. Compare Theorem 8 with the II} case. We have: every II}
set A is countable or there is a function from A onto w, (decomposition into
constituents or, if A is borel, the function from a perfect subset of A onto wy).

THEOREM 8. If A is a II} set and it is consistent that there is a regular
ordinal x such that there is no function from A onto x and A is not well-
orderable, then it is consistent that A has a perfect subset (we identify A with
its fixed IT} definition). .

This is a consistency version of Theorem 4.
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