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Compact discrete flows
by

Ronald A. Kni_ght (Kirksville, Mo

Abstract, In this paper we obtain properties for certain homeomorphisms of locally
compact Hausdorff spaces. Compact discrete flows are characterized in terms of the bilateral
stability properties of the orbits and stability theorems for cycles are formulated.

1. Introduction. The structure of compact continuous flows on
dichotomic 2-manifolds and locally compact Hausdorff spaces are analyzed
in terms of the bilateral stability properties of the orbits in [6] and [9]. Our
aim here is to analyze compact discrete flows in a similar manner. In order
to accomplish this task we develop a cycle stability theorem for discrete
flows on locally compact Hausdorff phase spaces. Of course, the structural
analysis of compact flows applies to locally compact subsets of the periodic
set of an arbitrary discrete flow on a locally compact phase space and the
cycle stability theorem indicates the structure of the phase space near
periodic orbits. ) )

Throughout the remainder of the paper we shall let (X, 7) be a given
discrete flow on a locally compact Hausdorff phase space X. The periodic set
and the critical set are denoted by P and S, respectively. The extension of
(X, ) to the one point compactification X* of X is denoted by (X*, n*). The
extension of a function F on X is denoted by F* and the extended critical set
is denoted by S*.

The integers, nonnegative integers, and nonpositive integers are denoted
respectively by Z, Z*, and Z~. We let M® and @M denote the respective
interior and boundary sets of a set M. For convenience we let [a, b]
={teZ: agt<b}

The positive orbit through a point x denoted by C*(x) is xZ* and the
positive orbit closure is denoted by K™ (x). The w-limit set (\{K* (xt): teZ*}
of a point x is denoted by L' (x). For a point x the positive prolongation is
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‘D*(x) = N {C*(V): Ven(x)} where n(x) is the neighborhood filter of x, or
equivalently, D* (x) = {y: x;—y for some net x;-»x and ,eZ"]. The
positive prolongational limit set of x is J*(x)=({D*(xt): teZ"}, or
equivalently, J*(x) = ly: xit; >y for some net x;—»x, t;eZ”, and f,—
+0o0}. A point x is (positively) weakly attracted to a set M il and only if the
net (xt), te Z", is frequently in every neighborhood of M. The set of all such
points x is called the region of (positive) weak attraction of M and is denoted
by A} (M). If A} (M) is a neighborhood of M, then M is called a (positive)
weak astractor. A set M is called (positively) stable if for each neighborhood
U of M there exists a neighborhood V of M such that ¥V =C* (V)< U.
Whenever © set M is both positively stable and a positive weak attractor
then it is called (positively) asymptotically stuble. The negative and bilateral
versions of each concept above is defined and denoted in the obvious
manner, For general references to the concepts above the reader is referred
to [1], [3] [5]. and [7].

A continuous or discrete flow is called compact (closed) if each of its
orbits is compact (closed). We note that the compact orbits in this paper are
either periodic or critical [5, 3.09]. A flow is said to be of characteristic 0 on
a set M if D(x)=K(x) for each x in M. A flow is of characteristic 0
whenever it is of characteristic O on the phase space. The unilateral versions
of this notion are defined similarly and carry the appropriate superscript.

2. Cycle stability. The major results of this section depend upon four
key lemmas which we present first. The proof of Lemma 1 is almost
immediate if the periodic orbit' conjecture holds for discrete flows but this is
evidently impossible in view of the counterexample given by Sullivan [11] for
continuous flows.

LemMA 1. A compact discrete flow without critical points on a locally
compact phase space is of characteristic 0.

l?roof. Let (X, ) be compact and X = P. We proceed by contradiction
showing that D(x)} = C(x) for each x in P. For some x& P let ye D(x)~ C(x).
Select an open. neighborhood V of C(x) with compact closure ¥ contained in
X~C(y). Let A = {z: C(z) meets V and X7V} and B = X—~A. We have A
opcn3 B closed, and C(x)uC(y)c B. For any point zed define t.
=min {teZ"* tzteV but z[0, t] ¢ V}. Evidently, t, < + 0. Also for a corr;~
pact set M = V' n A define T, =sup|t,: ze M}. For any z in M we have by
the continuity of =z an open neighborhood W, of z such that t <t
for each peW,. There is a finite subcover {W, ..., W, } of M. fI“l:us:
f; < max {t;;: 1 <i<k}, and hence, Ty < +o0. Né)lct, let (zxki) be a net in V,
converging to x and let () be a net in Z* with each r, less than the period of x,
such that x;; — y. If (r;) is bounded by some positive T, then yisin V0, T} soz
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that C(y) n ¥ % @. This is impossible so we have (r;) unbounded. The nets (x;)
and () can be chosen so that (xr,) isin X — V. Let f; = max {r: xreVand0<t
< r;}. Some subnet (x,,t,) of (x;;) converges to a point z in V. Suppose that z € 4.
Let G be a compact neighborhood of z contained in 4 and let M = G n V. Then
X, = (gl ) (P — ty) 1s ultimately in MO0, Ty). But this means that
C(y)~ ¥ # @ which is absurd. Thus, z€ B rather than A. If z¢ C(x), then for
some ¢ > 0 select a neighborhood W of zt with compact closure such that z¢ W
and C(y)u C(x) = X — W. If each compact subneighborhood of W contains a
complete orbit, then there would be a net of periodic orbits (C(yl-)) in W such
that y, — zt. This means (y,(~—1)) converges in W but y;(—1) — z. Thus, we can
select W containing no complete orbit. Either C(z) « ¥ or C(z) = X —V with
C{(2) & ¢V, First, suppose that C(z) =¥V and let ¥, = V'—W. Using the notations
employed for ¥ we have zeA,. As before this is not possible. Next, whenever
C(z) = X—V let V, be the interior of V[0, T] where T is the fundamental
period of z. If for some subnet (t,,j) of (t,) we have Ty S g+ T, then ye V[0, T1.
Hence,  eventually ¢, +T <ry, with  x, (t,+ 1)~ 2T =z and t,+T
=max{t: x,teV,and 0t < rv - As before we have C(z) = V, which was
shown to be impossible. We have now shown that z ¢ ¥— C(x). Thus, z must be
in the orbit C(x). Let ¢ be the least nonnegative integer such that xt # z.
Following the proceedures above select a neighborhood W of xt with compact
closure such that z¢ W, C(y) = X — W, and W contains no complete orbit. By
using the reasoning outlined above for ¥, = V— W in place of V we can show
that C(y) must meet ¥, which again is impossible. Whence, we conclude that
D(x) = C(x). The proof is complete. )

Lemma 2. Each orbit in a compact discrete flow without critical points on
a locally compact phase space is bilaterally stable.

Proof. Let (X, ) be compact and let X = P. Suppose that there is a
compact neighborhood V of some periodic orbit C(x) containing no invari-
ant subneighborhood of C(x). Then there are nets (x;) in VO and () in Z*
such that (x;t) is in X—V. In view of Lemma 1, no subnet of (x;t;) can
converge in X — V. Hence, some subnet of (xt;) converges to oo in (X*, *).
The argument used in Lemma 1 can be used here letting y = oo to obtain
the contradiction oo¢D*(x). Consequently, C(x) is bilaterally stable in
(X*, n*) and hence in (X, n).

Lemma 3. Let C(x) be a periodic orbit. Suppose that a neighborhood V of
C(x) exists which contains no complete orbit -except C(x) and suppose that
there do not exist points y, z¢ C(x) such that L' (y) = L (z2) = C(x). Then
C(x) is either asymptotically stable or negatively asymptotically stable.

Proof. We can select V open with compact closure. Let:y be any
element of X—C(x) such that K™ (y)< V. Then L' (y) is a nonempty
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invariant subset of ¥ and hence, L (y) = C(x). We have either K* (y) n (X —~
—V) # @ or L' (y) = C(x). Similarly, the negative version holds. Thus, either
L (z) # C(x) for any ze X —C(x) or L' (z) = C(x) for some ze X —C(x) so
that either K¥(2)n(X—V)# @ for every zeX—C(x) or K™ (z)n(X—V)
# @ for every ze X —C(x). '

First we consider the case K+ (z) n (X —V) # @ for each ze X — C (x) and
show that C(x) is negatively asymptotically stable. Now X —V is a weak
attractor with A;} (X — V) = X —C(x). To show that C(x) is negatively stable we
consider the extended flow (X*, 7*). Suppose that C(x) is not negatively stable.
Then V contains no negatively invariant subneighborhood of C(x). There is a
net (x;) converging to x and a net (t;) in Z~ such that (x;f;) converges to some
point y in X*—V. Thus, ye D~ (x) and hence xe D™ (y). Since V contains only
one complete orbit C(x), we can select ¥V so that C(x) is the only complete orbit
in ¥ and in that case we can select the nets so that (x;t;) is in X*— V. For each
p¢C(x) define t, =min{t > 1: pre X*—V}. Evidently, 1, < + 0. Define T
= sup {t,: peX*—V}.Every positive orbit starting in X*— V' meets X*— V. By
the continuity of = there is a neighborhood ¥, of pe X* —V such that t, < t, for
each ge¥,. There is a finite subcover {¥,,,..., ¥, } of the compact set X*—V.
Thus, t, < max{t, ,...,t,}, and hence, T < + 0.

Next, since xeD* (y) select nets (y;) in X*—V converging to y and (t;) in
Z" such that (y;t)) is in V and y;t; > x. Let (r;) be the net in Z* defined by r,
= max {teZ: yteX*—Vand0<t< t;} for each i. Since X*—V is compact
we can choose (y;) and (t)) so that (y;r;) converges to some point p in X*—V.
Since 0 <t,—r; < t,, we conclude that y;t; = (y;7;)(t;—7;) converges in (X*—
~ =W[0, T]. But this means that xe(X*—¥)[0, T] contradicting C(X*-V)
= X*—C(x). Whence, C(x) is negatively stable.

Finally, we show that C(x) is a negative attractor. Let W be a negatively
invariant subneighborhood of C(x) in V. Since C™ (y) < V for each ye W we
bave L (y) = C(x). Hence, C(x) = W = A (C(x)). We have shown that C (x)is
negatively asymptotically stable.

If the second case K™ (2) n(X —V) # @ for each ze X — C(x) holds, then a
similar argument yields C(x) asymptotically stable. The proof is complete.

Lemma 4. A periodic orbit C(x) is stable (negatively stable, bilaterally
stable) provided D*(x) = C(x) (D™ (x) = C(x), D(x) = C(x)).

Proof. Let D*(x) = C(x) and suppose that C(x) is not stable. Using
the reasoning of the Lemma 3 proof we can find a net x; - x and (f;) in Z*
such that (x;t;) converges to a point y of X*—V where V is a compact
neighborhood of C(x). But this means that ye D** (x) which is impossible.
Thus, C(x) is stable in X* and, therefore, in X.-The remainder of the proof
follows similarly. )

The next thForem is an extension of Ura’s prolongational stability
theorem for continuous flows [12] to discrete flows.
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THEOREM 5. In a discrete flow on a locally compact space a compact set
M is stable (negatively stable, bilaterally stable) if. and only if DY* (M) =M
(D™ (M) = M, D(M) = M). _

Proof. Let D" (M) = M for some compact set M and suppose that M
is not stable. Then there is a compact neighborhood V of M containing no
positively invariant subneighborhood of M and thus we can find a net (x;)

.converging to x in M and a net () in Z* such that (x;z) is in X — V. By choosing

t; so that x(t; —1)eV we can select (x;) and (t;) so that x;t; converges to a point y
in V1 —V° Hence, we have yeD* (M) n (X —V°) which is absurd. Thus, M is

stable. .
Conversely, if y¢ M, then there is a compact invariant neighborhood of

M excluding y. Hence, y¢D* (M) and D* (M) = M.
The following version of Ura’s alternatives for discrete flows follows
from Lemma 3.

TuroREM 6. In a discrete flow on a locally compact space a periodic orbit

C(x) has one of the following properties:
(i) C(x) is asymptotically stable.

(i) C(x) is negatively asymptotically stable.

(iii) There exist points y, z¢ C(x) such that L' (y) = L~ (z) = C().

(iv) Every neighborhood of C(x) contains a complete orbit distinct from
C(x). :

The subsequént theorem is a partial extension of the Cycle Stability
Theorem for continuous flows on dichotomic 2-manifolds. Considering the
preceeding results the proof is now evident.

TueoReM 7. In a discrete flow on a locally compact space

(i) each orbit of P° is bilaterally stable,

(ii) ‘@ periodic boundary orbit C(x) of P is not stable in any sense if there
exist y, z¢ C(x) such that L' (y) = L (z) = C(x), and

(ifi) a periodic orbit C(x) in the boundary of P is stable, negatively stable,
or bilaterally stable provided the flow is of characteristic 0%, 07, or 0 on C(x).

COROLLARY 7.1. In a compact discrete flow on a locally compact space
each periodic orbit is bilaterally stable. ) .

COROLLARY 7.2. On a locally compact space a compact discrete flow is of
characteristic 0 if and only if each critical point is bilaterally stable.

PROPOSITION 8. A compact discrete flow on a locally compact space is of
characteristic 0 if and only if it is of characteristic 0*, 07, or 0%,

Proof. A compact discrete flow on a locally compact phase space is of
characteristic 0 if and only if its extended flow is of characteristic 0. The
proof follows. from Proposition 3 of [8].
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3. Cor'npact discrete flows. We turn our attention to characterizations of
compact discrete flows. Compact components of the critical set of a compact
continuous flow on a locally compact phase space are shown to be bilaterally
stable in [9]. The following Jemma gives our version of that property for
discrete flows. : ‘ ‘

LEMMA 9. On a locally compact space a discrete flow has a bilaterally
stable critical set provided its boundary is compact. ‘ :

Proof. Each periodic orbit C(x) is bilaterally stable and D{C(x))
= C(x). Thus, D(P) = P and so D(S)=3S. By Theorem 5 the critical set is
stable.

The subsequent two theorems arc extensions of characterization
Theorems 5 and 6 of [9].

TugoreMm 10. A discrete flow on a locally compact space is compact if and
only if S*(8S*) is bilaterally stable, each periodic orbit is bilaterally stable, and
L(X)=PuS. . ’

Proof. If (X, n) is compact, then the three conditions ‘follow from
Theorem 7 and Lemma 9.

. Conversely, we proceed by first showing that P is open. For any point y
in P select a compact invariant neighborhood V of C(y) disjoint from S*.
Then K (z) is compact for any z in V and @ 5 L(z) = P. If z¢P, select a point ¢
in L(z) and a compact invariant neighborhood ¥, of C(g) excluding 2. This leads
to the. absurd condition K (z) n C(q) = @. Hence, P is open.

o Finally, if x is in X —P U §, then I* (x) < S* since P is open. Clearly this
is .1rnpossible since a compact invariant neighborhood of §* excluding x
exists. Consequently, (X, n) is compact. '

CDRC.)LLARY 10.1 .A closed discrete flow on a locally compact space is
compact if and only if S* and each periodic orbit are bilaterally stable.

1 T}{E;RE_M bl} A d;‘screteﬂow on a locally compact space is compact if and
only i is bilaterally stable, each periodic orbit is bilaterally st
PuS is a global attractor. ' - y stable, and

Proof. The set PUS is a global attractor if and if Lf
ont F(X) =
The proof follows from Theorem 10. A SE=Fus

om Caz)tla(?fLLA;Y 111.1}{ :;l*discrele flow on a connected locully compact space is
. pact if and only i is bilaterally stable, each periodic orbit is bilat k
stable, and P S is a closed artractor. ! roitio bilarerally

o .A dlstal compact_ discrete ﬂpvy need not be of characteristic O.V A discrete
w ondg compact d1sc‘ X consisting of an annular region of periodic orbits
Sbl‘l)lzgzil,l;l mgf ?hclos@ dllSC of critical points is not of characteristic 0 on the
ary of the critical set. However, in view of Theore:
8 m
and [5] the flow is.distal, i 1 and 410 of 2

Similarly, such a flow need not be equicontinuous. For if so then the
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flow has proximal pairs the diagonal of X x X [3, 5.12] and has enveloping
semigroup E(X) a compact subgroup of X* [3, 5.3]. That (X, m) is equicon-

‘tinuous means that E(X) is equicontinuous, and hence, uniformly equicon-

tinuous. The orbit closure relation is a Hausdorff space [3; 44, 4.10] implying
that (X, =) is of characteristic 0 [10, 2.4]. This contradiction leads us to the
nonequicontinuity of (X, m) at least for compact discrete flows not of
characteristic 0 on locally compact phase spaces. :

Furthermore, such a flow need not be (locally) weakly almost periodic
[5; 2.30 (3), 4.17, 4.24] or uniformly almost periodic {3, 44]. :

The following theorem shows that at least a locally compact periodic set
enjoys these properties. .

Tueorem 12. Let (X, m) be a compact discrete (continuous) flow without
critical points on a locally compact phase spuce. Then the flow is

(a) (locally) weakly almost periodic,

(b) distal,

{c) equicontinuous, and

(d) uniformly almost periodic.

Moreover, the enveloping semigroup EX)of (X,m)isa topological group
of homeomorphisms.

Proof. Property (a) is evident from [5; 2.31, 4.24] and Lemma 1. The
flow induced on the product X x X by letting (x, )t = (xt, y1) for teZ and
x, ye X is easily seen to be periodic with no critical points. The extended
product flow on X* x X* has one critical point (oo, o). In view of Lemma 1,
both the product and extended product flows are of characteristic 0 and
satisfy property (a). Also both product flows are pointwise almost periodic
[5, 4.10], and hence, (X, n) and (X*, =*) are distal [3, 5.9]. Now X* is
compact, the extended product flow is weakly almost periodic at each point
of the diagonal, and (X*, 7*) is distal so that Z is equicontinuous relative to

(X*, n*) [4, Lemma 1]. Thus, E(X) is equicontinuous. According to [3; 44,

4.5), (X, n) is uniformly almost periodic and E(X) is a group of homeo-
morphisms. The smallest closed invariant equivalence relation R such that
E(X*/R) is almost periodic is the diagonal. Consequently, E{X*/R) = E(X*)
is a compact topological group [3, 4.19], and hence, E (X) is a topological
group, The proof is complete.

CoROLLARY 12.1. Let (X, m) be a compact discrete (continuous) flow on a
locally compact space. Let R consist of §* x S* and the diagonal of X* x X*.
Then the flow induced on X */R is of characteristic 0 and each of the properties

of the theorem hold.
Whenever P is a locally compact subset of X the condition that each

periodic orbit be bilaterally stable of Theorem 10 can be replaced by any one
of the following: the flow on P is (locally) weakly almost periodic, E(P) is
equicontinuous, the flow on P is uniformly almost periodic, E(P) is a group
of homeomorphisms.
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Topological extensions and subspaces of 7,-sets
by

Paul Bankston (Milwaukee, Wi.)

Abstract. The n,-sets of Hausdorff have large compactifications (of cardinality > exp(«);
and of cardinality > exp(exp(2<“)in the Stone-Cech case). If Q, denotes the unique (when it exists)
ng-set of cardinality «, then Q, can be decomposed (= partitioned) into homeomorphs of any
prescribed nonempty subspace ; moreover the subspaces of Q, can be characterized as those which
are regular Ty, of cardinality and weight < o, whose topologies are closed under <« intersections.

Let {4, <) be a linearly ordered set. If B and C are subsets of 4, we
use the notation B < C to mean that b <c¢ for all beB, ceC. If o is an
infinite cardinal number, we say that {4, <) is an z,-set if whenever

B, C < A have cardinality < « and B < C then there is an element ac 4 with

B < {a} < C. Such ordered sets, invented by Hausdorff [8] (see also [5, 6,
7]), are the forerunners and prototypical examples of saturated relational
structures in model theory (see [5, 6]). Our interest in the present note
centers on topological issues related to 7,-sets, considered as linearly ordered
topological spaces (LOTS’s) with the open interval topology.

Roughly stated, our results are these: (i) certain Hausdorff extensions of
n.-sets must have cardinality > 2%, and some (the compact C*-extensions)
must have cardinality > exp(exp(2<9); (ii) the (unique when it exists; ie.
when o = 0<% n,-set Q, of cardinality « can be decomposed (= partitioned)
into homeomorphs of any prescribed nonmempty subspace; and (iii) the
subspaces of @, are precisely the regular T, spaces, of cardinality and
weight < o, whose topologies are closed under < a intersections.

1. Preliminaries. We follow the convention that ordinal numbers are the
sets of their predecessors and that cardinals are initial ordinals. If « is an
infinite cardinal, «* denotes the cardinal successor of « (w =10, 1, 2,...},
w; =", etc) If A is a set, | 4| denotes the cardinality of A. If B is another set
then ®4 is the set of all functions f: B — 4. For cardinals «, f, we let of = |°«|
and «<f = Sup{a?: y < B}. exp(x) sometimes denotes 2% especially in interac-
tions: exp?(x) = exp(exp()), etc. A useful application of K&nig’s Lemma is
the following. o
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