icm

Analysis on a class of Banach algebras
with applications to harmonic analysis
on locally compact groups and semigroups

by

. Anthony To-Ming Lau* (Edmonton, Alta)

Abstract. In this paper we introduce and study a class of Banach algebras. called F-
algebras which includes the group algebra and the Fourier algebra of a locally compact group.
It also includes the measure algebra of a locally compact serigroup.

1. Introduction. Lel G be a locally compact group with a fixed left Haar
measure 4. Let L,(G) (1 < p = o) denote the Banach space of measurable
functions f on G such that |f]" is integrable. Then L, (G) is a Banach algebra
with norm [|f||, = [I/]d4 and product defined by ‘

(f*@ ) = [/ gy ' 0dAy); £, geLl(6).

G

The dual of L,(G) is the commutative W*-algebra L, (G) consisting of all
essentially bounded measurable functions on G as defined in [19, p. 141]
with pointwise multiplication. ‘

Associating with the locally compact group G is another Banach al-
gebra, A(G), which can be defined as follows: A (G) consists of all continuous
functions f on G of the form ki, where k, he L, (G), k(x) = k(x), and h(x)
= h(x"Y). Then A(Gy is contained in C,(G), the - bounded continuous
complex-valued functions on G vanishing at infinity (see [197, p. 295). Let
VN(G) denote the von-Neuman algebra generated by the left regular rep-
rosentation of G, i.e. the closure of the operators {o(f); feLly (G} on Ly(G),
where (f)(h) = f »h for each heL,(G), in #(L,(G)), the algebra of bounded
linear operators from L, (G) onto L, (G), in the weak operator topology. Then
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each ¢ =k h in A(G) can be regarded as a linear functional on VN(G) defined
by '

@©(T)=<Th, k) for each Te VN(G).

P. Eymard [13, p. 210 and p. 218] proved that each ultraweakly continuous
linear functional on VN(G) is of this form. Furthermore A(G) with pointwise
multiplication and norm

llell = {le(9N; xe VN(G) and ||x| < 1)

is a commutative Banach algebra called the Fourier algebra of G. When G is
commutative, then A(G) = L, (G), where G is the dual group of G (see [13, p.
209]).

The two Banach algebras L, (G) and A(G) are important topological
algebraic objects in the study of harmonic analysis on locally compact
groups. They have been shown to have deep relation with the structure of
the underlying group G (see Wendel [407] and Walter [391). They also share
a crucial common property: each of them is the predual of a V¥"*-algebra and
the identity of the W*-algebra is in the spectrum of the Banach algebra.

In this paper, we shall introduce and study a class of Banach algebras,
called F-algebras, that includes the algebra L,(G) and 4(G) of a locally
compact group G. Roughly speaking, an F-algebra is a Banach algebra A4
which is the predual of a W*-algebra M (not necessarily unique!) and the
identity of M is in the spectrum of A. The class of F-algebras includes the
Fourier Stieltjes algebra B(G) of a locally compact group G and the measure
algebra M(S) of a locally compact semigroup §. It also-includes the class of
convolution measure algebras studied by Taylor [36], [37], [38]; the class of
L-algebras (for which the identity of the dual algebra is in the spectrum of
the L-algebra) considered by McKilligan and White [28]; predual algebra of
a Holf von Neuman algebra [35] and the measure algebra of a locally
compact hypergroup [11] or semi-convos [21]. Our approach provides a

unified treatment in the study of various aspects of the specific Banach
algebras mentioned above.

Part of this. research is conducted while the author was visiting the
Department of Mathematics, University of California. It is our pleasure to
thank Professor M. Rieffel and other members of the department for their
kind hospitality during our visit. Many thanks are also due to Professor T.
Palmer for several stimulating discussions on some part of this paper.

2. Preliminaries and some notations. Let £ be a linear space, and pbea
linear functional on E, then the value of ¢ at an element x in E will be
written as @(x) or (¢, x>. If Fis a subspace of the algebraic dual of E, then
o (E, F) will denote the weakest locally convex topology on E such that each
of the functionals in F is continuous, )
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If K is a subset of a normed linear space E, the closure of K will be
denoted by K when the closure is taken with respect to the norm to;?ology,
or by K* when the closure is taken with respect to topology t on E different
from the norm topology. The continuous dual of E will be denoted by E*,

If M is a W¥*-algebra, then M, will denote its unique predual. The
topology o (M, M,) on M will be referred to as the ultraweak, or simply the
g-topology. -

pl_oct i?,be a Banach algebra. By the reversed algebra of A, denoted by A°,
we shall mean the Banach algebra with the same underlying Banach space as
A and the multiplication reversed. The spectrum of A will be denoted by
o (A).

If 4 is a normed algebra, then for cach pe A, and xeA*, define the
elements ¢-x and x-¢@ in A* by

@, 9> =<Lx, 07> and (@ x, 9> ={x, 7 @)

for each ye A. We say that a subspace X of A* is ropoIogicall)f left (res;?.
right) invariant if X - < X (resp. ¢ X < X) for each (p_eA; 'X is topologi-
cally invariant if it is both left and right topologically invariant.

If X is a topologically left invariant subspace of A* ‘and meX*, we
define an operator m, from X into 4* by A

{my(x), ¢> =<{x @, m) for each gpeA.

We say that X is topologically left introverted if m; (X) < X for each min X' :
Similarly,. we can define topologically right introverted subspaces of ‘A .
A subspace X of A* is topologically .introverted if it is both left and right
topologically introverted. .

In [1], Arens defined a product on the second conjugate space A** by

m@n, x> =<{m,n(x)) for each m, ne A**, xeA*.

Then A** with resp. to this product becomes a Banach algebra. If X is a
topologically left invariant and left introverted subspace of A* then the
Arens product on X* makes sense and renders X* into a Banach algebra.

3. F-algebras. By an F-algebra we shall mean a pair (4, M) such that 4
is a complex Banach algebra and M is a W"‘-alge!)ra_sucl'.l that A = .M « the
predual of M, and the identity of M is a multiplicative linear functional on
A. If there is no confusion, we shall simply say that 4 is an F-algebra and we
shall identify A* with M. The identity of A* will be denoted by e. A]so P(A)
will denote the cone of all positive functionals in 4 and P, (4) will denote

all ¢ in P(A) such that ¢(e)=1.
the SI‘:Ttot(:f thatq)the W(’ *Zalgebra M of an F-algebra (4, M) need not be
unique. In fact, let M be a W*-algebra such that the reversed algebra M‘ is
not W*.isomorphic to M (see [6]). Define on 4 = M, = (M°), the multipli-
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cation @Y = @(e)y for any ¢, e A. Then both (4, M) and (A, M*) are F-
algebras even though M and M‘ have the same set of positive functionals.
However we have the following: . :

Prorosirion 3.1. If (4, My) and (A, M) are F-algebras such that M,
and M, have the same set of positive functionals. Then there exists central
projections z; in My, i =1, 2 such that Mz, is W*-isomorphic to M,z, and
My (ey—zy) is W*-isomorphic to the reversed algebra of My(e,—z,), where ¢,
is the identity of My. In particular, if M, is compuitative, then My and M, are
W*-isomorphic.

Proof. By assumption there exists a linear isometry U from (M), onto
(M), such that U(gp) is a positive linear functional in (M), if and only if ¢
is a positive linear functional in (M,),. Hence U* is a linear isometry from
M, onto M, such that U*(e,) =e,. The assertion now follows from
Theorems 7 and 8 in [24]. :
~~ The next two propositions show how new F-algebras can be formed
from certain C*-subalgebras of 4* of a given F-algebra A. Since their proofs
are rather straight forward, we omit the details.

ProrosiTion 3.2 Let A be an F-algebra. Let R be a C*-subalgebra of A*
containing the identity of A*. If R is topologically invariant and topolagically
left introverted, then (R*, R**) is an F-ulgebra, where R** is the eveloping
Wk-algebra of R.

Let 4 be an F-algebra, and R be a C*-subalgebra of A* which is
topologically invariant. Let Ir = () {ped; ¢(x) =0}. Then I, is a closed

R

two-sided ideal in A. Let A4/l be the quotient algebra.

Prorosimion 3.3 Ler A be an F-algebra, and let R be u topologically
invariant C*-subalgebra of A*. Then there exists a linear isometry from A/l
onto (R°),.. In particular, if R contains the identity of A*, then (A/Iy, R%) is an
F-algebra.

Let A, be a normed algebra over the complex, let 4, be an F-algebra
and let e, be the identity of (A,)*. We define the direct sum of A ( and A,,
denoted by A,@A,, to be the algebra over the complex consisting of all
ordered pairs (¢, @,), ¢, €4; and ®2€ A, with coordinatewise addition and

scalar multiplication, and product of two elements @ =(py, @), ¥ = (y, ;)
defined by )

oY= ((P1 Y1+ alel) ¥y +aler) oy, le'l/lz)-

Then A4,@4, with norm ||(¢,, ¢,)| = llodl+lle,] becomes a normed al-
gebra. Note that associativity of multiplication o1, A, @4, depends heavily
on the fact that e, is in the spectrum of A,. Also, when A4, = C, then A DA,
is the usual unitization of the normed algebra A,.
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As well known, the dual of 4,@ A, can be identified with (A,)* x (A4,)*
with norm  [J(x;, X,)l| = max {{|xq]l, [|xall}, x;€(4)*. In fact, if (x;. x5)
e(A,)* x(Ay)* and (@, p;)e 4, @ 4,, then

Cers X2), (@15 92)) = @1 (x1)+ @, (x3).

Prorosimion 3.4. Let A, be a normed algebra and A, be any F-algebra.
Then

(a) Ay has a (right, left, two-sided) identity if and only if A,@A, has a
(right, left, two-sided) identiry.

(b) A, has a (right, lefi, two-sided) bounded approximate identity if and
only if Ay@A, has a (right, left, two-sided) bounded approximate identity.

Proof. We shall prove (b). The proof of (a) is similar. Let {‘PZa}‘ be a
bounded right approximate identity for 4,. Then lim ¢, (e,) = 1. Hence if

(1, ¥)eA | @A,, then

W10 ¥2) (0, @3) =i, Walll = [[(@2, (e2)—= 1) ]| F W2 Yo, — 5l

which converges to zero. Consequently, {(0, ¢, } is a bounded right ap-
proximate identity for A,PA,.

Conversely, if (¢,,, 91,) is a bounded right approximate identity for A,
and \, € Py (A4,), then

00, ¥2)(@1,5 @2,)— (0, W)l = ll@y )l +1W2" @3, —Wall

which converges to zero. Hence Y2 @2, —Wall also converges to zero.
Consequently {(pzu} is a bounded right approximate identity for A4,. The
other cases can be proved similarly. ‘

PROPOSITION 3.5. If A is a normed algebra and A, is any F-algebra, then
the Banach algebra (A,)**@(A,)** is isometric and algebra isomorphic to the
second conjugate algebra (A, @ A,)**.

Proof. Note that (4,)** is an F-algebra by Proposition 3.2. Define a
linear map J: (A)**@®(Ay)** — (4, P A,)** by i

T (my, my), (Xq, X3)Y =my (xq)+my(X;)

for each ‘m,-e(A,-)**, x;e(d)*, i=1,2 Then J is a linear isometry from
(A )*@(A)** onto (A, @D A,)**. Furthermore, a routine calculation shows
that J is even an algebra homomorphism. _

If X;,..X, are topological spaces, let X; denote the n-tuple
(0,...,0, x, 1,...,1) with x;e X, appearing in the ith coordinate. Equip X,
with the topology t; induced from X;. By the direct sum gf spaces Xy,..., X,,
denoted by X, @ ...®X, we shall mean theset X = {X;: i =1,...,n] with
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the topology v on X consisting of all subsets 0 of X such that 0 X, e, for
eachi=1,..,n

Let 4, be a normed algebra, and A,,..., 4, be F-algebras. We define
inductively the direct sum A4,@® ... A4, by:

AD .. @A, = (4,0 ...0A4,-)DA,.

It is easy to see in this case that if @ =(¢y,...,9,), and ¥ = (¥,...,¥,) are
elements in 4,®...®4,, and ¢ =(y,,...,7,), then

Z”: ‘Pl(el)" '’
sk

where ¢; is the identity of (4,)*. Also ¢(4,@ ... DA,) consists of éll elements
in (A)*x ... x(4,)* of the form (0,...,0, X5 €1 1,.00€,) Where x;e0(4)).

Prorosirion 3.6 Let (A, M), i=1,...,n, be F-algebras. Let A
=A1® ... @A, and M = M;x ... x M,. Then (4, M) is also an F-algebra.
Furthermore o(A) is homeomorphic to o(A)® ... ®c(4,).

Proof. For n =2, define a map h from
0 (A)®6 (A7) = {(x1, 1); x€0 (4} U{(0, x;); x;€0(A,)}
into (4, @A4,)* by
hixy, 1) =(x1,e2)  and (0, x;) = (0, x;)
for each x,e0(4;) and x,ea(4,). Then h is a homeomorphism from
6(4,)Do(4,) onto 6(A;DA,). The general case follows l?y induction.

4. Left amenable F-algebras. Let 4 be a Banach afgebra. By a left
Banach A-module we shall mean a Banach space X equipped with a bounded
bilinear map from 4 x X — X, denoted by (¢, x) = ¢ x, peA, xe X, such
that @, -(¢,-x) = (@, @2) x for all ¢,, p,e4, xeX. A right Banach A-
module is defined similarly. A two-sided Banach A-module is a left and right
A-module such that

i=k+1

Ve = ‘/’k"//k*‘[ 2": V’f(ﬁ)J‘/’k*‘

(@1°%) 02 =0, (x- ;) for all ¢y, P26 A, xe X.

If X is a two sided Banach A-module, then X* becomes a two-sided
Banach A-module with '

pfix>=Lf,x¢> and (f-9,x>=f x>

for all feX* ped.

Let X be a two-sided Banach A-module. A derivation fr i *j
a linear map D: A — X* such that om A into X% is

D¢ ¥) = D(¢) ¥ +¢-D(y)
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for all ¢, yeA. Clearly if feX*, then the map Dy: A — X* defined by
Di(p)=o f~f¢

is a bounded derivation. Any derivation of this form is called an inner

derivation. . .

A Banach algebra A is amenable if for any two-sided Banach A-module
X, any bounded derivation from A into X* is an inner derivation. B.
Johnson proved in [22, Theorem 2.5] that a locally compact group G is
amenable if and only if the algebra L, (G) is amenable. The class of amenable
Banach algebras has been studied extensively by Johnson in [22], [23] and
Bunce in [3], [4] and [5]. '

However, Johnson’s theorem [22, Theorem 2.5] is no longer valid for
semigroups. In fact, the semigroup § of positive integers with addition is
amenable, but the Banach algebra /,(S) as defined in [7] or [18] is not
amenable [2, p. 244].

Let A be an F-algebra. A topological left invariant mean (abbreviated as
TLIM) on A* is an element m in P, (4**) such that

m(x- @) =m(x) for each peP,(4), xcA*.

The set of TLIM on 4* will be denoted by TLIM(A4*). The notion of TLIM
has been considered by many authors for various special cases of A (see for
example [8], [20], [33], [42)). )

We say that an F algebra A is left amenable if for any two-sided Banach
A-module X such that ¢-x =¢(e)x for all ped, xeX, every bounded
derivation from A into X* is inner.

THEOREM 4.1." Let A be an F-algebra. Then A* has a TLIM if and only if
A is left amenable.

Proof. Let m be a TLIM on A* and let X be a two-sided Banach A-
module with ¢-x = @(¢é) x for all pe 4, xeX. Let D be a bounded derivation
from A into X*. Let L be the restriction of D* to X, and let f = I*(m). We
shall show that D = D_,. '

Indeed, if xe X, peP(A) and YA, then

KL(x- ), ¥ = x @, D)) = <{x, @ D)) = (x, D¢ ¥)—D(p) ¥
= (LX) @, YD~ () (D(9), x>
So L(x-¢) = L(x) ¢ —<{D(p), x)e. Hence
o fs x> ={f, x 9> = {m; L(x" 9)) = <{m, L(x)- 9> —<{D (), x><{m, e>
= {m, L(2)>~<{D(9), x> = {f—D(9), x).

So ¢-f=f-D(p) and f-¢=f Consequently D.,(p)=D(p) for any
@& P,(A4). Since P, (A4) spans A, it follows that D, = D.
Conversely if A is left amenable, then an argument similar to [2,
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Proposition 4, p. 238] shows that there exists a non-zero ne A** such that
n(x- @) = @(e)n(x) for each ped, xeA* Hence pOn=n and eOn* = n*
for all pe P, (A4). So we may assume that n is self adjoint. Write n = n*—n",
the orthogonal decomposition of n. If @eP(A4), then @On= eOn*
—@On~. Since pOn*, On™ are positive and

leOn* || +llpOn~|| = ((p@n'*)(e)-}-((p@n‘}(e) =n' (e)+n" (¢) = ||n

it follows that @On* =n" and ¢QOn~ =n" [34, Theorem 1.14.3].
Consequently if n* 5 0 (say) and m =n'*/n" (¢), then m is a TLIM on A*,
The following is an analogue of Johnson's theorem [22, Theorem 2.5]:
CoroLLARY 4.2. A semigroup § is left amenable if and only if the Banach
algebra 1, (S) is left amenable. ‘

COROLLARY 4.3. A locally compact group G is amenable if and only if the
measure algebra M (G) is left amenable.

Proof. This follows from Theorem 4.1 and proof of Lemma 5.1 in [43].

ExAamPLES.

(1) Any commutative F-algebras are left (and right) amenable. In-par-
ticular, the algebras A(G) and B(G) of any locally compact group and the
measure algebra M(S) of any commutative locally compact semigroup § are
left amenable. : ‘

In fact, if A is commutative, we consider the commutative semigroup .7
={T,; ¢€P,(4)} of affine continuous maps from the compact convex set
(Py(A*%), weak*) into itself defined by T,(m) = ¢Om for each peP,(A),
me Py (A**). Since 4 is commutative, 7 is also commutative. Hence by the
Markov—Kakutani fixed point theorem [9, p. 456], P, (4**) contains a common
fixed point m for . Clearly me TLIM(4¥).

(2) Let M. be a W*-algebra and A = M,. Then 4 is:

@i) left amenable if multiplication on A is defined by ¢y = (/)(E)l//;
(u) right amenable if multiplication on 4 is defined by ¢ = (¢) @:
.(111) both left and right amenable (but not amenable) if multiplication
on A4 is defined by ¢ -y =y (e) ()0, 0P, (A) is fixed.

ProrosiTion 4.4 Let A be.an F-algebra. Then A is left amenuble if and
only if A** is left amenable. 4 o 1 an
.Proof. Let meTLIM(4*). If ne P (A**), choose a net ¢, & P, (4) con-

verging to n in the weak*-topology. Then for each xeA* we have

m(x) = ﬁ?] m(x - @,) = lim ¢, ("?L(x)) z*n(mL(x)) =n®m(x).

hence me TLIM(A***). Conversely if 7€ TLIM(A***), then y restricted to A*
can easily be seen to be a TLIM on A4*,

ProposITION 4.5. Let Ay and A, be F-algebras. Then A @A, is left

icm
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amenable if and only if A, is left amenable. In particular C®A is left amenable

for any F-ulgebra A.

Proof. If m; e TLIM(AY)
Proposition 3.5, we have
(¢4, (PZ)Q(mlvv 0) = (¢ Omy +@alez) my, 0)
= (g (e) my + P2 (e2) My, 0) = (my, 0).

Hence (my, 0)e TLIM((4,@4,)*). Conversely, if (m;, m,) is a TLIM on
(A, @A), let @ e Py (A4y), then (¢1, 0)e Py (4;@A,), and hence

then by

_and (¢1, @z)E P (4D A32),

(my, my) = (@1, OO(my, Mmy) = (s Omy+my(es) @1, 0)

by Proposition 3.5. Consequently m, =0 and my =@;0m,.
e TLIM(A¥). .
TuroriM 4.6. Let A be any F-algebra. Then the following are equivalent :
“(a) A is left amenable.
(b) There exists a net 0y € Py (A) such rhu{ @+ @y~ @all =0 for each
pe P (A) o
(¢) For each xe A*, the set K ()7 .contains e for some complex number 1,
where K(x) =@ x; peP (A}
In this case dee K (x)° is and only if there exists a TLIM on A* such that
m(x) = A.
Proof. The equivalence of (a) and (b) can be proved by an argument
similar to that of Namioka’s elegant proof of Day’s theorem [30, Theorem

2.2].

So my

If (a)‘ holds and m is a TLIM on A% let ) be a net 1n}P1(A))
converging to m in the weak* topology. Then for each xe A*, the net [, - x]
converges to m(x)e in the s-topology. Hence (c) holds. ) .

That (c) implies (a) follows easily from [26, The_orem 2.17(") by consnder;
ing the semigroup S = {T,; pePy (A)} of o-continuous operators on A
defined by T,(x) = ¢@"X, @eP,(A), xeA*. . ,

For the algebra [, (S) of a discrete semigroup S, the equivalence of (a)
and (b) was established by Day [7], and the equlvalenfze o_f (a) and (c) and
the last statement is due to Mitchell [29]. Our theorem implies [41, Theorem
54 with X = L.(G)] and [42, Theorem 31 (1)@(:2)@(3)] of Wogg,
Condition (c) has also been considered by Dunkl-Ramirez for the Founer
algebra of a locally compact group in [10, Theorem 2]. -

Given an F-algebra 4, let Io(A) = (peA; p(e) =0}. Then Ig(A) is a
closed two-sided ideal in A.

Tueorem 4.7. Let A be an F-algebra. Then the followings are equivalent :
(a) A is left amenable. '

(' In [26] “="in condition (1) should be replaced by “<”
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(b) The;e exists a net p,€Py(A) such that lim ||/~ @,]| = I (e) for each
VeEA. ‘

F .
-, (¢} For each yrely(A4) and &> O, there exists @€ Py (4) such that || ¢||

Proof. ())=(b). If A is left amenabl i
o . i e, then there exist a net
1@a} € Py (4) such that J[(p " @3~ @J| — 0 for each ¢ e P, (4) (Theorem 4.6). Iljeet

YeA and write ¢y = _|y
write .Z:l 4¢;, where ;€ P, (A). Then |y () = ‘121 A/} Given

&> 0, choose «, such that if « > a,, then llo: - @,

may assume that 4, # 0). Then 0l < o/nlif (of course we

Wl < Y, hoio— 3 A+l 3 4ol
=1 =1 i=1

< ->—:1 Ao~ ol +1 Y Al < e+l (o)
i= i=t
for all « > ay. On the other hand

W (@) =1 @) (o)l < Iy o,

for all x. Hence

(@ =11 - ull] = ¥ gll ~ 14 (e)] <&
for all a > a,.
- (b)=>(c) is clear. ' ‘
Give(:) :; (2(1)). As in the‘ proof of [17, Theorem 3.7.3] let noe Py (A) be fixed
e ;ﬁanc} 0 = Py,...,0) a finite subset of Py(A), let ¥, = o, - -
No‘,:'ljl er 1.'5 ?(A). Hence‘ we may find 5, € P, (4) such that I, -r/l,H 2 &
o ]T = ::pzl rg, M1="o Ny 1s in I (A). So we may find n2€ P, (A4) such that'
213 - Inductively we may find y,e P, (A4) such that |jy; - nl] < ¢ where

¥ = @ No M ee ety g =0 Ny o Wy
Let MNo,ey = o * Ny oMy Then

19 ey~ Mg )l < &

p ;
or all peo. So any weak* cluster point of the net Mo} is a TLIM on 4*

CoroLLARY 48. Let 4 be an F
- 43 . -algebra. Th i
only if [ (e)f =inf {|ly-gll; peP, (4)} for each ;fnelji-m o amenable i and

. Corollary above is due to Rej ’
> iter for A =L, (G
g_r(;\x;p G [17, section 3.7], and to Wong [42, Thét(ngn? f3ai l(gcall}’ Ttor 4
= (:S) of a locally compact semigroup §. Al
Since the Fourier algebra A(G) of a locall

com, i
left amenable, we have the following ::maloguey of Rg;‘;tr’sg r::;sltc' D

icm
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CoroLLARY 49. For any locally compact group G, and Y € A(G), we have
e ()| = inf {[I - ¢ll; @€ A(G)~ P(G) and @ () = 1},

where u is the indentity of G.

Our next result is also due to Reiter [32] for 4 = L,(G) of a locally
compact group G (see also [22, Proposition 2.6]). Note that Reiter’s notion
of bounded right approximate identity is slightly different from ours.
However, a Banach algebra B has a bounded right approximate identity as
defined in [32] if and only if B has a.bounded right approximate identity
{p,} in the usual sense, ie. {¢,} is a bounded net such that o o—@dl — 0
for each peB (see [2, p. 58]). ‘ .

TusoreM 4.10. Let A be an F-algebra. Then I,(A) has a bounded righ
approximate identity if and only if A is left amenable and has a bounded right
approximate identity.

Proof. Assume that y,el,(4) is a bounded right approximate identity
for I5(A). Let @oePy(A) be fixed. Form the net ' i

6; = Qo Vu— Po- ‘
Then {6,} is also bounded, and 6,(e) = —1 for each a. Also, if p€P, (A),
then
llg 8, =l = 1@ Po— o) ¥a—(®"* Po—Polll =0
since @+ @o—@o€lo(A). Let n be a weak* cluster point of in A**. Then n is
non-zero since n{¢) = —1, and @On =n for each peP,(4). An argument
similar to that for the proof of Theorem 4.1 shows that A has a TLIM m. So
A is left amenable.
Let r be a weak* cluster point of {i,} in A**. Then for each ¢ &P, (A),
POMm+r—mOr) = pOm+@Or—eOMOr = m+eOr—mQr
=m+(p—mOr =m+(p—m) = ¢ ,
since ¢—m is the weak* limit of a net in [o(4). So m+r—mQr is a right
identity in A**. Consequently 4 has a bounded right approximate identity

[2, p. 146]. ) ]
Conversely if A is left amenable and A has a bounded right approximate

identity {g,}, let m be 2 TLIM on 4* and p be a weak* cluster point of the
net {@,} in A**. Then p(e) =1. Let ¢ = p—m. Clearly Io(A4) < Io(A**). Also
. k

if nely(A**), then n®Om = 0. Indeed, if n= Y Am;, m are states, then n{e)
i=1 .

k
= Z J; = 0. Hence

i=1

k n
nom =Y, Lnom = S A4m=0
i=1 L=
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by the proof of Proposition 4.4. Consequently, if nely(A**), we have
‘ n®Og =n®(p—m) =nQOp—nOm=n®Op = n.

Since gely(A**), it follows that ¢ is a right identity in I,(A4). However
I5(A**) can be identified with the second conjugate algebra of I, (A) with the
Arens product, it follows that I;(4) has a bounded right approximate
identity.

The following is an analogue of Reitier'’s result [32]:
) (.:OROLLARY. 4.11. Let G be a locally compact group and let u be the
identity of G. Then G is amenable if and only if the idedl [p& A(G): ¢ (u) = 0}
in A(G) has a bounded approximate identity.

lf’roof. This follows from Theorem 4.10 and the fact that G is amen-
?;;;lf and only if A(G) has a bounded approximate identity (sec Leptin
) rGiven an F-algebra A, let N(A) denote all xedA* such that
1nf'||<p-x[|:_<p‘ePl‘(A)} = 0. Then as readily checked, N(A4) is closed under
scalar multiplication. Furthermore, N(A4) includes all elements z of the form

Yrx—x, yeP (A) and xeA*. In fact, if n=1,2,..., let rp,,:(l/n)i W
Then ¢,e P, (A) and ||@, -zl = (I/m}| " ' x— x| < (2/m|jx|| -0 as n ~‘+ o0,

Iflll, LeP (4), let d(I,, I,) = inf {Jlo, —,ll; @, €] and ¢, el,}. The
following is an analogue of Theorem 1.7 of Emerson [12]. It also implies
Theorem 2.1.7 of Riazi [31] when A is the mesure algebra of a locally
compact semigroup.

THEOREM 4.12. Let A be an F-algebra. The followings are equivalent:

(a) A is left amenable. :

(b) N(A) is closed under addition.

(c) d(ly, I) =0 for any two right ideals I,, I, of the semigroup P, (A).

Proof. (a)=(c). If 4 is left amenable, there exist a net v ‘

s € Py (A) such
that ||@y, — ]l — 0 for all peP,(4) (by Theorem 4.6). Henceaif (pi el and
(PZEI)_, .then ”(pllpa—(PZl/ja” - 0.

(c}=(b). Let x;, x,eN(A) and ¢ > 0. Choose ¢,, @26 P, (A4) such that

llpc-xidl <& and [lgy x|l <& Pick Wy;y,eP,(A4) suc ,
~ @5l < e. Then 1 ¥2€Pi(A) such that iy, ~

W10 (o + XM < U @ X T+ 100 x5 — 000, o/l I 5 x|
S e2+{xN).
Hence x;+x,eN(4) also.
(b)=(a). If (b) holds, then N(4) is subspace of A* such that ¢-x—
e N(4) for any x€A* and @eP (A). Let E be the self-adjoint elem(f:n)t‘cs iﬁ
.A*. Then E is a real vector subspace of 4*. Let K denote all x& E such th
- inf{@(x); e P (4)} > 0. Then K is open in E,eeK and K r'.N(A) = l?;

icm
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a Hahn Banach separation theorem, there exists a continuous (real) linear
functional 0 on E such that 0(¢) =1 and A(x) =0 for all xeE« N(A). In
particular, 0(¢p-x)=0(x) for all peP,(4) and xeE. Define n(x) = 0(u)+
+i0(v) when x = v+iv, u, veE. Then ne A**, n(e) =1 and n is topologically
left invariant. An argument similar to that for Theorem 4.1 shows that A*
has a TLIM. .

A semigroup § is lefi reversible if any two right ideals in S has nonempty
intersectin. Commutative semigroups (or more generally left amenable semi-
groups) and groups are left revérsible.

COROLLARY 4.13. Let A be an F-ulgebra. If Py(A) is left reversible, then
A is left amenable.

Finally we state a few facts concerning the set TLIM(A*) for a left
amenable F-algebra A.

PropOSITION 4.14. If A is a commutative F-algebra and A* has @ TLIM
in P,(A), then A* has a unique TLIM.

Proof. If neP,(A) is a TLIM on A* and me TLIM(4*), let ¢, € P, (4)
be a net converging to m in the weak*-topology. Then for each xe A%, we
have

m(x) = m(x-n) = im@,(x-n) = limn @, (x) = lim @, - n(x}

= lim n(x- @) = n(x).

Hence m = n.

ProrosiTioN 4.15. Let A be an F-algebra.

(a) If A* has a TLIM in P,(A), then the identity e of A* is an isolated
point in the spectrum of A. :

(b) If A* has a unique TLIM and A is norm: separable, then A* has a
TLIM in P, (A). ,

Proof. (a) Assume that y &P, (4) is a TLIM. Let xeo(4) and x # e.
Choose @& P, (A) such that ¢(x)# 1. Then ¥ (x) = (@O¥){x} = @ () (x).
Consequently i (x)=0. Hence [yeA*;y(y) > Ilro(d)=!e} and e is
isolated.

The proof of part (b) is similar to that of Granirer [16, Theorem 7], we
omit the details.

COROLLARY-4.16. If A is a norm separable commutative F-algebra, then
A* has a unique TLIM if .and only if A* has a TLIM in P,(A).

Proof, This follows from Propositions 4.14 and 4.15.

In the case that 4 = I, (S) of a discrete semigroup S, or that 4 is either
the Fourier algebra 4(G) or the group algebra L;(G) of a locally compact
group G, then much stronger results then Proposition 4.15 are known to
hold (see Granirer [14], [15], Klawe [25], Renauld [33]).


GUEST


174

m
[2]

Bl

4]
[5]
L6
71
[8}

9]
[10]

(i1
oz
[13)
[14]
[15)
[16)
un

(181"

£19]
[203

f21]
[22]

(231

243
[25]

26}
(21
(28]

A, To-Ming Lau
References

R.F. Arens, The adjoint of a bilinear operation, Proc. Amer. Math, Soc. 2 (1951), pp.
839-848.

F.F. Bonsall and J. Duncan, Complete normed algebras, Springer Verlag, 1973

J. Bunce, Characterization of amenable and strongly amenable C*-algebras, Pacific
J. Math. 43 (1972), pp. 563-572.

~ Representations of strongly amenable C*-algcbras, Proc. Amer. Math, Soc, 32 (1972),
PP. 241-246.

- Finite operators and amenable C*-algebras, Proc, Amer, Math. Soc. 56 (1976), pp. 145~
151,

A. Connes, A factor not anti~isomorphic to itself, Ann. of Math, 101 (1975), pp. 536-554,
M. M. Day, Amenable semigroup, 111. J. Math, 1 (1957), pp. 509-544,

— Lumpy subsets in left ble locally pact semigroups, Pacific J. Math. 62 (1976),
pp. 87-92.

N. Dunford and J. T. Schwartz, Linear operators 1, Interscience Publishers, 1957,
C.F. Dunkl and D.E. Ramirez, Existence and nonuniqueness of invariant meuns on
L (G), Proc. Amer. Math. Soc. 32 (1972), pp. 525-530.

— The measure algebra of a locally compact hypergroup, Trans. Amer. Math, Soc. 179
(1973), pp. 331-348.

W.F. Emerson, Characterizations of amenable groups, Trans, Amer, Math. Soc. 241
(1978), pp. 183-194.

P.Eymard, L'algebre de Fourier dun groups localement compact, Bull. Soc. Math. France 92
(1964), pp. 181-236. . .

E. Granirer, Criteria for compactness and discreieness of locally compdct amenable
groups, Proc. Amer. Math. Soc. 40 (1973), pp. 615-624.

~ Properties of the set of topological invariant means on P. Eymard's WH-algebra VIN(G),
Indag. Math. 36 (1974), pp. 116-121.

— Weakly almost periodic and uniformly continuous functionals on the Fourier algebra of any

locally compact group; Trans: Amer. Math. Soc. 189 (1974), pp. 371-382.
F. P. Greenleaf, Invariant means on Topological Groups and their Applications, Van
Nostrand Reinhold, New York 1969.

E. Hewitt and H.S. Zuckerman, The I,-algebra of a commutative semigroup, Trans.

Amer. Math. Soc. 83 (1956), pp. 70-97.

— and K. A. Ross, Abstract Harmonic Analysis 1, Springer Verlag, 1963,

A. Hulanicki, Means and Fginer conditions on locally compact groups, Studia Math, 27
(1966), pp. 87-104. '

R.JJ e(v)vctt, Spaces with an abstract convolution of measures, Advances Math, 18 (1975),
pp. 1-101.

B.E. Johnson, Cohomology in Banach algebras, Memoir Amer. Math. Soc. 127 (1972).
— Approximate diagonals and cohomology of certain amihilator Banach algebras, Amer. J.
Math. 94 (1972), pp. 685-698.

R.V. Kadison, Isometries of operator algebras, Ann. of Math. 54 (1951), pp. 325-338.
M. Klawe, On the dimension of left invariant means and left thick subsets, Trans. Amer,
Math. Soc. 231 (1977), pp. 507-518.

A.T. Lau, Semigroup of operators on dual Banach spaces, Proc. Amer. Math. Soc. 54
(1976), ‘pp. 393-396. '
H. Leptin, Sur l'algébre de Fourier dun localement compact, C. R. Acad. Sci, Paris Sér. A-B
266 (1968), pp. A1180-A1182,

S. A. McKilligan and A.J. White, Representations of L-algebras, Proc. London Math.
Soc. 25 (3) (1972), pp. 655-674. ‘

icm

[29].

[30]
0311
32
(331

34]
[35]

[36]

[37]
[38]

39
[40)
[41]
(42

3

175

Analysis on a class of Banach algebras

T. Mitchell, Constant functions and left invariant means on semigroups, Trans. Amer.
Math. Soc. 119 (1965), pp. 244-261.

1. Namioka, Fglner's conditions for amenable semi-groups, Math. Scand. 15 (1964), pp.
18-28. )

A. Riazi, Characterizations of amenability of locally compact separately continuous
semigroups, Ph. D. Thesis, University of Calgary (1979). .

H. Reiter, Sur certains ideaux dans I} (G), C. R. Acad, Sci. Paris 267 (1968), pp. A882-
885.

P. E. Renaud, Invariant means on a class of von Neuman algebras, Trans. Amer. Math.
Soc. 170 (1972}, .pp. 285-291.

S. Sakai, C*-algebras and W*-algebras, Springer Verlag, 1971.

M. Takesaki, Duality and von Neuman algebras, Lectures on Operator Algebras, Lecture
Notes.in Mathematics 247, Springer Verlag, pp. 66-779.

J. L. Taylor, The structure of convolution measure algebras, Trans. Amer. Math. Soc. 119
(1965), pp. 150-166. .
—~ N ive lution measure algebra, Pacific J. Math, 31 (1969), pp. 809-826.
— Measure algebras, Regional conference series in mathematics 16 (1972), Amer. Math.
M. E. Walter, W*-algebras and nonabelian harmonic analysis, J. Func. Analysis Ivl (1972),
pp. 17-38. . )

J. G. Wende), Left centralizers and isomorphisms of group algebras, Pacific J. Math. 2
(1952), pp. 251—261, . 3

J.C. 8. Wong, Topologically stationary locally compact groups and amenability, Tralrls.
Amer. Math. Soc. 144 (1969), pp. 351-363.

~ An ergotic property of locally compact amenable semigroups, Pacific J. Math, 48 (1973),
pp. 615-619.

— A characterization of topological left-thick subsets in locally compact left amenable
semigroups, Pacific J. Math. 62 (1976), pp. 295-303.

H )

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF ALBERTA
Edmonton, Alberta, Canada

T6G 2G1

Accepté par la Rédaction le 2.2.1981


GUEST




