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Mappings with 1-dimensional absolute
neighborhood retract fibres

by
John J. Walsh* (Knoxville, Tenn.) and David C. Wilson (Gainesville, Fla)

Abstract. It is shown that if 2 X - Y is a proper surjection between metric spaces where
dim X < 2 and where each /'~ (y) Is an absolute neighborhood retract having dimension < 1, then
Y is countable dimensional. Two corollaries are: (i) if /2 X — Y is a proper surjection between
complete metric spaces where dim X < 2 and where each f “1(y) is an absolute retract having
dimension < 1, then dim ¥ < 2; and (ii)if /: §* — Y is a surjection where each f ~* (y) is an absolute
neighborhood retract having dimension < 1, then Y is countable dimensional.

1. Introduction. The 1956 paper of E. Dyer [Dy,] implicity contains the
following result: if 2 X — Y is an open map between compacta and there is an
¢ > 0 such that each f ~!(y) is a 1-dimensional ANR (absolute neighborhood
retract) containing no simple closed curve of ‘diameter less than ¢ then the
cohomelogical dimension of Y is one less than the cohomological dimension of
X. The fact that cohomological dimension and covering dimension are known
to agree when the former is < 1 yields: if f: X — Y is an open cell-like map
between compacta with each f ~* (y) a 1-dimensjonal AR (absolute retract) or a
point and dim X < 2, then dim Y < 2. In turn a reduction described in [KW,]
based on results from [Si] yields: if £ X — Y is an open cell-like map with each
£~ 1(y) a 1-dimensional AR or a point and X is an ANR with dim X < 3, then
dimY < 3 or, equivalently, ¥ is an ANR. )

Examples are described below which show that Dyer’s result fails
dramatically without the assumption that the map is open. In this paper, we
supply a “generalization” which remedies thi:T failure.

May TuasoreM. If /1 X —Y is a proper surjection between metric
spaces where dim X < 2 and where each f “1()T) is an ANR having dimension
&1, then Y is countable dimensional. ‘

CoroLLarY A. If f2 X =Y is a proper surjection between metric spaces
where X is complete and dim X < 2 and where each f ~1(y) is an AR having
dimension <1, then dimY < 2. . .

COROLLARY B. If f: X = Y is a proper surjection where X is a locally
compact ANR and dim X < 3 and where each f ~1(y) is an AR having dimension
< 1, then dim Y < 3 or, equivalently, Y is an ANR.
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CoroLLARY C. If fi E*—Y is a proper surjection where each f ' (y) is an
ANR having dimension <1, then Y is countable dimensional.

Before presenting two widely known examples, we make several comments.

The first two corollaries add to the current knowledge of cell-like maps
which do not raise dimension. Corollary B can be viewed as an extension of the
result in [KW,] that cell-like maps defined on 3-manifolds do not raise
dimension and of the result in [KRW] that cell-like maps defined on 3-
dimensional polyhedra with 1-dimensional point-inverses do not raise
dimension. The techniques used in this paper are radically different from those
used in the latter two papers.

" At the heart of the paper in the following version of the result of Dyer
mentioned above which does not assume openness. Let f* X — ¥ be a proper
surjection between metric spaces where each f~*(y) is an ANR having
dimension < 1 and where dim X < n. If Y is not countable dimensional, then
thereis a subset Z = Y and a subset B < f ~*(Z) withf (B) =
cobomological dimension of Z < n—1, and the restriction of f to B a cell-like
map.

Evenif X is locally compact, the set Z need not be locally compact. It is this
fact and not simply an attempt to achieve generality which leads us into the
category of proper maps defined on metric spaces.

A comment on the assumption of completeness in Corollary A is in order.
A complete countable dimensional space has weak transfinite inductive
dimension and dimension agrees with cohomological dimension for spaces of
the latter type (see [Ku]).

FirsT ExamPLE. Let I = [0, 1] and let a: . — I be a surjection whose non-
degenerate point-inverses are the arcs which are the closures of the components
of the complement of a Cantor set C. Set X = (I x {0}) U(C xI) and define f: X
— 1 by f(s, t) = a(s). Each point-inverse of f is an arc but dim X = dim I = 1.

Seconp ExampLe. The basis for this construction is that for each separable
metric space Y with dim ¥ < n, there is a subset Z of a Cantor set an a proper
surjection a: Z — Y which is at most (n+ 1)-to-1 (see [Na]). Let C xC < E® be
the join of a .pair of Cantor sets contained in non-adjacent edges of a
tetrahedron. For o and Z above, set X = {J{a™ ! (y)*a"!()): ye ¥} and define
Jfi-X—Y by requiring that f(«™*(y)*2"1(3)) = y. The map f is a proper
surjection and each f ~*(y) is a 1-complex. Examples where Y is not finite
dimensional are obtained by taking a countable disjoint union.

2. Preliminaires. Spaces are assumed to be metric. A space X is countable

dimensional provided X = U Z;and dim Z; < 0. A map is proper provided the

inverse image of each compact set is compact. A map is cell-like provided it is

proper and the inverse 1magc of each point is a cell-like set or, equivalently, has
trivial shape.

Z,dim Z = oo, the:
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The cohomology theory used throughout the paper is Cech theory. Since
the coefficient group is always the integers, it is suppressed. The notation
¢-dim X is used to denote the integral cohomological dimension of X and is
defined as follows:

(i) ¢c-dim X < n if for each closed subset A — X the inclusion induced
homomorphism i*: H"(X)— H"(A) is surjective;

(i) c-dim X =n if e-dim X < n but c-dim X € n—1,

The reader is referred to [Ku] for a treatment of cohomological dimension.
We content ourselves with listing the following basic facts.

(a) dim X > ¢-dim X.

(b) If dim X < o0, then dim X = ¢-dim X.

(c) If ¢-dimX < n, then ¢-dim X < n+1.

(d) If A= X, then ¢-dimA4 < ¢-dim X.

(e) c-dimX < 1 if and only if dimX < 1.

The compact AR’s which have dimension < 1 are precisely the dendrites
(= compact, connected, locally connected metric spaces which contain no
simple closed curves). A compact ANR which has dimension <1 is
characterized by being a compact, connected, locally connected metric space
which, for some ¢ > 0, does not contain a simple closed curve having diameter
< ¢. Two facts needed are that each subcontinuum (= compact and connected
subset) of a dendrite is a dendrite and that a subcontinuum of a 1-dimensional

" ANR is a dendrite provided it contains no simple closed curves. The reader is

referred to [Wh] for the details.

We remind the reader that, since spaces are not assumed to be separable, it
is important to interpret dim X to be the covering dimension of X. Since metric
spaces have o-discrete bases [Ke; p. 127], an application of the Sum Theorem
[Na; p. 147 shows that if a space is not countable dimensional, then each open
cover contains a set which is not countable dimensional.

3.' A sequence of lemmas.

Lemma 3.1. Let f: X —Y be a proper surjection where X is countable
dimensional. If Y is not countable dimensional, then there is a closed set C = Y
and an ¢ > O such that C is not countable dimensional and diamf ~!(y) > ¢ for
each yeC.

" Proof. Let Yo={yeY f~1(y) is a point] and, for nx=1, let Y,
={yeY: diam/ "' (y) = 1/n}. Since the restriction of f yields a homeo-
morphism between f "' (Y,) and Yp, the latter set is countable dimensional.

Since Y = |J Y,and Y, iscountable dimensional, there is an integer n > 1 such
nz0

that Y, is not countable dimensional. It is easily checked that Y, is glosed and
setting C = Y, and ¢ = 1/n completes the proof.

LimMA 3.2. Let f: X —~ Y be a proper surjection with each f ~' (y) an ANR
having dimension <.1.If Y is not countable dimensional, then thereis aset A = X
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such that the restriction f|,: A—f(A) is a proper surjection with each point-
inverse an AR having dimension <1 and f(A) is not countable dimensional.

Proof. For each pair of positive integers m and n, let Y, , be the set of
points yeY satisfying:

(i) each subset of f~'(y) having diameter < 1/m is contained in a
subcontinuum of f~*(y) having diameter < 1/3n;

(ii) each subcontinuum of f ~1(y) having diameter < 1/n is a dendrite.

It is easy to verify that Y = | ¥,, , and, therefore, there are integers, say m
and n, such that Y, , is not countable dimensional.

For each yeY,,, let ¥, be a finite cover of f~!(y) by relatively open subsets
of f ~*(¥,,n) which have diameters < 1/m. Since fis proper, f (U {Ve¥',}) is a
neighborhood (relative to ¥Y,,,) of y and, therefore, there is a y such that
S (U {Ve¥,})is not countable dimensional. Since ¥ 'y is finite, thereis a Ve ¥,
such that f(V) is not countable dimensional. Set C = Vrf~*(¥, ).

For an element y ef (C), we have that diam (C nf ~*(y)) < 1/m. Condition
(i) yields that C nf ~*(y) is contained in a dendrite having diameter < 1/3n and,
in turn, combines with Condition (ii) to insure that there is a unique smallest
dendrite D, such that Cnf~!(y) = D, =f~*(y).

Let 4 = (ysgj(c) D,)n(f~*(f (C))); since the restriction of f'to f ~*(f(C)) is

proper and 4 is a relatively closed subset of the latter set, the restriction of fto 4
is proper. It remains to show that (f|,)”'(y) is a dendrite for each yef(4)
(=f(C)) and, for this, it suffices to show that (f],)~*(y) is connected and has
diameter < 1/n.

If xe(f|.)~*(y), then either xeD, or there is a sequence y(1), y(2), ... in
S (4) converging to y such that D, ), Dy, ... converge in the Hausdorff metric
to a continuum D with xe D = (f1,)”* (). Since C nf ~*(y())) = D,y and Cis a
relatively closed subset of ¥,,,, C " D # (O and, therefore, D N D, # (. Since D
is connected, we conclude that ( f|,)~* (y) is connected. Since diam D < 1/3n and
'diam D, < 1/3n, we conclude that diam((f],)~*(y)) < 1/n.

Lemma 33. Let f: X — Y be a proper surjection with eachf ™' (y) a locally
connected continuum and suppose that X is countable dimensional. If Y is not
countable dimensional, then there is a subset Z = Y which is not countable
dimensional and there are disjoint relatively closed subsets X (1) and X (2) of
f7(2Z) such that, for j=1,2, the restriction f|y,: X(j)—Z is a proper
surjection and has connected point-inverses.

Proof Using Lemma 3.1 to replace ¥ by a closed subset if necessary, we
assume that there is an &> 0 such that diam f~*(y) > ¢ for each yeY.

The argument used in the second paragraph of Lemma 3.2 insures the
existence of an open subset U; — X having diameter < ¢ such that the set L
=f(Uy) ={yeY: f~1(»)n U, # @} is not countable dimensional. Let U,, Vv,
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and ¥, be additional open sets chosen so that U; = ¥jforj = 1,2, ¥ = U, and
dim V, <& For each yel, we have that:

() for j=1,2, f7 () FrU;s O and f "' (y)"Fr¥;# @;

(i) for j = 1, 2, there is at least one and at most finitely many components of
fY(») " V,—U; which meet both FrU; and Fr¥,.

The fact that £~ ! (y) is a continuum which has diameter > ¢ insures that (i)
holds and, in turn, guarantees that there is at least one component satisfying (ii)
(see [Wi; p. 209]). The local connectivity of f~*(y) precludes there being
infinitely many such components.
£t )n ¥;— U, which meets both FrU; and Fr V}}. Observe that K(j) is a
relatively closed subset of f~*(L) and that f(K (})) = L for j = 1, 2. In particular,
each restriction f; = f|x, is a proper map and, therefore, can be factored as f;
== ;o my where m;: K (j) — D(j) is proper and has conuected point-inverses and
l;x D(j) = L is proper and has totally disconnected point-inverses. (Just as in the
Monotone-Light Factorization Theorem for maps between compact spaces
[Ei], the collection of components of point-inverses of f; forms an upper semi-
continuous decomposition of K(j). The space D(j) is the associated
decomposition space which is metrizable [Mc], [St].)

For j=1,2 and for each positive integer k, set

Nj(k) = {yeL: cardinality of l;*(y) =k} and set
M, (k) = {yeL: each two points of I7*(y) have a distance apart > 1/k}.

A consequence of condition (i) above is that
L= [Ni(m)nNy(n)n M, (k) M, (k)]

k,m,n

Since L is not countable dimensional, there is a choice of integers k, m, n such
that the set @ = N, (m) n N, (n) » M, (k) " N, (k) is not countable dimensional.

1t is an easy matter to verify that the restriction of /; to [ * (Q) is a covering
map for each j = 1, 2; and, therefore, there is a relatively open subset Z < Q
which is not countable dimensional and which is evenly covered by both I; and
1,. For j = 1,2, choose an embedding e;: Z — I ' (Z) with ;oe¢; = Id; and set -
X (j) ='m; ' (e;{Z)). The sets X (1) and X(2) are easily seen to satisfy the
conclusion of the lemma.

LemMa 3.4. Let f: X —» Y be a proper surjection with each f~'(y) an AR
having dimension < 1 and suppose that X is countable dimensional. If Y is not
countable dimensional, then there is a subset Z < Y and relatively closed subsets
X(1), X(2), X(3), X(@) of f~1(2) satisfying:

(a) Z is not countuble dimensional; .

b XWN)NXQ) =0, XB)NX@H =0, and X(3)u X(4) = X(1);

6 ~ Fundaments Mathemuticue CKVIILY
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(c) each restriction fly;: X(j)~— Z is a proper surjection with connected
point-inverses.

Proof. An application of Lemma 3.3 produces a subset Z’' = Y which
satisfies (a) and sets X’ (1) and X'(2) which satisfy the relevant features of (b) and
(c). Since each f~*(y) is an AR having dimension < 1, the point-inverses of the
restriction f|y.;, are AR’s. Applying Lemma 3.3 to this restriction produces a
subset Z < Z' which satisfies (a) and sets X (3) and X (4) which satisfy the
relevant features of (b) and (c). Setting X(1)=f"'(Z)nX'(1) and X(2)
=f"1(Z)" X'(2) completes the proof.

Maw Provosition. Let f: X — Y be a proper surjection with each f~*(y) an
AR having dimension < 1 and suppose that X is countable dimensional. If Y is not

countable dimensional, then there is a subset Z < Y which is not countable

dimensional and for which dim X > ¢-dimZ+ 1.

Proof. The interesting case is that with dim X < co. An easy consequence
of the Vietoris-Begle Mapping Theorem [Sp] is that ¢-dim Y < dim X and,
therefore, each subset of ¥ has finite cohomological dimension. Let Z < Y and
X(1), ..., X(4) besets obtained using Lemma 3.4.Set n = ¢-dim Z andlet A = Z
be'a relatively closed subset such that the inclusion induced homomorphism
H""'(Z)—> H""'(A4) is not onto and, consequently, H"(Z, A) # 0.

For j=1,...,4, let fj=fly; and A(j) =f;"'(A). The fs have point-

- inverses which are AR’s and an immediate consequence of the Vietoris-Begle
Mapping Theorem (used several times below) is that these maps induce
isomorphisms in cohomology. The diagram

H™ 1 (4(1) 222 H"(4(1) U X (3), AD))@H"(A(1) U X (4), A(1))
B f'
) — 0

= triess
H"(Z, A)®H"(Z, 4)
commutes where J and the d;s are “coboundary” homomorphisms. Since
H"(Z, A) # 0, the diagonalmap (8, ) is not onto and, therefore, the map (05, 6,)

is not onto.
The diagram

H"(X(3) U X(4) U A(1), A(1)) S H(X(3) U A(L), A))DH(X(4) L A(1), A(L))

A
3 \ / (83,04)

H" ' (4(1))

commutes upto sign where § is the “coboundary” homomorphism and the
horizontal isomorphism comes from the Mayer—Vietoris sequence for the
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“couple of pairs” {(X (3) U A(1), A(1)), (X (4) U A(1), A(1))}. Since (5, 8,) is not
onto, § is not onto and, therefore, H"(X(3) U X (4) U A(1)) # 0.

Since dimX > dim X (1) > ¢-dimX (1) and dimX > dimf~4(Z) > c-
dim f ~*(Z), it remains to show that either c-dim X (1) 3> n+ 1 or ¢c-dim f ~1(2)
=Zn+1.

If the inclusion induced homomorphism H"(X(1))—H"(X(3)u
U X (4 U 4(1) is not onto, then (by definition!) c-dim X (1) = n+1. If this
homomorphism is onto, then H"(X (1)) # 0 and the isomorphism f{* yields that
H"(Z) % 0. The diagram

H'(f~1(2)) = H (X (1) U X (2)) L8, g (X))@ H"(X(2)
Vlpmt g = fless

H"(Z) % H"(2)®H"(2)

=

commutes where i}, i¥, and i* are inclusion induced homomorphisms, where
A(e) = (e, €) is the diagonal map, and where the homomorphism (i¥, i) is an
isomorphism since X (1) N X (2) = . Since we are assuming that H"(Z) # 0, the
diagonal map 4 is not onto and, hence, i* is not onto. As above, we conclude
that c-dimf ~'(Z) = n+1. '

4, Proofs of main theorem and corollaries.

Proof of the Main Theorem. If the space Y is not countable
dimensional, then Lgmma 3.2 and the Main Proposition combine to produce a
subset Z — Y which is not countable dimensional and for which dim X > c-
dim Z + 1. Since dim X < 2, the inequality implies that ¢-dim Z < 1. Basic fact
(e) from the list in Section 2 yields that dim Z < 1 but this contradicts the fact
that*Z is not countable dimensional.

Proof of Corollary A. Since each f ~1(y) is an AR, the Vietoris—Begle
Mapping Theorem applies to show that c-dimY <c¢-dimX < 2. Since
dim X < 2 and each f~1(y) is an ‘AR having dimension < 1, Y is countable
dimensional by the Main Theorem. Since the proper image of a complete space
is complete [Va], the space Y is both complete and countable dimensional.
Since dimension agrees with cohomological dimension for complete countable
dimensional spaces, dim Y = ¢-dim Y < 2.

We will need the result of Sieklucki [Si] that an r-dimensional locally
compact separable ANR does not contain uncountably many pairwise disjoint
n-dimensional closed subsets. We also will need the observation that a separable
metric space Y is countable dimensional provided each point of Y has
arbitrarily small neighborhoods whose frontiers are countable dimensional.
(Choose a countable base % for Y consisting of open sets whose frontiers are
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countable dimensional and write ¥ =[ (J FrUJu[Y— Uw FrU] as a
Ustt - Us

countable union of countable dimensional subsets and the 0-dimensional subset
Y- U FrU)

Ue .

Proof of Corollary C. Sieklucki’s result which was just mentioned
implies that, for each yeY, there is arbitrarily small &> 0 such that
dim /™! (Fr(N,(»)) < 2 and, hence, the Main Theorem yields that Fr(N,(y)) is
countable dimensional. The observation made above completes the proof.

"Remark. If E? is replaced by a locally compact ANR having dimension
< 3, then the preceding arguiment shows that Y is locally countable dimensional
and, consequently, countable dimensional. The emphasis on E® is intended to
establish a ready comparison with the second examples constructed in the
introduction.

Proof of Corollary B. The preceding argument combines with
Corollary A to show that, for each y € ¥, there is arbitrarily small & > 0 such that
dimFr (N, (y)) < 2. Therefore, we conclude that dim Y < 3 and appeal to [Ko]
or [La] in order to deduce that Y is an ANR.
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