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§ 4. Complements of O-dimensional sets in I*. As remarked in the
introduction, the question of equivalence of imbeddings of a 0-dimensional
space into I reduces to the question of homeomorphism of their complements,

4.1. TueoreM. Let X, Y < I® be O-dimensional, and f: I\ X - I*\Y q
homeomorphism. Then f extends to a homeomorphism f: 1® — I*.

Proof. For each xe X and i > 1, let N;(x) be the open 1/i-neighborhood of
x in I®. We claim that f(x) = _Q £ (N;(x)\ X) defines an extension of f. Since

_each N;(x) is open and connected, and X is O-dimensional, N;(x)\X is
nonempty and connected. Thus f(x) is the intersection of a decreasing sequeﬁce
of gontinua, and is therefore a continuum which must lie in Y. Since Y is
0-dimensional, F(x) is a point. Clearly, this defines a continuous extension
f: I® - I% of f. Similarly, one defines a continuous extension g: I* — I* of
g=f""' Since X and Y are nowhere dense in I, each of the compositions
jog and gof is the identity map, and fis a homeomorphism.

Remark. It is clear from the proof that this theorem can be generalized, by
substituting for I any locally connected continuum Z, and requiring only t,hat
X and Y be totally disconnected and locally non-separating in Z.
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Chains in Ehrenfeucht-Mostowski models
‘ by
C. Charretton and M. Pouzet (Lyon)

Abstract. We study the relationship between the chain of indiscernibles in an Ehrenfeucht-
Mostowski model and the subchains of the model. As an application we construct large families of
almost disjoint models for some theories.

Introduction. This work arises from the following considerations: by means

of Ehrenfeucht—Mostowski models, the class of chains can be represented in the

class of models of any theory. In some cases, especially unstable theories this
method allows the construction of a large number of models (see S. Shelah [10]).
However the sort of relationship between these models seems to be interesting,
also. And this representation of classes of chains in classes of models allows one
to think, in particular, that the complexity of comparing models is as high as the
complexity of comparing chains. This paper is an attempt to work out this idea.

There is one basic question: if for a theory T two Ehrenfeucht—~Mostowski
models M (C), M (C') are comparable in some sense (by extension or elementary
extension), what is the relationship between the chains C and C’ which generated
them? the same question arises when C' is a subchain of M (C). Here we give a

" partial answer to this question, assuming that M (C) is partially ordered by a

formula ¢, we prove: if C' is a chain of regular power x in this partial order then
there is some subchain C” of C', with power x, which is isomorphic to a subchain of
C or its converse C* (Theorem IT-1). This is not the best possible result, however,
as we get that C' is a countable union of chains, each of them being isomorphic
to a subchain of some finite lexicographical product of copies of C or C*.

Nevertheless this result is enough to transfer some properties of chains to

‘models. Let (P) be the following property of two chains C and C': “C and C’ are

of same power » and there is no chain of power x order or antiorder isomorphic
to subchains in both C and C'”. If we take two chains € and C’ with the property
(P), then the two Ehrenfeucht—Mostowski models generated by them also have
'the corresponding property for models. So if the orderings on C and C’ are
definable in the Ehrenfeucht—Mostowski models to which they give rise, these
models are uncomparable. The situation occurs when the theory T has some
model containing an infinite chain; in this case large families of chains satisfying
pairwise the property (P) give rise to large families of uncomparable models with
the corresponding property. We can get such families of chains by using the
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super-rigid chains introduced by R. Bonnet. This method allows us to build
many models. It gives a partial approach to the well known result of S. Shelah
on the number of models of unstable theories.

This text is divided into two sections. The first section is purely relation
theory. It is the only part of the properties of Ehrenfeucht--Mostowski models
that we need for our approach. The application to model theory is given in the
second section.

We thank Professor W. Hodges for his information and stimulating
suggestions, and Z. Georgis for correcting our stumbling English.

I. Relational ingredients. In the following we are concerned with partial and
linearly ordered sets, Our definitions and terminology are, with a few exceptions,
the same as those in the book by Kuratowski and Mostowski [8]. We shall use
symbolssuch as <, <, <, ... to denote order relations. If necessary we shall use
other ‘symbols, sometimes with subscripts. For instance if < denotes some
ordering of a set E we shall denote its converse by <*, and by <, the strict order
(x < y means x < y and x # y); we shall write E and E* for the corresponding
ordered sets (E, <), (E, <*). If the order is linear (or total) we shall say that the
corresponding (linearly) ordered set is a chain, and that its subsets with the
induced order are subchains. Preferably we shall denote chains by the letters
C, D, P, For a chain C = (C, <) we shall denote by & any finite strictly
increasing sequence of elements of C, and by [C]" the set of such & with length
m. By a local automorphism of C we shall mean any strictly increasing map g with
domain and range subsets of C and we shall denote by g(d), the seciuence
(9{ay), ..., g(a,)) for @ =(ay, ..., a,) with a, < dy ... < a4, in the domain of g.

I-1. Generated and invariant ordered sets. Let us consider an ordered set E
= (E, <), a chain C and a set & such that each element ¢ of @ is a map from
[C]'"“P) into E where m(g) is an integer, which we call the arity of . We say that
E is C-generated, modulo ®, when each element of E is the range of some ¢ of ®.
We say that E (or the order on E) is C-invariant, modulo ® when for any local
automorphism g of C, for any ¢, in @, and for any strictly increasing sequences
d, b from the domain of g, with respective lengths m(g) and m(), we have:
e@ <y () iff ¢(7@)< v (3(®)

ExampLe. The simplest case is when E = [C]" for some m and & contains
only the identity function on [C]", in this case we say briefly that [C]" is C-
invariant. Then these conditions mean that the comparison of i and b does not
depend upon the choice of @ and b but only on the relative position of their
components. These are precisely the conditions that are equivalent to the
d‘eﬁPagility of the order on [C]™ from the order on C, by way of the free formula
F(X,Y) As typical examples we have the cartesian order and ‘the
lexicographical order. We shall show that all examples of a C-invari

! § ant linea
ordering on [C]™ are lexicographically ordered. ’
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 Let P be a subset of C and ¢’ a subset of ®. We shall denote by P* the

subset of E generated by P modulo &', with the induced order.

I-2. LemMA. The following are equivalent:

(i) E is C-invariant modulo ®.

(ii) For any subsets P and P' of C, if g is some order isomorphism from P onto
P', then there is a unique order isomorphism § from P® onto P'® such that § (¢ (@)
= @ (g(@) for any @e® and de[P]™.

(iii) For any finite subsets @' of & and P of C, P*" is P-invariant modulo &' (in
fact it is enough to consider subsets P of C with no more than

- 4Max {m(¢p): pe®'} elements).

Sketch of proof. (i) = (ii). For xe P® let us define §(x) = ¢ (g (@) where @
and ¢ are such that x = (@) and note that if ¢@(d) = (b) then:

@ (@(@) =¥ (g(®).

The converse and (i) =(iii) are obvious. '

(iii) = (i). For g, @, ¥, d, b as defined previously, let P be a subset of C
containing the components of &, b, 7(a@), g(b). As PV is P-invariant the result
follows.

1-3. THEOREM. Let the partial ordering E be C-invariant, modulo @.If C is an
infinite chain then the ordering on E can be strengthened (*) to some linear ordering
which is C-invariant, modulo ®.

Proof. First step. Let us consider some linear strengthening <X of the
ordering < on E. We prove the following lemma:

For each finite subset &' of ®, there is some infinite subchain C' of C such that
C'Y, with the ordering induced by =, is C'-invariant modulo &'.

—1- Let @' be a finite subset of @ and m’ an integer. We say that two m'-
element subsets P and Q of C are equivalent iff the order isomorphism § from
P? onto 0%, induced by the unique isomorphism g from P onto @, is also an
order isomorphism for the linear orderings induced by =<\ on P* and Q%
Obviously we have an equivalence relation with a finite number of classes (as &'
is finite, such P are finite, and if p is their common number of elements, then
there is at most p! classes). So if we apply Ramsey’s theorem we get an infinite
subset C' of C with all its m'-element subsets in the same class.

—2-- Let us show that for such a C’, all its m'-element subsets are equivalent
for m" < nt', The result will follow by induction, let m be an integer and let Dbe a
subchain of C with at least (m+ 1)-elements such that the m-element subsets of D
are equivalent as above. We can observe that the (m— 1)-elements subsets of D
are also equivalent: if D has m+ 1 elements, it is easy. If D has more than m+-1

(1) We say that an order <'is a strengthening of the order < if x < y implies x <’y lor alt
possible x, y (we do not use the term extension to avoid confusion with its meaning in model theory).
Let us recall that every partial ordering has some linear strengthening (Szpilrajn [11]).
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elements then two m-element subsets P and Q of D are equivalent to P" and Q'
_respectively, which are two (m-+ 1)-elements subsets of some (m+ 1)-elements
subset of D. So by trivial induction the result follows.
~3— Let us take m’ = 2Max {m(p)/p € '} and consider some infinite chain
C' given by the Ramsey’s theorem. As its m"-element subsets are also equivalent
for m” <m' it follows that this chain has the required property. To see
this, take a local automorphism g of C' and elements @ and  in ¢’ with
@=(ay, > Gugy) a0d b =(by, ..., by in the domain of g. The two sets
(a1, ., Oy} Y b1y -y by} aNd:

{g (al)a ey g(am(tp))} o {g(bl)a Ceen g(bm(u//))}

have the same number of elements which is at most m” = m(¢p)+ m(y). Because
m" < m, they are equivalent subsets of C'. Because g is the unique isomorphism
between them we have ¢ (@) =<y (b) iff ¢(F@)=<y (G(H).

Second step. By the above lemma it follows that for any finite subsets P’
of C and @' of ®, the order on P'* can be strengthened to some P'-invariant
(mod @) linear ordering (take some infinite subchain €’ of C, as in the lemma.
For any P’ take some isomorphism g from P’ into C’. As the ordering on P’

take the isomorphic image under §~* of the linear ordering on g (P)® induced
by <. Because all finite subsets of C' are equivalent, this linear ordering does not
depend of the choice of g.

By the compactness theorem it follows that .the ordering on C® can be
strengthened by some C-invariant (mod @) linear ordering.

By Szpilrajn’s result, such strengthening can be extended to the whole set E
in a strengthening of <. Hence we get the result.

Let us give a direct proof of the compactness argument: for any finite
subsets P’ of C and &' of & let us consider the set %p. 4 of the binary relations on
E' = C°%, each of which induces a P'-invariant (mod @') linear strengthening of
the induced order on P¥. These %, o sets are closed in the set of the binary
relations on E’, for the pointwise convergence topology, and they have the finite
‘intersection property (note that %p g N Upi g 2 Uppr,groe). SO their
intersection is non empty. Any element of this intersection is a relation having
the required property. Note that if @ has a finite size then this argument is
useless: to have the required strengthening on C'® it suffices to have it on some C'®
Jor some C with at least 4m(P) elements (here m(®) = Max {m(p) ¢ e ®}). (Build
a linear order on every P® with P of size 2m (), as in the beginning of the second
step. Observe that for two such sets the orders are the same on their
intersection). Although C'is of very small size we do not know how prove that C’
has such a strengthening without Ramsey’s theorem.

Remark. To construct on a set a linear strengthening of a partial order it is
enough to order two incomparables elements, in an arbitrary way, and so on;
Afterwards one has to use a set theoretical axiom. But this method does not
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work here. Let us look at the following example: suppose E is generated by two
unary functions ¢ and y, ordered in such a way that ¢ (c) < (¢') for ¢ # ¢’. I we
decide that ¥ (c) < ¢(c) then, by C-invariance, we get the following cycle:
Y0 < o) <¥(e) < @) <y (o)

Our method of proof is in same spirit as some of Fraiss€’s proofs concerning
enchainability. Note that this notion (similar to the indiscernability one) and the
use of Ramsey’s theorem have occured in his thesis (1953, [4]).

GENERALIZATION. The conclusion of the above theorem still holds if we
replace the partial ordering by a binary relation with no cycles: we get a C-
invariant linear strengthening of this binary relation (take an arbitrary linear
strengthening of this relation and do the two steps of the proof).

I-4. TueoREM. Let E be a chain which is C-generated and invariant modulo
one function . If C is infinite then E is order isomorphic to asubchain of a finite
lexicographical product of copies of C or C*.

Let us begin to prove the following lemmas.

LemMA. Let E be a partial order which is C-generated and invariant modulo
one function ¢. If C has at least 3m(¢) elements then for every chain C,, containing
C there is some function ¢, extending ¢ and some Ci-generated and invariant
(mod ¢,) partial order E, which extends E.

Proof. Let C, be a chain containing C. For n = m(¢) let us say that two .
elements d@ and b of [C,]" are equivalent iff there is some local isomorphism g of
C, such that 7(&), g(b) are in [C]" and:

¢(3(@) = @ (@(®).

(Note that if this equality holds for one g, it holds for every one.) By the bijective
map 0 between E and the set E' of equivalence classes of elements de [C]" we can
put on E’ a copy of the ordering on E. And we can extend this ordering to the
whole set of classes Ej in the following way: the classes of two elements 4@, b of
[C,]" are ordered as the classes of §(d) and g(b) in E’ (where g is any local
automorphism which maps @ and b into [C]"). To get the result it is enough to
extend the map 0 to some ordered set E, in such a way so that this map will be
an isomorphism between E; and Ej.

Notation. For any de[C]", any k-element subset K of [1,...,n], we
denote by @y the element of [CT* obtained from & by deleting the components
whose indices are not in K. For example if @ = (ay, a;, a3, a,) and K = {2, 4}
then dlx = (a2, ay). :

Lemma 2. Ler E be some C-generated and invariant, modulo one function ¢,
partial ordering. If C is a dense(*) chain then there is some k-elements subset K of

() We mean that a chain C is dense in the usual sense: for any x, yeC, with x < y there are u,
v, w such that u<x <v <y <w: ’
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[1,...,m(p)] and some bijective map Y from [CT* onto E such that:

1) (@ =yl for every ae[CI"?,

2) E is C-generated and invariant (mody).

Proof. In the following we denote by s;(x)d the element of [C]" which has
the same components as & for the indices j, for j # i, and values x for the index i.
(Of course, this notation supposes that x is between ;- ; and ¢4 ;). Suppose that
we have the equality

o (s;(x) @) = ¢ (s:() d)

for some @ and x s y. Then we have this equality for all possible choices of x, y
(between a; 1, g;+ 1), and also for every & We say that the index i is inactive if the
previous situation occurs. When ¢ is defined on C, by saying that the index 1 is
inactive, we mean that ¢ is constant. In this case, to get the resull, take for K the
empty set. We assert that if ¢ is not injective then there is some inactive index: let
. b be such that @ # b and ¢ (@) = ¢(b). Suppose that & < b in the lexicographic
order and let i be the smallest index such that a; # b; (so we have a; < b;). Let x
be between 4;_; and g;. The elements s;(x) @ and b are in the same position as &
and b so we have ¢ (s;(x) @) = ¢ (b) and then ¢ (s, (x) &) = ¢ (@). This means that i
is inactive. Now we work by induction: if ¢ is injective the lemma is proved; if ¢
is not injective, take some inactive index i, take K = {1, 2,...,i—1,i+1,..., n}
and define the function ¢’ from [C}*"! into E, by taking ¢’(dlg) = ¢(d).
(Because C is dense, this equation suffices to define ¢'). Do this again on ¢’ and
repeat the procedure as many times as it is possible. The resulting function i as
the required properties (to see the C-invariance of E mod i, use the fact that, ina
dense chain, every local automorphism with finite domain can be extended to
any finite subset).

]‘_‘EMMA 3(Y). If Cis a dense chain, every linear C-invariant ordering on [C]" is
a lexicographical ordering for some total ordering on [1, ..., n], the components
being ordered as C or C¥*.

_ Proof. Let us denote by < the linear ordering of C and let < be any C-
invariant linear ordering on [C]" :

First_ part. 1) For everyie[l, ..., n], let us define a new ordering on € in
the following way: for two elements x, yeC, we say x < y iff there is some

ae[C]" s1ich that s;(x) @ < 5;(y) @. If there is a such an & then this relation holds
for every d where the substitutions of x and y are possible. So the relation < is
i

antisymrr_letric. For every x, y in C, we can always choose & where the
substitutions of x and y are possible(C is dense), so we have x < y or y <x. If for
i o

some x, y in C we have x <y and x $ y then for every x', y' in C such that

(‘)' W. Hodges has shown this lemma in his thesis, however he did not publish it, In fact this
lemma is a consequence of a result due to K. Arrow and known as Arrow's Paradox.
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x' <y, we get x’ $ y' (by a local automorphism, transform x in X', y in y’ and
extend it to some d), so < in exactly the given ordering < on C or the converse.
And if n =1 Lemma 3 is proved.

2) We denote by a;;(x, y) d the element of [C]" with the same components as
a, except for the ith and jth components where the values are respectively x and y
(this notation is only defined when we get 5 (x, y) @ as an element of [C]" and
will be used only in this case). Of course the notation s;u(x, y,2)d has a
corresponding meaning. :

We define a total order < on the set of indices [1, ..., n] in the following
way: we say i <j iff i =}, or there is some x, x', y, y and @ such that x < X,
y< v, and §;(x, y)d <su(x’, y) i (of course the substitution of x, y" and x', y
makes sense iff they are ordered like i, j in their natural order). Because <isa
total ordering we have i<j or j<i. If in the above definition we have
8;;(%, Y)a<sy(x', y) 4 then for 4 fixed this relation in still true for every
possible choice of x, x', v, ¥, and for x, x', y, ¥ fixed it is true for every possible
choice of &. So the relation < is antisymmetric. Let us show that it is transitive:
suppose i, ], ke[1, ..., n] such that i jand j < k.¥i=jorj=ktheni<k.
Suppose i,j, k are pairwise distinct elements of [1,...,n] (so n=3). Let
x,x.z,2 be in C and de[C]" such that x < x, z <z and s;(x,2)d,
sy (x', z)d are defined. Choose y in C such that 'y < a; and sy (X', y, 2} d is
defined. From i <j it follows that !

s, 2) B sip (X', ¥, 2) a.
Fromj < kit follows that s (x', ¥, 2') 8= s (X, 2) 8. S0 8y (3, ) = S (x,y)a,
namely i < k.

Second part. Now, we show that the ordering = is exactly the
lexicographical ordering 1§x defined by < and the s i=1,...,n(werecall that
ag Fiffd=5or ay 5 by, for the smallest index i, relative to <, such that
i # bio)' ] :

As we have two linear orderings, it is enough to show that d 1§x b implies

i =< b. For two elements &, Bof [CT let d(d, B) be the number of indices i such
that @ # b,. We prove the previous implication by induction: we suppose it true

*for all @ b such that d(d@, b) < d < n and we prove it for all & b with (@, b) = d.

»

Let @ b be such that d Is b, d(@, b) = d and let i be the smallest i, under <,
ex

for which «; # b;.

d = 1, By the definition of the lexicographical ordering and of % , we get the
result. (o

d =72 Let j be the other index where @ and b differ, thus i, <1j.

First case. bjj:aj. By the definition of <, we get axb.

Second case. 4; f by. Let k = Min (io, j) k' = Max (iy, j) for the natural
ordering on [1,...,n].
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If a, < b, on C, we have d=s,(b)d = 8 (a,) b < b.
If by < a, on C, we have 3= s, (b)d = s,(a)b<b.

d > 2. get Jo bf, the greatest index (for the natural ordering on [1, ..., n])
for wlych d and b differ. By the choice of i, we have iy < j,.

First case. Suppose j, # iy. .

First subcase. aj, < by, on C.

If a;, b bj,, then a< s,o(bjo)c'i[fx b. So by induction we get the result.

If by, j<0 a;,- Let us choose some x satisfying Gy KX < b, and ¢y ., < x
<b. . . . . Qg g 0"
: b,I;)Jr1 ,‘Because % is the given ordering on C or its converse this is equivalent
o choosing x both between g, i
g ¥ Do o a, and b;, and .betwcen 4o-1 and a; . for the

. This is possible because C is dense. So we get:

i< Sig,40 (% LINE: g b.

Second su . i
got e 1l’acase. b, < aj, O C. Replace = by its converse <*. So we
s ead of <, the ordering < remains the same, and < becomes < *
The result follows as in the first subcase. " i

Second case.j, = iy. Letj, b i
Jo - Let j; be the smallest index (for the natural orderi
on [1,...,n]) for which @ and b differ; as & and 5 have at least two diffe mgt
components, we have j, + j,. “
Let us reverse the order on C, and reve i i '
R rse the indexing (for e .
becomes {(c, b, a)); repeat for j, what was done for Jo g£ xemple(a, .
Remark. The result is true even whe: i '
: _ . n C is not dense, and further
;;:Zlfn lesl e3ﬁnztet wztzh at least (2n+1)-elements. To get the result when C hlzl:so:
ments 1t is enough to know it when the chain is de
: nse: by Lemma 1
Z;ec;lz:jr; :ﬁ(t}cg;idc toa degse chain C;. We get an ordering, on [élj" \i/riﬁcli
erin; " "1 i aphi ’
Ny g on [C]". By Lemma 3, [C,]" is lexicographically ordered,
Proof of Theorem I~4. If C is a den: i
_F . nse chain then, by Lemma 2
bl]ecilfvz map from some [CJ"‘ onto E. Then Lemma 3 gives thc’av;:v%g;a
o is noft dense, extend it toa dense chain C,; by Lemma 1 extend t‘o
> frorlr;las;:) qu:;e Ec()jm]E(:;ﬁ]t o;to ;onllj: E; . By Lemma 2 take the one-one map](fing
0 [ 0 L. By Lemma 3, E, is lexicographicall lik
[C.]". As 1{/1 (@lx) = o, (@) it follows that E < v,y ([C]"‘).g(N%: the};olzjlcirteddhke
not hold, in general) So E is ordered as a subset of [CT™ 4 v eoss
I-5. THEOREM. Let E be an ordered s ich i .
. et which - i i
modulo a countable set . Then every chai:) [l)co g, erated and tnuarlant

. f E, with regular cardinal »

contains a subchain D', with powe ich is ord, om’ orph v cordinal x
> 7 %, Wh i i i

or of C*. » WRICh 1S order isomorphic to a subchain of C

Pro of If %= , the t} corem 18 Obvlously true but Wlthout interest.
Because Of IheOI em 1—3, we haVe Only to work with the case Whele E 18 hneally
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ordered (if not, take a C-invariant strengthening of E; obviously, a chain of the
first is still a chain of the second). Let D be a chain of E. Because x is regular
(here cof(x) #  is enough) there is some p & @, the range E,, of which contains a
subset D, of D with power x. By Theorem I-4, E, is order isomorphic to a
lexicographically ordered product of copies of C or C*. As x is regular, every
subset of power x of such product contains a subset, of power x, which is
isomorphic to a subchain of C, or C*. D, has this property. This proves the
theorem. '

Remark. This result has no interest for power » such that every chain of
power » contains a subchain isomorphic to the ordinal » or its inverse »*; for a
strongly inaccessible , this property is equivalent to weak compactness.

It is false for singular x. Let us give a counterexample: let C be the ordinal
w, and E =[C]? ordered as follows: (a, b) < (@,b)iffagd ora=ad and '
< h. This set contains a chain D of type

o*+of+ ... o ...

(which, of course, has no common subchain with C or C*, of power ¥,,. Take D
={(i,)) i =y J =0+t 0< Oy neN}.

GENERALIZATION. Obviously the conclusion of the above theorem holds if we
have only a preorder (namely a reflexive and transitive relation <). This preorder
has the same chains that the associate order (namely the order < for which
a<bif a=h or a<b and b < a).

As previously stated, this conclusion holds if we have a binary relation with
no cycles (NB: it does not matter that the transitivisation of this relation may
not be C-invariant order. The theorem can still be applied to some C-invariant
linear strengthening of this relation).

Otherwise we should like to point out that this relationnal framework is the
natural one in which to extend the notion of enchainability which was recently
appeared in group theory(*).

II. Applications to model theory. Let us recall that C is a chain of
indiscernibles in a model .« iff C is a subset of 4, 4and for every formula
0(xy, ..., x,) of the language of < and for every @ b in [CT", « k= 0[4d] iff
o = 0[] x. In the following we consider a countable language, for the sake of
simplicity. Let us recall the well-known result:

EHRENFEUCHT-Mostowski THEOREM. Let T be u theory which has an infinite
model. For every chain C there is some model .o/ of T in which C is a chain of
indiscernibles.

For a theory T, let us consider T* a Skolemization of T. Let «/* be a
Skolemization of .«7. If C is a subset of 4, let us note by .«7*(C) the Skolem hull

JE——————————

(") G. Higman, Homogeneous relations, Oxford Quaterly J. 28 (2) (1977), pp. 31-39.
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of Cin o7* and let .« (C) be its reduct to the language of .«/. We call such a
model o7 (C), where C is a chain of indiscernibles, an Ehrenfeucht-Mostowski
model of T.

An application of the previous relational result arises from the fact that any
*(C) is C-generated and C-invariant modulo the set of functions which are
interpretations of the Skolem functions. Let us reformulate Theorem -4 for
theories with ordered models (namely theories containing the axioms for partial
ordering or theories T for which there is a formula which defines a partial
ordering on each model of T;).

II-1. TueoREM. Let T be a theory (in a countable language), with infinite
partially ordered models; then in every Ehrenfeucht-Mostowski model o T,
generated by a chain C, every chain whose power is a regular cardinal % contains a
subchain of power % order isomorphic to a subchuin of C or C*,

By this result, we can build models with properties similar to the given
chains. The following will illustrate this fact. Let us consider a chain C of power
% which does not contain the ordinal x and its inverse x*. Such chains do exist
for non weakly compact cardinals, especially for successor cardinals (for
cardinal » = ¥, take any subchain of power " in 2 lexicographically ordered,
cf. [8]). If x is regular, then, by the above theorem, an Ehrenfeucht--Mostowski
model generated by C has the same property, So we get:

II-2. Tueorem. Let T be a theory (in a countable language) with infinite
partially ordered models. For every regular and no weakly compact cardinal s,
there is some model of T of power » without a subchain ordered as x or x*.

In fact this result can be found in a more general setting in ' W. Hodges
paper [7]. Furthermore he gives a counterexample of this result for strong limit
cardinals.

Now let us consider two chains C and C' of power % which satisfy the
Jollowing property (P): “there is no chain of power % order or antiorder isomorphic
to subchains in both C and C'. Then, by Theorem II-1, we are going to show
that the Ehrenfeucht-Mostowski models generated by C and C' have the
property (P)(*). To get a large family of chains such that every pair of them has
the property (P), let us introduce the following chains studied by R. Bonnet [2]:
following his terminology, we say that a chain C is super-rigid if for every strictly
increasing or decreasing partial map in C, the set of non-fixed points has a
strictly smaller power than C. He proved that such chains of power 2% exist,
and indicated how to generalize this result to any successor
GCH.

Let us recall that, assuming GCH, for every successor cardinal s, there is 2

fami.ly of power 2% of pairwise almost disjoint subsets of x (namely the power of
the intersection of two of them is less than ).

cardinal, assuming

(*) For an example, if x = Ny, let us consider R and [
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By considering a super-rigid chain of successor cardinal %, some family as
above induces a family of power 2* of chains of power %, such that any pair of
them has the property (P). So we have the following theorem and its immediate
corollary: '

[1--3. TuEOREM (Assuming GCH). Let The a theory with infinite partially
ordered models. If one of them contains an infinite chain, then, for every successor
cardinal x there is a family of 2* models of T, each of which is of cardinality » and
contains a chain of power %, such that for any chain D of power x, there are no two
models in the fumily, into both of which D can be embedded.

Proof. Take a family of power 2* of chains of power x such that any pair of
them has the property (P); for each chain C of this family, let us consider the
Ehrenfeucht- Mostowski models of T, generated by C. Let us suppose that a
chain D of power x is embedded in two such models generated by C, and C,
respectively. Let f; and f; be the isomorphisms which map D onto D, in ./ (C,),
and onto D, in .«/(C,) respectively. By Theorem II-1, D; which is a chain of
power x in «/ (C,), has a subchain D} of power % which is embedded by ¢, in C,
(or C¥). Let DY be the isomorphic image under f,0/;"* of D} in ./ {(C,). It is a
subchain of D,. By the previous argument it contains a subchain D7 of power
which is isomorphic by ¢, to a subchain of C, (or C%).

Let us consider the map g, of; ofs ' og5 *: it is a monotonic partial map
from C, into Cy, which contradicts the fact that C, and C, have the property

P).
® Let us say that two models .# and .#', of a theory T and of the same
cardinality, are almost disjoint iff there is no model .#" of T of the same power
which can be embedded into .# and .#' (e.g. two chains of power x have
property (P) iff their associated betweeriess relations are almost disjoint).

CoroLLARY (GCH). Let T be a theory with partially ordered infinite models.
If every model of T contains a chain of the same power, then, for every successor
cardinal x, there is a family of 2* models of Tof power x, which are pairwise almost
disjoint (even more strongly: their reducts to the ordering are pairwise almost
disjoint).

AppLications. This result works for Peano Arithmetic. It also' does for ZFC,
because in every model of ZFC the chain of the ordinals has the same power as
the model.

Remark. To get a family of i models of cardinal x as in the above tl}corem
and corollary, it is enough to have a family of g chains of power x which are
almost disjoint. Use the following lemma: ,

LummMa; Let & be a fumily of pairwise almost disjoint chains, every one of the
same power x. Then there is some family of chains £, of the same power as &,
such that each chain in ¥ is a subchain of power x of some chain of & and such
that any pair of them has the property (P).

Proof. Let % be the set of pairs of elements of & not satisfying the property
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(P). If [4] < |.&|, the family %' obtained by deleting the chains occuring in such
pairs, has the required property. If |%| = |.&), for each pair {C, D}, let us take
some chain E of power A which is order embedded into both C (or C*) and D (or
D*). We get a new family of chains and it is easy to verify that they have pairwise
the property (P) (use the fact that the elements of .Z are pairwise almost disjoint).

Now we would show how it is easy to compare models using the super-rigid
chains and our Theorem II-1, though the below theorem is true in a more
general setting (see the Shelah results about instable theories [10]).

I1-4. TueoreM (GCH). Let T be a theory with infinite partially ordered
models. If one of them contains an infinite chain, then, for every successor cardinal
%, one can build a function which maps every subset A of » to a model M 4 of T in
such a way that the following are equivalent:

(1) 4 is a subset of B;

(i) A, is an elementary submodel of My;

(iii) .# 4 is isomorphic to some submodel of M .

Proof. Let k be an element not in » and C = (x U {k}) x %. Let us define F
as a mapping from 2 (x) into 2(C) by F (4) = (A v {x}) x ». Obviously we have:
A < B iff F(4) = F(B) and if A = B then |F(4)—F(B)| = x. Let us order C in
such ‘a way that the corresponding chain C is super-rigid. Let T* be a
Skolemization of our theory T, and let .#* (C) be the model of T* in which Cis a
chain of indiscernibles, and the ordering on C is the same as the ordering
induced by the model. This is equivalent to say that the order on C is definable
by a formula of the language of T. That is possible because there is some model
of Twith an infinite chain. For every subset A of x, let us consider the submodel
of M*(C) generated by F (A4). It is a model of T* (note that F (A) is an infinite
subchain of C), and its reduct to T, .#,, is a model of T. Obviously if A is a subset
of B, then .#, is an elementary submodel of ..

So we have proved: (i) = (ii). The implication (ii) = (iii) is trivially true. Now
let us prove (iii) = (i). Let us suppose that .#, is isomorphic to a submodel of
M. If A is not a subset of B we have |F(4)—F (B)] = K. Then let us consider
some embedding g of .4, into /. It maps the chain F(4)— F (B) onto a chain
included in #;. This chain being of power x, Theorem I1-1 says that it contains
some subchain D of power x, order isomorphic to a subchain of F (B) or to its
converse. Let h be some monotonic function from D into F(B). The function
hog mapping F(4)—F (B) into F (B) is a monotonic partial mapping of C which
moves » elements of C. This contradicts the super-rigidity of C.

Some remarks and problems. Counting the number of models is not the only
way to describe the complexity of a class of models. We can preorder the class of
models of cardinality » by defining, for example < .#' iff 4 is isomorphic to
a submodel of .#’". And a question is: how “large” is the associate order? In
considering the question, let us recall the notion of dimension introduced by B.
Dushnik, E. W. Miller [1]: the dimension of a partially ordered set E is the
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smallest cardinal A such that E is isomorphic to subset of a direct product of A
chains. It is known that the dimension of 2% is %, so results such as Theorem IT-4
asserts that the dimension of the associate ordering to the class of models of
cardinality x is at least x. We conjecture that this dimension is at least »™. (It is
true for the theory of chains, because R. Laver proved in [6] that for every
infinite » the class of scattered chains of cardinality » has dimension »*). So the
question is: for an unstable theory T, is x* or 2* the dimension of the class of
models of T of power x (% > w)?

Further generalizations. To establish relations between comparisons of
chains and comparisons of models, we have to get stronger results about the
chains in Ehrenfeucht~Mostowski rodels.

Already by Lemma I-3, it follows that a chain in an Ehrenfeucht—
Mostowski model generated by C is a part of a countable union of finite
lexicographical products of C or C*. For example, if C is a countable union of
scattered chains then every chain in an Ehrenfeucht~-Mostowski model
generated by C is of the same kind. Important results about these chains are
obtained by Laver and Galvin. Although some of these are usefull, we do not use
these methods because we think that it is possible to get more: for instance that a
totally ordered Ehrenfeucht—Mostowski model generated by C is a subchain of a
countable lexicographical product of copies of C or C* (see below).

We would like to obtain the same results for chains in the case where the
model is not ordered, so that we could apply the results to unstable theories.
This problem can be summed up as follows: is a chain on a set with a C-
invariant binary relation a part of a lexicographical product of C or C*? Note,
by Theorem 1, it is enough to assume that the binary relation is a tournament
(namely an antisymmetric binary relation in which two arbitrary elements are
connected).

Added in proof. Since the paper has been submitted, some of the problems mentionned above
have been solved. Especialy we have a complete description of ordered E.M. models. By this
description we get the following: A linearly ordered E.M. model generated by a chain C, which
contains C* and the chain Q of the rationnal numbers, is a part of the set C=“ of finite sequences of
elements of C, lexicographically ordered. With this, we get that the class of models with cardinality
%, % > w for a theory as above, contains a subclass order isomorphic to the class of chains of the
same cardinality. Thus its dimension is at least x*. '
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A new construction of a Kurepa tree with
no Aronszajn subtree

by ‘
Keith J. Devlin(!) (Lancaster, UX.))

Abstract. In 1969, we asked whether V = L implies the existence of a Kurepa tree having no
Aronszajn subtrees. The affirmative answer to this question was supplied by Ronald Jensen in 1971,
whose proof appeared in [2]. Jensen’s proof was somewhat involved, and required some delicate
argumentation, We present here a much simpler proof which has the same degree of complexity as
the construction of any Kurepa tree in L.

Preliminaries. For terminology and notation covering trees we refer to
either [1] or [2]. An in these references, for A < w,, by a A-tree we mean a
normal tree of height A having countable levels. An Aronszajn tree is an w, -tree
with no uncountable branch, a Kurepa tree is an w;-tree with at least N,
uncountable branches. Aronszajn trees can be constructed in ZFC. Kurepa trees
can be constructed assuming V = L (Solovay) or & — which is true if V=1L
(Jensen), ‘

For background on constructibility we refer to [1]. We shall not require
any fine structure theory.

The question as to whether V = L implies the existence of a Kurepa tree
with no Aromszajn subtrees was raised by me in 1969, and answered
affirmatively by Jensen in 1971. Jensen's (rather involved) proof appeared in [2],
together with an application of such a tree to solve a problem in partition
calculus. At the time, it seemed as though, my application to combinatorics not
withstanding, such trees were merely a curiosity. (Indeed, my original question
was little more than a “coffee room™ variety.) That this was not the case was
demonstrated by Juhdsz and Weiss ([3]), who proved that the existence or such a
tree is equivalent to the existence of an w,-metrizable, w;-compact space of
cardinality at least o,, resolving an old question of Sikorski.

The new consiruction of such a tree (from V = L) does not involve any new
methods, rather a refinement of the known tricks of the trade. That a rather
simple modification to the standard construction of a Kurepa tree in L would
give the required result occurred to me after a discussion with Bill Fleissner on
some work of Ken Kunen and himself on the normal Moore space problem.

(') The result in this liaper was obtained during the summer of 1980 whilst I was visiting the
University-of Toronto (Erindale College). My stay in Toronto was supported in part by a joint
Nuffield Foundation/NSERC award.
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