Approximating homotopy equivalences of surfaces by homeomorphisms

by

W. Jakobsche (Warszawa)

Abstract. We prove the 2 and 3-dimensional version of the “Splitting Theorem” of Chapman and Ferry [2]. The consequence of this is the 2-dimensional analogue of the α-approximation theorem [2], and the equivalence of the 3-dimensional α-approximation theorem and of the Poincaré conjecture.

1. Introduction. The aim of this note is to extend some of the high-dimensional theorems of Chapman and Ferry to dimensions 2 and 3. More precisely, we prove the “Splitting theorem” from [2] in these dimensions. The 2-dimensional version of this theorem implies the 2-dimensional analogues of the “α-approximation theorem” and the “Bundle theorem” from [2], and theorem (I) from [3]. The 3-dimensional “Splitting theorem” proves that the 3-dimensional “α-approximation theorem” is equivalent to the classical Poincaré conjecture.

The additional motivation for the proof of the 2-dimensional “α-approximation theorem” was [6], where it was used to study the fixed point sets of the close PL involutions of 3-manifolds.

We adopt from [2] the following notation: Let X, Y be two spaces and let α be an open cover of Y. We say that the maps $f, g: X \to Y$ are α-homotopic (written $f \equiv_\alpha g$) if there is a homotopy $F_t: f \equiv g$, $t \in [0, 1]$ such that the track of each point $F_t(x)$, $0 \leq t \leq 1$, lies in some element of α. If $h: X \to Y$ is a map and Y is given a fixed metric then $f^{-1}(a)$ denotes the cover $\{U \subset X: U$ is open and $f(U) \subset a\}$ of X. More generally $f^{-1}(a)$ denotes $\{U \subset X: U$ is open in X and there exists a $V \in \alpha$ such that $f(U) \subset V\}$ whenever α is a cover of Y. If A is a subset of Y and α is a cover of Y, then we say that $f: X \to Y$ is an α-equivalence over A with the α-inverse g if g is a map of A into X, $f|_A$ α-homotopic to the inclusion id_A, and $g|^{-1}(A) = f^{-1}(a)$ for each $a \in \alpha$. If $A = Y$, then we say that f is an α-equivalence. If β is a cover of Y and $f^*: X \to Y$ is a proper map, then we say that f is a β-map if for every $y \in Y$ there is a $U \in \beta$ such that $f^{-1}(y) \subset U$. If X is a metric space then we say that f is an ε-map if for every...
2. The proof of the “Splitting Theorem”. To prove (1.1) we shall need lemmas. All the manifolds considered have dimension ≤ 3, and so by [7] we can consider them as PL manifolds. In particular, we assume that $S^{n-1} \times R$ has a natural PL structure in which every submanifold $S^{n-1} \times \{a, b\}$ is PL.

The following lemma is easy, and so we omit the proof.

Lemma (2.1). Let N be a surface, $x_0 \in N$, and let \mathfrak{g} be a subgroup of $\pi_1(N, x_0)$ such that $\mathfrak{g} \neq \pi_1(N, x_0)$. Then there exists a PL embedding $\xi: S^1 \to N$ which determines an element $[\xi]$ of $\pi_1(N, x_0) \backslash \mathfrak{g}$.

Lemma (2.2). Given $a, b \in \{e(-2, 2), a \leq b \} there exists an ϵ such that whenever 1.0 holds, then there exists a PL $(n-1)$-sphere $S_0 \subset (g^{-1}(a, b))$, satisfying $k[S_0] \neq 0$ for every integer $k \neq 0$, where $[S_0]$ is the image in $H_{n-1}(f^{-1}(B))$ of the fixed generator of $H_{n-1}(S_0)$. The homorphism induced by the inclusion $S_0 \subset f^{-1}(B)$, Moreover if $n = 3$, then S_0 disconnects the component of $f^{-1}(B)$ containing S_0.

Proof. 2.2. Let $c \in \mathbb{Z} \cup \{(a+b)c, c \leq (b-a), c \}$ and let $f: W \to S^1 \times R$ satisfy our requirements for this choice of c. Then $N = (g^{-1}(a, b))$ is a PL n-submanifold of W, and $N = (g^{-1}(c))(c) \cup (p^{-1}(c))$ (this follows from the fact that g_0 is close to p on $p^{-1}(c)$). Let $g_0 = g^{-1}(c)$. Then g_0 is a map into $S_0 \subset f^{-1}(c) \subset S^1 \times R$. Take $x_0 \in g^{-1}(c)$ and let $s_0 = N$ denote the inclusion and $s_0 = \pi_{n-1}(N, x_0) \to \pi_{n-1}(W, x_0)$ denote the induced homomorphism. Then $\mathfrak{g} = \ker(g_0)$ is a π_1-invariant subgroup of $\pi_{n-1}(W, x_0)$. We claim that $[g_0] \in \pi_1(N, x_0) \backslash \mathfrak{g}$. In fact otherwise $f(g_0): p^{-1}(c) \to S^1 \times R$ would be homotopic to a constant, which is not the case since it is homotopic to the inclusion $p^{-1}(c) \to S^1 \times R$. So by the sphere and projective plane theorem (see [5], p. 54) in the case of $n = 3$, and by Lemma (2.1) in the case of $n = 2$, there exists a covering map $\xi: S^0 \to S_0$. Then there is a covering map $\xi: S^0 \to N$ which for $n = 2$ must be a homeomorphism, where S_0 is a PL 2-sphere S^2 or a projective plane P^2 if $n = 3$, and S_0 is a 1-sphere when $n = 2$, $x_0 \in S_0$, and ξ determines an element $[\xi]$ of $\pi_{n-1}(N, x_0)$ in particular S_0 is not contractible in N.

Now we show that, if $n = 3$, then S_0 disconnects the component of $f^{-1}(B)$ containing S_0. Suppose that it does not. Then there exists a simple closed curve $a: S^1 \to f^{-1}(B)$ such that $a(S^1) \cap S_0 = \emptyset$, and $a(S^1)$ is transversal to S_0.

Now we use the theory of the intersection index, as described in [1], pp. 97 and 114. To avoid assumptions concerning orientability, we consider homology with Z_2-coefficients. It is easy to see that $a(S^1)$ and S_0 support the 1-cycle and 2-cycle respectively with Z_2-coefficient such that the corresponding homology classes $z_1 \in H_1(W, Z_2)$ and $z_2 \in H_2(W, Z_2)$ have an intersection index $z_1 \cdot z_2 = 1$. This implies that $z_1 \neq 0$, and so α is not homotopic to a constant. Since $\pi_1(B_2) = 0$ if $n = 3$, it follows on the other hand that f_α and g_{α} are homotopic to constant maps which contradicts the fact that g_{α} is α. So S_0...
disconnects the component of \(f^{-1}(B_2) \) which contains it. In particular \(S_0 \) is bicollared in \(W \).

Now we prove that, in the case of \(n = 3 \), \(S_0 \) is a sphere, and not a projective plane. Suppose on the contrary, that \(S_0 \cong \mathbb{P}^1 \). Then there exists a closed curve \(\alpha : S^1 \to S_0 \), which reverses the orientation of \(S_0 \). \(S_0 \) is bicollared in \(W \) and so \(\alpha \) reverses the orientation of \(W \). This implies that \(\alpha \) is not homotopic to a constant and we get a contradiction as before. So \(S_0 \) is a sphere.

Finally we prove that for any integer \(k \neq 0 \) we have \(k \cdot [S_0] \neq 0 \).

Suppose that, for some \(k \neq 0 \), \(k \cdot [S_0] = 0 \). Then \([S_0] = 0 \), which is impossible by the inclusion \(i : S^1 \to f^{-1}(B_2) \) and \(e \) is a generator of \(H^i_1(\mathbb{R}^i, \mathbb{R}^i) \). Hence \(f^{-1}(B_2) \) must be separate for any map \(r_1 : S^0 \to S_0 \) of degree \(k \). But this is not the case: if \(f \) were, then \(f(S_0) \) would be homotopic to constant maps, contradicting the fact that \(f(S_0) \) is homotopic to the inclusion \(S_0 \to W \) and \(S_0 \) is not contractible in \(W \).

Lemma 2.23. Let \(T \) be a compact, orientable surface and let \(S_1 \) and \(S_2 \) be two disjoint 1-spheres, not contractible in \(T \). Suppose that \(T \) has a homotopy \(h_t : T \to T \), \(t \in \{1, 2\} \) such that \(h_t(S_s) = S_t \), and that the maps \(h_t : S^1 \to T_1 \) have a non-zero degree. Then there exists an embedding \(\iota : S^1 \times [1, 2] \to T_1 \) such that \(h_t(s^1 \times i) = S_t \), \(i = 1 \) or \(2 \).

Proof of (2.23). \(S^1 \) is a PL sphere in \(T \) and so we can find a PL embedding \(u : S^1 \times [0, 1] \to T_1 \) such that \(S_1 = u(S^1 \times \{0\}) \) and \(u(S^1 \times \{1\}) \) is a homotopy. We consider the decomposition space \(T = T'/G \) with the homotopy \(G : S^1 \to T \). Then \(q(T') \equiv S^1 \times \{0\} \in T_1 \) is an embedding and \(A = \{a_0, \ldots, a_n\} \) is a compact, orientable surface. Let \(T_1 \) be the component of \(T \) containing \(q(S') \). Then it is easy to construct a map \(f : T_1 \to T \) such that \(f(T_1) = u(S^1 \times \{0\}) \). Let \(e \in \pi_1(T) \) be determined by the inclusion \(q(S') \to T_1 \). Then \(f(q(S')) \) is homotopic to \(e \in T_1 \) and \(q^{-1}(S^1 \times \{0\}) \) is a constant map \(p_{q(\alpha)} : S^1 \to T_1 \). Then \(f(S(\alpha)) \) is a homeomorphism for any \(\alpha \in \pi_1(T) \). But then we have \(S^1 \times \{0\} \neq 1 \). Suppose the opposite, \(S^1 \times \{0\} = 1 \). Then a subgroup \(\pi_1(T) \) generated by \(\alpha \) is finite, cyclic, and so the covering \(T_1 \) corresponding to \(S^1 \times \{0\} \) is a finite group. Therefore the maps \(q(S') \to T_1 \) have the same degree, so \(S_0 \) is homotopic to \(S_0 \) in \(T' \).

Lemma 2.24. Let \(M \) be a connected 3-manifold, \(\partial M = \emptyset \), and let \(S_1 \) and \(S_2 \) be two disjoint 2-spheres in \(M \) such that the elements \([S_1] \) and \([S_2] \) of \(H_2(M) \) determined by \(S_1 \) and \(S_2 \) are as in (2.22) satisfy the following condition: there are integers \(k_1, k_2 \) such that \(k_1 \cdot [S_1] = k_2 \cdot [S_2] \). Moreover, we assume that each \(S_i, i = 1, 2 \), disconnects \(M \). Let \(L \) be a closure of a component of \(M \) with \(L \supseteq S_i \cup S_2 \). Then \(L \) is a compact manifold with the boundary \(\partial L = S_1 \cup S_2 \).

Proof of (2.24). Suppose that \(L \) is non-compact. Let \(M_1 \) and \(M_2 \) be the closures in \(M \) of two components of \(M \). Note that \(M_1 \cup M_2 \) has precisely 3 components such that \(L \cap M_i = S_i \) for \(i = 1, 2 \). We consider the exact homology sequence of the pair \((M_1, M_1 \cup M_2) \):

\[
H_2(M_1, M_1 \cup M_2) \to H_2(M_1 \cup M_2) \xrightarrow{\partial} H_2(M_1, M_1 \cup M_2) \to H_2(M_1, M_1 \cup M_2).
\]

If \(L \) is non-compact, then \(H_2(M_1, M_1 \cup M_2) = H_2(L, S_1 \cup S_2) = 0 \), and so \(j \) is a monomorphism. But \(H_2(M_1, M_1 \cup M_2) = H_2(M_1, M_2) \) and, for each \(i = 1, 2 \), there is a \(j_i \in H_2(M_i) \) such that \((j_i)_i \cdot [S_i] = [S_i] \), where \(i : M_1 \to M_1 \) is an inclusion. So the fact that \(j \) is a monomorphism implies that \(k \cdot (j_i)_i \cdot [S_i] = k_i \cdot [S_i] = k \cdot [S_i] = 0 \). But we know that \(k \cdot [S_i] = k_i \cdot [S_i] = 0 \). So \(L \) is compact. This and the fact that \(\partial L = S_1 \cup S_2 \) imply that \(\partial L = S_1 \cup S_2 \).

Lemma 2.25. Let \(0 < s < 1 \), and \(a_1, b_1 \in (-2, 2) \), \(i = 1, 2 \), be such that \(-2 + 2s < a_1 < b_1 < a_2 < b_2 < 2 - 2s \). Assume that (1.0) is satisfied, and let \(\lambda \in \gamma \) be a PL embedding such that \(\lambda (\mathbb{R}^i) \neq 0 \) for \(\mathbb{R}^i \), and if \(n = 3 \) then \(S_0 \) disconnects the component of \(f^{-1}(B_2) \) which contains it. Then \([S_0] \) is the image of \(H^1_2 \) (or \(f^{-1}(B_2) \)) of the fixed generator of \(H^1_2 \). Then there is a compact PL submanifold \(L \) of \(W \) such that \(L \) is an \(h \)-cobordism from \(S_1 \) to \(S_2 \).

Proof of (2.5). First prove that there exists a homotopy \(h_t : S^1 \to f^{-1}(B_2) \), \(t \in \{1, 2\} \), such that \(h_t(S) = S_t \) and that \(h_t : S_t \to S_t \) has non-zero degree for \(i = 1, 2 \). Let \(f_t = f \circ h_t : S_t \to f^{-1}(B_2) \), and \(m_{t} = \text{deg} f \) (we define the degree of \(f \) as a number equal to the degree of \(p_{t} f \) where \(p_{t} : S_t \to S_t \) is a projection). Then \(S_t \neq S_t \) projected into \(\gamma \). Therefore \(S_t \subset f^{-1}(B_2) \) and \(g_t \), \(t \in \{1, 2\} \), the map \(g_t : S_t \to f^{-1}(B_2) \) is homotopic to \(i_d \) in \(f^{-1}(B_2) \). This and the fact that \([S_0] \neq 0 \) imply that \(\theta_t \neq 0 \) for \(i = 1, 2 \). Let \(k_1, k_2 \) be the integers such that \(m_{t} = k_1 \cdot k_2 = k \neq 0 \), and \(k_t : S_t \to S_t \) be any map of degree \(k \) for \(i = 1, 2 \). Therefore \(g_f \) and \(g_{j_t} \) are homotopic in \(p_{t} : S_t \to S_t \). Therefore \(g_t \) is a \(s \)-infinite inverse for \(f \) over \(S_t \), there are \(\partial f \)-small homotopies between \(g_f \) and \(g_{j_f} \), \(i = 1, 2 \); their values lie in \(f^{-1}(B_2) \). Therefore \(g_f \) is a \(s \)-infinite inverse for \(f \) over \(S_t \), there are \(\partial f \)-small homotopies between \(g_f \) and \(g_{j_f} \), \(i = 1, 2 \). Therefore \(g_f \) is a 3-manifold with an empty boundary, and so we can use Lemma 2.4 to prove that \(S_1 \) and \(S_2 \) bound in
$f^{-1}(B_{2,2})$ a compact manifold L. We only have to show that L is a h-cobordism. By [3], p. 26, we need to show that L is simply connected. Let $x: S^3 \to L$ be any map. We may assume that x is PL and that $\text{Im}(x) \subset \text{Int}(L)$. Then $f: S^3 \to B_{2,2}$ is homotopic to a constant map, because $B_{2,2}$ has a homotopy type of S^3. So ga; $S^3 \to W$ is homotopic to a constant map. Moreover, by (1.0), $x \simeq \text{ga}$ x and hence x is homotopic to a constant map in W. Let $z: D^2 \to W$ be any map of the 2-disc D^2 into W which extends $\text{ga}(S^3 \to D^2)$, and which is transversal to $S_1 \cup S_2$. Then ga; $S^3 \to W$ is a finite collection of circles in D^3, and the component P of ga; $S^3 \to W$ which contains ∂D^2 is a PL submanifold of D^3 bounded by a finite family I of circles. For any $x \in \partial D^2$, $\alpha \in \partial D^2$, α can be extended to the map $P_i \to S_i$, $i = 1$ or 2, where P_i is a disc bounded in D^2 by α. The union of these extensions and of ∂P gives a map $D^2 \to L$ which extends x. This proves that L is simply connected.

Now we can prove Theorem (1.1) of the addendum may be proved as follows: First we note that $f^{-1}(1, 0, 0)$ is a deformation retract of L_2. Thus, $f^{-1}(1, 1, 0)$ is a deformation retract of L_2. This implies that $S_3 = S_3$ is a deformation retract of L_2. Now we can put $S_0 = S_2$. As we have shown it satisfies all the conditions of (1.1).

Now to prove that S_3 disconnects the component A of W cutting it into two components, one containing $(f^{-1})(1)$ and the other containing $(f^{-1})(1)$, we need only to show that A is not connected. Suppose it is. Then there is a curve $x: [0, 1] \to W$, such that $x(0) = S_3$, $x(1) = S_1$, and $x(0, 1) \cup L = x([0, 1])$. Hence there is a point $y \in x([0, 1])$ such that $f(y) \in f^{-1}(1, 1, 1)$. Then $y \in f^{-1}(1, 1, 1) \subset L$, which gives a contradiction.

Finally we prove that $f(S_2) \subset S_2 \times R$ is a homotopy equivalence. First we notice that $f(S_2) \subset B_{2,2}$. This, as we have shown, implies that $g(f(S_2)) \subset L_2$. From the fact that $g(f^{-1}(B_{2,2})) \subset L_2$, it follows that there is a homotopy $h_t: S_2 \to W$, with $h_0 = \text{id}_{S_2}$, $h_1 = g(f(S_2))$, such that the track $h_t: t \in [0, 1]$ of each point $x \in S_2$ has image by g of diameter $\varepsilon < \varepsilon$. This implies that for every $x \in S_2$, $h_t(x): t \in [0, 1]) \cup \partial L = \emptyset$, so $g(f(S_2))$ is a homotopy equivalence between S_2 and L_2, and so $f(S_2)$ is a homotopy equivalence.

Now we can put $S_0 = S_2$. As we have shown it satisfies all the conditions of (1.1).

The addendum may be proved as follows: First we note that g^{-1} in the precisely the same way in which we have shown that $g(f^{-1}(1)) \subset L_1$ using the claim. The only difference is that we replace $[1, 0] \supset [1, 0, 0]$ by L_2 by L_1 and use the fact that $L_1 + \varepsilon < \varepsilon \subset \varepsilon < \varepsilon$. This implies that the component C_0 of $(f^{-1}(1, 0, 0), \partial S_3)$ containing $(f^{-1}(0, 1))$ is contained in L_1. But $S_3 = S_3$ is a deformation retract of L_2, and so C_0 can be deformed to S_3 in L_2.

Now we notice that $L_2 \subset C$. This easily follows from the fact that $b_3 \subset \varepsilon < \varepsilon$. This finishes the proof of (1.1).

3. Remarks on the proof of the α-approximation theorem for dimension 2.

The proof is only slightly different from the one given by Chapman and Ferry [2]. First, using the "orientable" splitting theorem, we prove the "handle Lemma" as in [2] p. 589, with $n = 2$, and an orientable V^2. The proof is analogous to the one given in [2]. We need only to note that the surface W_0 (23), p. 591) is immersed in V, and V is orientable in our case, so W_0 is orientable, and hence we can construct the orientable W_1, W_2, W_3 as in [2]. As in [2] we prove the "Main theorem" (p. 595 in [2]), with $n = 2$ and an orientable V^2. Then we prove the following, weaker version of the "α-approximation theorem":

Lemma. Let N^2 be a surface, and let y be any open cover of N. Then, for every open cover x of N, there is an open cover of N such that for any α-equivalence $f: M \to N$, which is already a homomorphism from ∂M onto ∂N, and is such that for any $y \in f^{-1}(c)$, α is orientable surface, and f is α-close to a homomorphism $h: M \to N$.

The proof proceeds as in [2], pp. 597, 598. First, we prove the version of Lemmas (5.1) and (5.2) of [2] with $n = 2$ and an orientable M.

Then, the proof of Lemma (3.1) proceeds as the proof of the α-approximation theorem in [2], pp. 598, and the only change is that by our assumption, we require that a star finite cover $\{N_i\}$ found in the proof of the α-approximation theorem in [2] be such that all sets $f^{-1}(N_i)$ are orientable.

Lemma (3.1) easily implies Theorem (1.2) if we use the following Lemma (3.2):

Lemma 3.2. Let N be a surface. Then there is an open cover α of N such that if M is a surface and $f: M \to N$ is an α-equivalence, then for every $c \in \alpha$, $f^{-1}(c)$ is an orientable surface.

Proof of (3.2). Suppose that γ is any cover of N by the open discs. Then we can easily find an open cover α of N such that to every $c \in \alpha$, there is $d \in \gamma$ such that $c \subset d$. Suppose that for a certain $c \in \alpha$ and some α-equivalence $f: M \to N$, $f^{-1}(c)$ is a non-orientable surface. Then there exists an element z of $H_i(f^{-1}(c), \mathbb{Z})$ such that $z \neq 0$, and $0 \neq i_\alpha(e) = H_i(M)$, where $i_\alpha(f^{-1}(c)) = M$ is an inclusion. We can take for z an element of $H_i(f^{-1}(c))$ determined by the curve reversing orientation of $f^{-1}(c)$. Let g be the inverse of f. Then $g_\gamma(f^{-1}_\alpha e) = (g_\alpha f^{-1}_\alpha e) = i_\gamma(e) = 0$, and on the other hand $f^{-1}(g_\gamma e) = 0$, because $c \subset d \in \gamma$, which gives a contradiction.

4. The equivalence of the α-approximation theorem and the Poincaré conjecture in dimension $n = 3$. It is very easy to construct for every $\varepsilon > 0$, the ε-equivalence from the homotopy sphere $\approx S^3$ (if one exists) onto S^3. This equivalence obviously cannot be approximated by homeomorphisms.

On the other hand if the Poincaré conjecture is satisfied, then we can use our "Splitting Theorem" in dimension 3 to prove the α-approximation theorem, as in [2]. The only difference is that in the construction of h in the "Handle Lemma" (step V) we use the theorem of Waldhausen [10] in the form described in [4] (Lemma 5, p. 65 in [4]). Note that the manifold W^k in the step V of the construction in the "Handle Lemma" in [2] is homotopy equivalent to $B^m \times T^k$, $m + k = 3$, and we assume that the Poincaré conjecture holds, whence W^k is irreducible.

References