Maximal ¢-independent families
by

Kenneth Kunen (Madison, Wis.)

Abstract. If there is a non-trivial maximal o-independent family, then the Continuum Hy-
‘pothesis holds but there is a weakly inaccessible cardinal between ©; and 2®%,- The existence of
such a family is equiconsistent with the existence of a measurable cardinal. ‘

§ 0. Introduction. Let % and 0 be infinite cardinals, with 0 regular. A family
<P (x) is called 0-independent iff whenever &4, & c¥, with $on¥, =G
and ¥, U ] <0, we have

N{d: de&nN{nd: deS Y =@,

o~independent means ,~independent:

The case 0 = w is well-known, and the discussion of the elementary results for
arbitrary 0 is essentially the same, except for an occasiona] restriction on cardinal
exponentiation. For example, the famous theorem of Hausdorff [H] says that for
any %, there is an w-independent & c#(x) of size 2%, and the same proof ylelds
a 0-independent & provided that <% = x.

The cases 6 = w and 0> diverge, however, when we consider the existence
of maximal 0-independent families; here, we call & =2 (x) maximal iff it is 0-in-
dependent but no proper superset is. First; we must discard a trivial case: Suppose &
is 0-independent; || <0 and |() &| = 1; then & is clearly maximal, and such %
‘can easily be constructed. Thus, we ask: Is there a maximal 0-independent & =2 (%)
with [&| 207 For 0 =, the answer is yes for any » by Zorn’s Lemma, whereas
for 0> w, Zorn’s Lemma does not apply, and in fact the existence of maximal families
immediately entails large cardinals, We shall show: .

THEOREM 1, Suppose 0 is regular and 0> w, and suppose that there is a maximal
O-independent family & <@ (%) with || 0. Then

a) 2% = 0 and

b) there is a2 with

sup {(2"‘)+ § a<0}<A<min(x, 2°)

'

mch Ilmt there is a non-trivial 0%-saturated A-complete ideal over A ]


GUEST


76 } K. Kunen

We refer the reader to the text [J] for a general discussion of saturated ideals,
Observe that in (b), A6, so the ideal is A*-saturated, which yields an inner model
with a measurable cardinal (see Theorem 86 of [J] or Theorem 11.12 of [K1]).If 8 is
not strongly inaccessible then 23>0, so, by Ulam, 1 is weakly inaccessible, and, by
Solovay, A is also weakly Mahlo, weakly hyper-Mahlo, and so forth (see § 35 of [J]).
However, if 0 is strongly inaccessible, it is consistent that 1 = 0 = x; see the end of § 2.

Setting 6 = ;, we have all the results claimed in the Abstract except for the
consistency of such a family. This is given by

THEOREM 2. If ZFC plus the existence of a measurable cardinal is consistent,
so is ZFC plus the existence of a maximal o-independent family & <P (2°"). B

The fact that a maximal o-independent family & <@ (x) yields »>2° and
an inner model with a measurable cardinal was first proved by Baumgartner; we
comment further on his method at the end of § 1.

Observe that if <2 (x) is maximal 0-independent with |#|=0, and x >3,
then & is still maximal 0-independent when viewed as a family of subsets of sx'.
This triviality may be avoided by calling & <% (x) uniform iff each

N{4: Ae& N {x\4: Ae¥,}
has size x%. In our proof of Theorem 2 we shall produce a uniform family. In general,

if we fix 6 and let % be least such that there is maximal 0-independent & <2 (x)
with |#| >0, then any such & is uniform; this will be immediate from Lemma 1.1.

§ 1. Proof of Theorem 1.1t will be convenient to borrow some of the terminology
of forcing. Let

Fn(l,J, 0) = {p: p is a function and dom(p)=I and ran(p)cJ and |p|<6},

and define p<q iff g p. This partial order has a largest element, I = &. See VI,
§ 6 of [K2] or § 19 of [J] for more on this partial order.
Now, fix' & <P (x), and set P = Fn(¥, 2, 0). Define, for pe P,

¢(p) = N {4: Aedom(p) and p(4) = 1} n ) {¥\A4: 4 e dom(p) and p(4) = 0} .

We adopt the convention here that ()@ = %, so that ¢(I) = ». Clearly p<gqg
= @(p)<e(g). Also, & is 0-independent iff ¢(p) # @ for all pe P, and in that
case o is an isomorphism from (P, <) into (#(x), <). Observe also that when &
is 0-independent, p and ¢ are compatible iff ¢ (p) N @(g) # 9.

If & is 0-independent, & is maximal iff

VXcxApePlp(p)=X or p(p)arnX).
Following S. Glazer, we call & globally maximal iff
. VaePYX<o(@)Ip<q(p(p)=X or o(p)=p(gNX).

L1. LemMA (Glazer). Suppose & <P (x) is a maximal 0-independent family
with |%|20. Then there is a %' <x and an &' <P (x') which is globally maximaily
8-independent such that |&'|>0.

icm°

Maximal o-independent families 77

Proof. For cach re P, let
Fr={dno(): 4 e \dom(r)} .

It is sufficient to show that for some r, F.eP(p(r)) is globally maximal (then
% = |p(r)]). Let D be the set of all g2 such that for some X,=g(q),

3p<g(e(M =X, of p(P)e@NX,).

If no &, is globally maximal, then D is dense in P, In that case, let 4 = D be a maximal
antichain in P, and let X = |) X,. Now, fixing p such that
qed

p(p)=X  or  @(penX,

we see that p is incompatible with every element of 4, a contradiction. &

We now may, and shall, assume that & =& (x) is globally maximal in our proof
of Theorem 1, since if not, we could replace it with &’ =2 (x). Assume also that
|&#1=0 and that 0 is regular.

Now, let

F = {Xcx: "dpeP(p(p)=X)).
By global maximality, # is an ideal. Since |#|>0, # is non-principal and contains
all singletons.
1.2. Lemma, & is (2%)*-complete for all a<0.

Proof, If not, there is an X'¢ # and Y, e & for fe “2 such that the Y, are
disjoint and X< ) ¥,. Now inductively define a g: « — 2 and a decreasing chain
I

{ps £<o) in P so that

D) ¢(po)=X,

2) py=U{p,: n<&} if ¢ is a limit,

3) Pes1$pe and @(pr)e U {Y,: £ = g(©)}-
In (2), ps € P since 0 is regular. In (3), g (§) € {0, 1} and p,,., may be chosen by global
maximality. But now,

fP(pu)c¢Q U{Yr F =g@} =1,

contradicting ¥, e &, B

1.3, Lemva, & is (2°%*-saturated.

Proof, If not, then there are X,cx for y<(2<))" with each X, ¢ but
X, n Xy F whenever y # 8. Fix p, with ¢(p,)=X,. But then {p,: y<(2*%)"}
contradicts the (2<%)" chain condition of P (sce [J] Lemma 19.8 or [K2] Lemma V,
6.10). W

1.4, Lemma. 2<% = 0.

Proof. Fix «<0, and we produce a map from @ onto “2. Fix distinct
Ap e (@<, ¢<a). For each dex, define y,: 0 — 2 so that Yi(o)(€) = 1 iff
d& Ay For each fe2, let R, be {5: f¢ran({s)}. Ry &, since if p(p)=Ry;
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we could fix ¢ with dom(p) disjoint from {A,: &<a}, and let ¢<p with
q(dge) = f(€) for each £<a; but then

@{g)={d: Ysle) = fI=u\R,, ‘
a contradiction. Since & is (2%)*-complete, fix 6e %\ {R,: fe®2}. Then Vs
maps 6 onto *2. &

Thus, & is 0" -saturated. Since & is non-principal, we may, following Ulam,
let 4 be the least cardinal such that & is not 1-complete; then there is a non-trivial
A-complete 0% -saturated ideal & over 1. By 1.2, Azsup{2%™": a< 0}, and clearly
A< . Finally, 1<2’ follows from the Ulam-Tarski tree argument. Or, to see directly
that 1<2’, let &, <& with |%,| = 0, and define, for f: Py — 2,

e(f)=N{d: A€o and f(4) =1} A ) {i\d: A€ P, and f(4) = 0}.
Then )
= Ulo(r): fe ™y,
and each @(f)e &, so F is not (2°)"-complete.

This concludes the proof of Theorem 1. Of course, the proofs of Lemmas 1.2
and 1.4 are familiar arguments. 1.2 is a modification of the proof that measurable
cardinals. are strongly inaccessible. 1.4 is a modification of the proof that 2% =9
in the generic extension by P; in fact, we could have proved 1.4 by simply quoting
this fact about P and applying Solovay’s Boolean ultrapower technique.

An earlier line of argument, due to Bﬁumgartner, produced a weaker version
of Thedrem 1. He observed that a globally maximal o-independent family & <2 (x)
gives a strategy for Non~empty in the double cut-and-choose game; by results of
Galvin and Solovay, this yields %>2° and an inner model with a measurable cardinal.

§ 2. Proof of Theorem 2. If P is any partial order, let % (P) be the (unique)
complete Boolean algebra into which P is densely embedded (see [K2], IT §3 or [J]
§ 17). The argument of § 1 shows. that if & & (%) is a globally maximal 0-inde-
pendent family, then ¢ defines an isomorphism from @(Fn(&”, 2, ())) onto & (x)/F.
Conversely, we may establish the consistency of such families by working in'a model
where there is such an isomorphism. Specifically,

2.1. LeMMA. Suppose 0 is regular, 2~° = 0, 0<A and & is a 07 -saturated
A-complete ideal over ) with %(Fn(z", 2, 0)) isomorphic to P(A)|F. Then there is
a maximal 0-independent & <P (4). :

Proof. Let i be the isomotphism. For 6<2% let [d,] = W({{8,1>}); here,
ds< A and [4,) € P(V)/# is its equivalence class. Let & = {ds: §<2*} and define
@ P—2P(2) as'in § 1, where P = Fn(&, 2, 0). The fact that  is an isomor-
phism implies that & is 0-independent and :

. VX<23p e P(Io(MISIX] or [p(a)]<IANK]).
.This does not quite imply that & is maximal, since we would need
(%) ‘ VX<23peP(p(p)c X or P(P)=INX) .
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To fix this, we modify &. Let # = {C;: 5<2’1}, where each C e & is listed at least 8
times, let A; = A,\C; and &' = {d,;: 6<2%}, and let ¢’: P — P (1) be defined
by &, Then [4,] = [4}] for each 8. &' satisfies («), since if [o'(p)]<[X], we may
fix 6 ¢ dom(p) with Cy = @'(p)\X; then ¢'(pu {{4;, Dhex H

Now, to prove Theorem 2, we need only produce a model in which the Con-
tinuum Hypothesis (CH) holds, and, if 4 = 2, there is an w,-saturated A-complete
ideal & over A with #(A)/7 isomorphic to #(Fn(2% 2, «,)). But this has essentially
been done by Prikry (sce [P] or Exercise 34.5 of [1]). Namely, in the ground model M:
assume that A is mecasurable and CH holds, let P = Fn(1,2, o,), and let % be
a normal ultrafilter over A. Let G be P-generic over ‘M. Then in M[G], CH holds,
29 == A and, if

Fo={Xcl: AV e U(X n ¥ = @)},

then # is A-complete and w,-saturated (since P has the w,-c.c. in M). Let
it (M*~ M)~ M*
be the Scott ultrapower embedding, and let A* = i(4). Then 2*<i*<(2)*, so
Fn(2% 2, w;) is isomorphic to Fn(A*\A, 2, ;). An isomorphism
12 PWF - B(Fn(A*\4, 2, o))

is implicit in Prikey’s work., Namely, in M if = is a P-name and [[rcl]] = 1, then
e i()] e #(EFn(*, 2, @), and in M[G], we may let
x(te) =V {ge Fn(A\1, 2, 0)): dpe G(p v g<flei@]}.

This concludes the proof of Theorem 2. An easy modification of the proof
will show that if A is strongly compact in M, then in M [G] there are uniform maximal
o-independent families on all %22 such that cf(sx)=A.

Finally, we describe how to obtain models of GCH in which there is a strong
inaccessible 4 with a maximal A-independent & =£?(4). In M, assume GCH, let %
be a normal ultrafilter on A, and let 4 € % be a set of inaccessibles. Let P be the
reverse Baston extension which adds o™ generic subsets of « for cach a e 4. If G is
P-generic over M, then M[G] still satisfies GCH and there will be a A*-saturated
ideal # on A with @ ()% isomorphic to #(Fn(A", 2, 1)), so Lemma 2.1 applie.s.

A may or may not be measurable in M[G]. If M satisfies V = L [%], then A will
not be, since il it were, 4 would have normal measure 1 (by uniqueness of %?, an.d
an ultrapower argument would produce, in M[G], a subset of A which is
Fn(l, 2, 2)-gencric over M[G], However, if in M, % and ¥ are distinct normal
ultrafilters and A ¢ %, then A will be measurable in M[G] by virtue of ¥".
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Periodic homeomorphisms of chainable continua
by

Wayne Lewis. (Lubboclc, Tex.)

Abstract, We prove that for every positive integer n there exists a chainable continuum M;,
which acdmits a homecomorphism of period 2. While cach M, can be made to be a pseudo-arc, there
also exist for cach # non-hereditarily indecomposable chainable continua with homeomorphisms
of period n.

Introduction. It is an casy exercise to show that every periodic homeomorphism
of an arc must either have period 2 or be the identity. Beverly Brechner [Br~1] has
constructed a homeomorphism of the wedge of two pseudo-arcs of period 4. (The
pseudo-are itself has an obvious homeomorphism of period 2.) Until now, all known
periodic homeomorphisms of chainable continua had periods 1, 2, or 4.

Michel Smith and Sam Young {SY~1] have shown that if a chainable continuum
admits a homeomorphism of period greater than 2, then the continuum must contain
an indecomposable continuum. Since the pseudo-arc is hereditarily indecompo-
sable [M~1], [B-1], and in many other ways is at the opposite end of the spectrum
from an arc, it would seem a natural place to try to construct a homeomorphism
of period greater than 2. It will follow from our results that the pseudo-arc has such
homeomorphisms of high period, but our construction is more easily described for
non-hereditarily indecomposable continua, (The author earlier [L~1] announced
the existence of homeomorphisms of prime period for the pseudo-arc. The results
here, in addition to being stronger, have what are hopefully much more readily
understandable proofs,) . ‘

Throughout, by saying that a homeomorphism /& has period » we will mean
that n is the smallest positive integer such that /4" is the identity.

B Construction of M,. Let T, be the continuum resulting from [0, 1]x
%{0,1,2, .., n—1} by identifying {0} x{0, 1,2, ..., n—1} to a point. (Thus T3 is
the standard triod.)
Let M be an integer greater than n, Let f; be.a map from T, onto T, satisfying
the following conditions. Let
1
81 = SagrT
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