On the netweight of subspaces

by

Krzysztof Ciesielski (Warszawa)

Abstract. In this paper we give a (consistent) solution to a problem of A. Hajnal and I. Juhász [3], namely we show a model of set theory with $2^\omega > \omega_1$ in which there exists a regular topological space X with an uncountable netweight and such that every subspace of X of power smaller than that of X has a countable netweight.

Introduction. In [3] A. Hajnal and I. Juhász, in connection with a problem of M. G. Tkachenko, showed that it is consistent with set theory to assume that there exists a Hausdorff space X of power ω_2 with the following properties:

1. $nw(X) = \omega_2$,
2. $nw(Y) = \omega$ for every subspace $Y \subseteq X$ of power ω_1.

They suggested the natural problem whether an analogous result for regular spaces could be proved. This paper gives a solution to this problem.

We recall that $nw(X)$ is the netweight of X, i.e. the smallest cardinal of a network for X.

Throughout the paper we use the standard set-theoretical notation. We use the forcing technique as described e.g. in [1].

The graph topology. Let $[X]^{\leq 2} = \{ \{x, y\} : |x| = 1 \lor |y| = 2\}$.

We say that the function $f : [X]^{\leq 2} \to 2$ is a graph iff $f(\{x\}) = 0$ for every $x \in X$ (the elements $x, y \in X$ are considered to be connected by an edge in the graph iff $f(\{x, y\}) = 0$).

For every $x \in X$ and $i < 2$ we put

$$U_i = \{ y \in X : f(\{x, y\}) = i \},$$

in particular $x \in U_0^x$ for every $x \in X$.

We are going to study the topology τ_f on X generated by the subbasis

$$\{ U_i : x \in X & i < 2 \}.$$

Clearly the space X with the topology τ_f is 0-dimensional.

Let $H(X)$ be the set of all functions from finite subsets of X into 2. For $f \in H(X)$ we shall put

$$U_f = \bigcap_{x \in \text{dom}(f)} U_f^x.$$
Hence the family \(\{ U_e : e \in H(X) \} \) is a basis for \(\tau \).

Let \(F \) be a family of sets. We say that the graph \(f : \{X\}^{k+2} \rightarrow \mathbb{R} \) is \(\omega \)-full over \(F \) if for every infinite \(C \in F \cap P(X) \) and every \(e \in H(X) \) there exists \(a \in C \) such that \(f((a, e)) = a(e) \) for each \(e \in \text{dom}(a) \).

Let us note that if \(f : \{X\}^{k+2} \rightarrow \mathbb{R} \) is \(\omega \)-full over \(F \) then for every infinite subfamily \(Y \subseteq X \) such that \(Y \in F \) we have the equivalence:

\[
U_e \cap Y = U_{e'} \cap Y \quad \text{iff} \quad e \equiv e' \quad \text{for every} \quad e, e' \in H(X).
\]

If \(Y \) is a subspace of \(X \) then we put

\[
Q(Y) = \{ (A, e) : A \subseteq Y \text{ and } A \text{ is finite} \}\quad \text{with the ordering relation}
\]

\[\langle A, e \rangle \preceq \langle B, e \rangle \quad \text{iff} \quad A \supseteq B \text{ and } e \equiv e.\]

We say that a subset \(Q \) of a partially ordered set is compatible if every two elements of \(Q \) are compatible.

Now we can formulate the following

Lemma 1. If \(f : \{X\}^{k+2} \rightarrow \mathbb{R} \) is \(\omega \)-full over \(F \), then \(Y \) is an infinite subspace of \(X \) and \(Q(Y) \) is a union of a countable family of compatible sets then \(\text{nw}(Y) \leq \omega \).

The proof of the lemma is contained implicitly in [3].

The idea of the proof is to construct a model with a regular topological space having the required properties we first add generically a graph \(f : \{X\}^{k+2} \rightarrow \mathbb{R} \) for a regular cardinal \(\mu \) using finite conditions and then add for each \(\alpha < \mu \) a generic decomposition of \(Q(\alpha) \) into a countable family of compatible sets.

The \(\omega \)-fullness of the graph \(f \) over the family \(\kappa = \{ \alpha : \alpha < \kappa \} \) follows by the genericity of \(f \). It easily gives the regularity of \((\kappa, \tau) \). By Lemma 1 we also get a countable network for each subspace \(\kappa < \kappa \), where \(\kappa < \kappa \).

Since our forcing is coc, it remains to show that \(\text{nw}(\kappa) = \omega \).

It is also very important to mention that in order to define the poset \(Q(\alpha) \) for \(\alpha < \kappa \) it suffices to know the values of the graph only for pairs \(\{ \alpha, \beta \} \) such that \(\min(\{ \alpha, \beta \}) < \kappa \).

Now we turn to details.

Construction of the model. Let \(\kappa > \omega_1 \) be a regular cardinal. We define several posets:

(i) \(S = \{ x \in H(\{X\}^2) : \forall x \in \text{dom}(\alpha) (|\{x\}| = 0) \} \)

ordered by reverse inclusion,

(ii) \(R_\alpha = \{ (A, e) : A \subseteq \alpha \text{ and } A \text{ is finite} \} \quad \text{with the ordering relation} \)

\[\langle A, e \rangle \preceq \langle B, e \rangle \quad \text{iff} \quad A \supseteq B \text{ and } e \equiv e.\]

(iii) \(Q = \{ q : \text{Fnc}(q) \cap \text{dom}(q) = \emptyset \} \)

\[= \{ a \times \omega \cup \{ (a, n) : q(a, n) \in R \} \} \quad \text{with the ordering relation} \]

\[q_1 \leq q_2 \quad \text{iff} \quad q_1(a, n) \leq q_2(a, n) \quad \text{for any} \quad a \in \kappa \text{ and } n < \omega,\]

(iv) \(P = \{ (s, q) \in S \times Q : \forall s < s \forall n < n \forall a \forall b \forall q \langle q(a, n), n \rangle = \langle A, e \rangle \text{ and } (a, e) \in \text{dom}(s) \text{ and } (b, e) \in \text{dom}(s) \} \)

with the ordering relation

\[\langle s_1, q_1 \rangle \preceq \langle s_2, q_2 \rangle \quad \text{iff} \quad s_1 \leq s_2 \text{ and } q_1 \leq q_2.\]

Let us remark that for the forcing \(P \) can be considered as a product forcing, i.e.

\[P = \{ (s, q) \in S \times Q : \forall s < s \forall n < n \forall a \forall b \forall q \langle q(a, n), n \rangle = Q(s, a) \} \]

Theorem 2. The forcing \(P \) is c.c.c.

The proof will be postponed until the last section of this paper.

Let \(\alpha < \kappa \). We fix some notation:

\[D_\alpha = \{\alpha, \beta \}^\omega, \quad D_\beta = \{\alpha, \beta \}^{\omega_1}, \quad D_\beta = \{\alpha, \beta \}^{\omega_1} = \{\alpha, \beta \}^{\omega_2} \text{ min}(\{\alpha, \beta \}) < \omega, \]

\[S_\alpha = \{ s : s \in S \mid s \text{ is compatible} \}\quad \text{and} \quad \alpha_s = \{ s : s \in S \mid s \text{ is compatible} \}.\]

The orderings of \(S_\alpha \) and \(S_\beta \) are the reverse inclusion.

Next, let

\[Q_\alpha = \{ q : \alpha \times \omega \cup \{ q(a) : a \in \omega \} \}
\]

both be ordered by

\[q_1 \leq q_2 \quad \text{iff} \quad q_1(\beta, n) \leq q_2(\beta, n) \quad \text{for every} \quad (\beta, n) \in \text{dom}(q_1).\]

It is clear that \(S \subseteq S_\alpha \times S_\beta \) and \(Q \approx Q_\alpha \times Q_\beta \).

Finally, let

\[R_\alpha = \{ (s_1, q_1, s_2, q_2) : s_1 \times Q_2 \times S_\beta \times S_\beta \}
\]

\[= \{ \langle A, e \rangle : (A, e) \in \text{dom}(s_1) \} \quad \text{with the ordering relation} \]

\[\langle s_1, q_1 \rangle \preceq \langle s_2, q_2 \rangle \quad \text{iff} \quad s_1 \leq s_2
\]

It is easy to see that a mapping \(g_\alpha : P \to R_\alpha \) defined by

\[g_\alpha(s, q) = \{ q(a, n) \times a \times \omega : a \times \omega \}
\]

is an order isomorphism of \(P \) and \(R_\alpha \).
From now on we shall identify \(P \) with \(R_x \).

Let \(M \) be a countable transitive model of set theory and let \(\kappa > \omega \), be a regular cardinal in \(M \). We consider a forcing \(P \) in \(M \) defined for \(x \) and let \(G \) be an \(M \)-generic filter over \(P \).

We define

\[
G_x = \{ \langle s, q \rangle \in S_x \times Q_x : \langle s, q, \langle 0, 0 \rangle \rangle \in G \}
\]

where \(1 \) is the maximal element of \(Q_x \),

\[
G^* = \{ \langle s, q \rangle \in S^* \times Q^* : \exists \langle s_1, q_1 \rangle \in G \}
\]

Next,

\[
P_x = \{ \langle s, q \rangle \in S_x \times Q_x : \langle s, q, \langle 0, 0 \rangle \rangle \in P \} \in M,
\]

\[
P^* = \{ \langle s, q \rangle \in S^* \times Q^* : \exists \langle s_1, q_1 \rangle \in G \}
\]

are the posets ordered by

\[
\langle s_1, q_1 \rangle \succeq \langle s_2, q_2 \rangle \iff s_1 \subseteq s_2 \text{ and } q_1 \subseteq q_2.
\]

A standard argument shows

Proposition 3. \(G_x \) is \(M \)-generic over \(P_x \). \(G^* \) is \(M[G_x] \)-generic over \(P^* \) and \(M[G^*] = M[G_x][G^*] \).

Let \(f = \cup \{ \langle s, q \rangle \in G \} \) and \(X = \langle x, \gamma \rangle \).

Theorem 4. \(M[G^*] \) is a ccc extension of \(M \) such that

(1) \(X \) is regular (even hereditarily normal),

(2) \(mw(Y) < \omega \) for every subspace \(Y \) of \(X \) of power smaller than \(\kappa \),

(3) \(mw(X) = \kappa \).

Proof. We begin with the following

Proposition 5. For every \(x < \omega \) the graph \(f \upharpoonright D^x \) is \(\omega \)-full over \(M[G_x] \). In particular \(f \) is \(\omega \)-full over \(x \).

For the proof it is enough to show that for every infinite \(K \in M[G_x] \cap P(\omega \times \omega) \) and every \(s \in H(\omega \times \omega) \) and every \(e \in H(\omega \times \omega) \) the set

\[
D = \{ \langle s, q \rangle \in P_x : \exists \eta \in K \forall \xi \in dom(\eta) \exists \langle \eta, \xi \rangle = \langle \xi, \eta \rangle \}
\]

is dense in \(P^* \).

(1) By Proposition 5 it follows immediately that for every \(\xi < \eta < \omega \) there exists \(\eta < \omega \) such that \(\xi < \omega \) \(\eta < \omega \) and \(\xi < \omega \) \(\eta < \omega \), i.e. \(X \) is a Hausdorff space. Since \(X \) is 0-dimensional, it is also regular.

(2) From an obvious inequality \(mw(Y) < mw(X) \) for a subspace \(Y \) of \(X \) and from Proposition 5 and Lemma 1 it follows that it is enough to show that for any infinite \(\omega < \omega \) the set \(Q(\omega) \) is a union of a countable family of compatible sets.

We take \(\omega < \omega \) and let

\[
Q_x = \{ q(\omega, n) : \langle s, q \rangle \in G \} \quad \text{for} \quad n < \omega.
\]

We show that \(Q(\omega) = \bigcup \{ Q_x' : n < \omega \} \). If \(\langle s, q \rangle \in Q_x' \) for some \(n < \omega \) then there exists \(\langle s, q \rangle \in G \) such that \(q(\omega, n) = \langle s, q \rangle \). Hence, by the definition of \(f, A \in U_x \), i.e. \(\langle s, q \rangle \in Q(\omega) \) then

\[
\forall q \in A \forall b \exists \eta \in dom(\eta) \forall \langle \xi, \eta \rangle = \langle \eta, \xi \rangle.
\]

Hence, by the finiteness of \(A \times \text{dom}(\omega) \), there exists \(\langle q_x, q_x \rangle \in G \) such that

\[
\forall q \in A \forall b \exists \eta \in dom(\eta) \forall \langle \xi, \eta \rangle = \langle \eta, \xi \rangle.
\]

It is enough to show that the set

\[
\{ \langle s, q \rangle : 1 \leq n < \omega, \langle s, q \rangle \in G \}
\]

is dense below \(\langle q_x, q_x \rangle \).

Let \(\langle s, q \rangle \in P \) and \(\langle s, q \rangle \in \langle q_x, q_x \rangle \). There exists an \(n < \omega \) such that \(\langle s, q \rangle \in \text{supp}(q) \). Let \(q' \in G \) be defined by

\[
q'(\beta, m) = \begin{cases} q(\beta, m) \text{ for } \beta \neq \langle s, q \rangle, \\ q(\beta, m) \text{ for } \beta = \langle s, q \rangle.
\end{cases}
\]

It is easy to see that \(\langle s, q' \rangle \in P \) and \(\langle s, q' \rangle \in \langle q_x, q_x \rangle \). In order to complete the proof of (2) it is enough to verify that each \(G_x \) is compatible.

Let \(\langle A_x, e_x \rangle, \langle A_y, e_y \rangle \in Q_x \) and \(\langle A_z, e_z \rangle \in Q_x \). Then there exist \(\langle q_x, q_x \rangle, \omega, q_x, q_x \) \(\in G \) such that \(q_x \in \omega \) and \(q_x \notin \text{supp}(q) \) and \(\omega \in \text{supp}(q) \). Then there exists \(\langle A_z, e_z \rangle \) \(\langle A_z, e_z \rangle \in Q_x \) which completes the proof of (2).

Let us note that the space fulfilling condition (3) (where \(x \) is a power of \(X \)) is hereditarily Lindelöf. Hence (see [2]) \(X \) is hereditarily normal.

(3) To the contrary, let us assume that \(\text{supp}(X) < \omega \). Then there exists a network

\[
F_x : \langle \gamma \rangle \quad \text{where} \quad \gamma < \omega.
\]

By the regularity of \(X \) we can assume that all \(F_x \) are closed for \(\gamma < \omega \). Hence, by hereditary Lindelöfness, we can assume that

\[
F_x = \omega \times U_f \quad \text{for any} \quad \gamma < \omega.
\]

Let \(E : \gamma \times \omega \to H(\omega) \) be a mapping defined by

\[
E(\gamma, n) = q_f \quad \text{for any} \quad \gamma < \omega \text{ and } n < \omega.
\]

A standard argument shows that there exists an \(x < \omega \) such that

(i) \(\langle s, q \rangle < \omega \).

(ii) \(\langle s, q \rangle < \omega \text{ and } \langle s, q \rangle < \omega \).

(iii) \(\langle s, q \rangle < \omega \text{ and } \langle s, q \rangle < \omega \).

We can also assume that

\[
\bigcup \{ \text{dom}(e) : \langle \gamma \rangle < \gamma \} < \omega.
\]

\[
\bigcup \{ \text{dom}(e) : \langle \gamma \rangle < \gamma \} < \omega.
\]

\[
\bigcup \{ \text{dom}(e) : \langle \gamma \rangle < \gamma \} < \omega.
\]
Since \(f \downarrow D_\alpha \in M[G_\beta] \) and the fact that for the definition of \(U_\alpha \), where \(\alpha \in H(\alpha) \), the knowledge of \(f \downarrow D_\alpha \) is sufficient, we have
\[
F_\beta \in M[G_\beta] \quad \text{for each } \beta \in \gamma.
\]

Let \(\beta \geq \alpha \). We show that
\[
\forall \gamma \in \gamma [\beta \in \gamma \iff F_\beta \in \gamma',]
\]
which contradicts the assumption that \(\{ F_\beta : \beta \in \gamma \} \) is a network.

Let \(\zeta \prec \gamma \). If \(F_\beta \nless \gamma \) then, by (ii), \(\beta \notin F_\gamma \). If \(F_\beta \nless \gamma \) then \(F_\beta \nless \gamma \in M[G_\beta] \) is an infinite subset of \(\gamma \times \alpha \). Hence, by Proposition 5, there exists an \(\eta \notin F_\beta \) such that \(f(\eta, \beta) = 1 \). So \(\eta \notin \gamma' \), i.e., \(F_\beta \nless \gamma' \).

This completes the proof of Theorem 4.

Proof of Theorem 2. Let \(\gamma = \{ \langle \alpha_0, m_0 \rangle, \ldots, \langle \alpha_n, m_n \rangle \} \) be a subset of \(\times \times \alpha \). We define the posets:
\[
\Omega_r = \{ q : \text{Foc}(q) \cup \text{dom}(q) = n \cup \forall \gamma \prec \gamma \left[q(i) \in B_\alpha \right] \}
\]
with ordering relation
\[
q_1 \leq q_2 \iff q_1(i) \leq q_2(i) \quad \text{for every } i < n,
\]
\[
P_r = \{ \langle s, q \rangle : s \in \Omega_r \}, \quad \forall \gamma \pi \gamma \forall \forall \beta \gamma \langle q(i) = \langle \langle \alpha, b \rangle \subseteq \text{dom}(s) \Rightarrow \langle \langle \alpha, b \rangle, s(b) \in s' \gamma (a = b \in \text{dom}(s)) = 0 \rangle \}
\]
with the ordering relation
\[
\langle s_1, q_1 \rangle \leq \langle s_2, q_2 \rangle \iff s_1 \subseteq s_2 \text{ and } q_1 \leq q_2.
\]

We shall repeatedly use the following simple combinatorial

Proposition 6. If \(B \) is finite, \(C \) is countable and \(h_i : B \to C \) for \(\zeta < \omega_1 \), then \(C \) has no uncountable subset \(K \) of \(\omega_1 \), such that \(h_i = h_j \) for every \(\zeta, \epsilon \in K \).

Lemma 7. \(P_r \) is \(\mathfrak{c} \mathcal{c} \).

Proof. Let \(\langle \langle s, q \rangle, \langle \alpha, b \rangle \rangle \in \gamma \) be a sequence of elements of \(P_r \) and let
\[
a(i) = \langle \alpha, b \rangle \quad \text{for each } i \in \gamma \text{ and } \zeta < \omega_1.
\]

We shall show that there exist \(\zeta < \omega_1 \) such that \(\langle s_1, q_1 \rangle \) and \(\langle s_2, q_2 \rangle \) are compatible.

Without limiting generality we may assume that for every \(\zeta < \omega_1 \)
\[
\begin{align*}
\text{dom}(a) = [d_\zeta]^{<\zeta} & \quad \text{for a certain finite } d_\zeta \subseteq \gamma, \quad (1) \\
\bigcup \text{dom}(a) = \bigcup \mathcal{A}_\zeta = d_\zeta & \quad (2) \\
\text{by the } A\text{-lemma we may assume that} & \quad (3) \\
d_\zeta = a \cup b & \quad \text{for any } \zeta < \omega_1,
\end{align*}
\]
where
\[
a_\zeta \cap a_\zeta = 0 \quad \text{for any } \zeta < \eta < \omega_1.
\]

By applying Proposition 6 to the functions \(x_i \downarrow \gamma \) \([x_i]^{<\zeta} \), we can assume that \(x_i \downarrow \gamma = x_i \downarrow \gamma \) \([x_i]^{<\zeta} \) for every \(\zeta < \omega_1 \). So
\[
a_i \cup a_i \subseteq S \quad \text{for every } \zeta < \omega_1.
\]

By applying Proposition 6 to the functions \(h_i : B \to \mathcal{C} \) defined by \(h_i(z) = \langle \alpha, b \rangle \) for \(i \in \gamma \), we can assume that for any \(i \in \gamma \) there exists a \(r_i \) such that \(A_i = r_i \) for any \(\zeta < \omega_1 \). Hence we may assume that
\[
\exists \zeta < \omega_1 \quad A_i = \langle \langle \alpha, b \rangle, \langle \epsilon, a \rangle \rangle \quad \text{for any } \zeta < \omega_1 \text{ and } i < n,
\]
and by the same argument
\[
\exists \zeta < \omega_1 \quad A_i = \langle \langle \alpha, b \rangle, \langle \epsilon, a \rangle \rangle \quad \text{for any } \zeta < \omega_1 \text{ and } i < n.
\]

By applying the same argument to the functions
\[
h_i : \gamma \times \gamma \to 2
\]
defined by
\[
h_i(i, j) = e_i(b_j)
\]
for each \(i < \gamma \) and \(j < r_i \), we may assume that
\[
e_i(b_j) = e_j(b_i)
\]
for every \(\zeta, j < \omega_1 \).

The same argument applied to the functions
\[
h_i : \gamma \to P(\gamma \times \gamma)
\]
defined by
\[
h_i(z) = \langle \langle \alpha, b \rangle, \langle \epsilon, a \rangle \rangle \quad \text{for any } \alpha \in b
\]
allows us to assume that
\[
\begin{align*}
\text{for every } \alpha & \in b \quad (10) \\
\text{if } a = a_i & \text{ then } a = a_i \quad \text{for every } \eta < \omega_1 \\
\text{and similarly} & \quad (11) \\
\text{for every } \alpha & \in b \quad (11) \\
\text{if } a = a_i & \text{ then } a = a_i \quad \text{for every } \eta < \omega_1.
\end{align*}
\]

Finally, by applying Proposition 6 to suitable functions we may assume that
\[
\begin{align*}
\text{if } a_i & = a_i \quad (12) \\
\text{then } & a_i = a_i \quad \text{for every } \eta < \omega_1.
\end{align*}
\]
Let \(\{a_i, \delta_i\} = \{a_i^+, \delta_i^+\} \). If \(a_i = a_i^+ \) and \(\delta_i = \delta_i^+ \), then
\[
s((a_i^+, \delta_i^+)) = s((a_i, \delta_i)) = s((a_i, \delta_i^+)) = s((a_i, \delta_i^+)) = s((a_i^+, \delta_i^+))
\]
Similarly, we show that \(s((a_i, \delta_i^+)) = 0 \), i.e., \(s(i) \) is a function.

Moreover, if \(a_i = a_i^+ \) then we also have \(s((a_i, \delta_i^+)) = 0 \), i.e., \(a_i \in S \).

III. \(a_i \in S \) for any \(i \in n \).

The proof is similar.

IV. \(a_i \cup a_j \cup a_k \) is a function for any \(i < n \).

Let \(\{a_i^+, \delta_i^+\} \in \text{dom}(a_i \cup a_j \cup a_k) \). If \(\{a_j^+, \delta_j^+\} \in \text{dom}(a_j \cup a_k) \) then \(\delta_j^+ \in \overline{a}_j \) and hence, by (11), \(\delta_j^+ = \delta_j^+ \). So, by (9)
\[
s((a_j^+, \delta_j^+)) = s((a_j^+, \delta_j^+))
\]
Similarly, we show that \(s((a_j, \delta_j^+)) = 0 \), i.e., \(s(i) \) is a function.

Moreover, if \(a_i = a_i^+ \) then we also have \(s((a_i, \delta_i^+)) = 0 \), i.e., \(a_i \in S \).

V. \(a_i \cup a_j \cup a_k \) is a function for any \(i < n \).

The proof is similar.

VI. \(a_i \cup a_j \cup a_k \) is a function for any \(i < j < n \).

Let \(\{a_j^+, \delta_j^+\} \in \text{dom}(a_j \cup a_k) \). If \(\{a_k^+, \delta_k^+\} \in \text{dom}(a_k \cup a_j) \) then, by (13), \(a_k = a_k^+ \) and \(\delta_k = \delta_k^+ \) then \(s((a_k^+, \delta_k^+)) = s((a_k^+, \delta_k^+)) \).

If \(a_k = a_k^+ \) and \(\delta_k = \delta_k^+ \) then \(a_k = a_k^+ \) and hence, by (10), \(\delta_k = \delta_k^+ \). So, by (9)
\[
s((a_k^+, \delta_k^+)) = s((a_k^+, \delta_k^+)) = s((a_k^+, \delta_k^+)) = s((a_k^+, \delta_k^+)) = s((a_k^+, \delta_k^+))
\]
Similarly, we show that \(s((a_j, \delta_j^+)) = 0 \), i.e., \(s(i) \) is a function.

Moreover, if \(a_i = a_i^+ \) then we also have \(s((a_i, \delta_i^+)) = 0 \), i.e., \(a_i \in S \).

VII. \(s_i \cup s_j \cup s_k \) is a function for any \(i, j < n \).

The proof is similar.

VIII. \(s_i \cup s_j \cup s_k \) is a function for any \(i < j, k < n \).

Let \(\{a_i^+, \delta_i^+\} \in \text{dom}(a_i \cup a_j \cup a_k) \). If \(\{a_j^+, \delta_j^+\} \in \text{dom}(a_j \cup a_k) \) then \(\delta_j^+ \in \overline{a}_j \) and hence, by (11), \(\delta_j^+ = \delta_j^+ \). So, by (9)
\[
s((a_j^+, \delta_j^+)) = s((a_j^+, \delta_j^+))
\]
Similarly, we show that \(s((a_k^+, \delta_k^+)) = 0 \), i.e., \(s(i) \) is a function.

Moreover, if \(a_i = a_i^+ \) then we also have \(s((a_i, \delta_i^+)) = 0 \), i.e., \(a_i \in S \).
It is clear that conditions I-VIII give \(s \in S \) and our proof of Lemma 7 is complete. Now we prove Theorem 2. Let \(\langle \xi, \zeta \rangle : \zeta < \alpha_1 \) be a sequence of elements of \(P \). We show that there exist \(\zeta < \eta < \alpha_1 \) such that \(\langle \xi, \eta \rangle \) and \(\langle \zeta, \eta \rangle \) are compatible. By the \(A \)-lemma we may assume that

\[
\text{supp}(\xi) = y \cup w \quad \text{for every } \xi < \omega_1 \text{ where}
\]

\[w \cap w = \emptyset \quad \text{for every } \zeta < \eta < \alpha_1.
\]

Let \(P'_y = \{ \langle x, y \rangle : \langle x, y \rangle \in P \} \) be a poset with the ordering relation

\[
\langle x, y \rangle \preceq \langle x', y' \rangle \iff x \preceq x' \land y = y' \lor (y = 0, 0).
\]

Clearly \(P_y \) and \(P'_y \) are isomorphic.

Let us consider a set \(\{ \langle x, y \rangle : \zeta < \omega_1 \} \) of elements of \(P' \). By Lemma 7 there exist \(\zeta < \eta < \alpha_1 \) and \(\langle x, y \rangle \in P' \) such that \(\langle x, y \rangle \not\preceq \langle x', y' \rangle \) and \(\langle x, y \rangle \not\preceq \langle x', y' \rangle \).

Let \(q' \in Q \) be defined by

\[
q'(x, n) = \begin{cases} q(x, n) & \text{for } (x, n) \in y, \\ q(x, n) & \text{for } (x, n) \in w, \\ q(x, n) & \text{for } (x, n) \in w, \\ 0 & \text{otherwise} \end{cases}
\]

It is easy to see that \(\langle x, q' \rangle \in P \) and \(\langle x, q' \rangle \not\preceq \langle x', q' \rangle \) and \(\langle x, q' \rangle \not\preceq \langle x', q' \rangle \).

This completes the proof.

References

INSTITUTE OF MATHEMATICS
UNIVERSITY OF WARSAW

Accepté par la Rédaction le 22. 9. 1980

Topological games and products, II

by

Yukinobu Yasima (Yokohama)

Abstract. The purpose of this paper is to study the topological games (in the sense of R. Telgarsky) of product spaces: Assume that Player I has winning strategies in the given topological games of \(X \) and \(Y \). Then we consider the conditions of a product space \(X \times Y \) under which he has a winning strategy in a certain topological game of \(X \times Y \). Moreover, we can apply the results obtained from this kind of argument to the product theorem in dimension theory.

Introduction. R. Telgarsky [14] introduced and studied the topological game \(G(K, X) \). In our previous paper [19], we have used it to study the covering properties of product spaces. In the present paper, we shall study the topological game on product spaces. If the above \(K \) is the class of all one-point spaces, then the game \(G(K, X) \) is often abbreviated by \(G(X) \), which is called the point-open game. R. Telgarsky [15] stated the following: If Player I has winning strategies in \(G(X) \) and \(G(Y) \), then he has a winning strategy in \(G(X \times Y) \). This gives the positive answer to [14, Question 14.1]. In this connection, we raise the following natural question: Assume that Player I has winning strategies in \(G(K, X) \) and \(G(K, Y) \). What is a topological game of \(X \times Y \) which is interesting to investigate? What is a condition on \(X \times Y \) under which he has a winning strategy in such a game? In §2 and §3, we discuss this question. In §4, using the result of §2, we give a product theorem in dimension theory.

Each space considered here is assumed to be a Hausdorff space. \(N \) denotes the set of all natural numbers and \(\aleph \) denotes an infinite cardinal number. For a space or a set \(X \), by \(\gamma(X) \) we mean the character of \(X \) and by \(|X| \) the cardinality of \(X \). For a collection \(\mathcal{F} \) of subsets of \(X \), \(|\mathcal{F}| \) denotes \(\bigcup \{ F : F \in \mathcal{F} \} \).

§1. Topological games. R. Telgarsky [15] has introduced an equivalent form of the game \(G(K, X) \) defined in [14]. The new form of the game we use below.

Let \(L \) be a class of spaces and let \(X \) be a space. We define the topological game \(G(L, X) \) as follows: There are two players; Player I and Player II. Player I chooses a closed set \(E_1 \) of \(X \) with \(E_1 \subseteq L \), and after that Player II chooses an open set \(U_1 \) of \(X \) with \(E_1 \subseteq U_1 \). Again Player I chooses a closed set \(E_2 \) of \(X \) with \(E_2 \subseteq L \) and Player II chooses an open set \(U_2 \) of \(X \) with \(E_2 \subseteq U_2 \), and so on. Here, the infinite