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A note on singularities in ANR’s
by

W. J. R, Mitchell (Cambridge)

Abstract. The behaviour of various singularities in ANR’s, and of conditions designed to re-
move them, is studied. Examples are constructed to show that in general these properties behave
badly in Cartesian products, neither passing from the factors to the product nor vice versa.

In this note it is pointed out that recent results, mainly in decomposition space
theory, imply negative answers to problems posed by Borsuk about singularities
in ANR’s. ‘

Let X be an ANR. Then X has the singularity of Peano [4] if there is a closed
subset F of X which is contractible in X, but not contractible in any subset of X of
dimension at most dimF+1.

If there exists an integer n such that p,(X)>0 but there is no closed proper sub-
set F' of X satisfying p,(F)+1 = p,(X), then X has the singularity of Brouwer [4].
(Here p,(X) denotes dimH"(X; Q)). :

If X cannot be expressed (for each £>0) as a finite union of AR’s of diameter
less than &, then X has the singularity of Mazurkiewicz [4]. ’

If given e>0, there exists §>0 such that a compact non-empty subset 4 of di-
ameter at most § can be contracted in a set of diameter at most ¢ and dimension at
most dim.d4 -1, then X satisfies condition A [4].

If X has a covering {4, ..., 4,} by AR’s such that any finite intersection of
the 4, is either empty or an AR, then X satisfies condition I' [4). ‘

If for each ¢>0 there is a covering by finitely many AR’s of diameter at most &
which satisfies the condition of I', then X satisfies condition A [5].

If X satisfies condition 4, respectively condition 4, it does not have the singu-
larity of Peano, respectively the singularity of Mazurkiewicz [4, 5]. Condition I’
nearly rules out the latter singularity (see below),

THEOREM. There exists a natural transformation T, from the category of ANR’s
and contintous maps to itself, such that T(X) satisfies conditions- 4, I" and A, and is
Jree of the singularities of Peano, Brouwer and Mazurkiewicz. Moreover T* is naturally
equivalent to T. ‘

Proof. Define T by T(X) = Xx Q, T(f) = fxid,y, where Q is the Hilbert
cube. Any fixed homeomorphism Q = Q.x Q gives the equivalence of T and T2,
Since X is an ANR, X x Q is a Q-manifold by Edwards’ ANR ‘theorem [9]. By
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Chapman’s triangulation theorem [9] there is a finite complex K such that
KxQ o Xx Q. Since this homeomorphism is uniformly continuous, it suffices
to verify that K'x Q satisfies 4 to show that T'(X) does (and so is free of the Mazur-
kiewicz singularity). To do this one writes Kx Q as Kx[~1, 1]¥x On+1> Where
diam Qy,4 <}, and covers the polyhedron X x[—1, 1]¥ by the stars of the vertices
in a triangulation of mesh }e.

Since T'(X) is a Q-manifold, it satisfies 4 and so is free of the Peano singularity,
either by ([11]; 3.4) or else by the triangulation theorem [9] and ([4]; VIL 5) plus
the observation that Q satisfies 4 (cf, [6], [10]).

Finally let F be the complement in K of the open star (in the first derived triangu-
lation) of a barycentre of a simplex of highest dimension. Then by the excision and
homotopy axioms, we have H*(Kx Q, Fx Q) & H*(B", S"Y). Thus from the
exact sequence of a pair with rational coefficients, it follows that

dim H*(K x @; @)—dimH'(Fx Q; @)I<1,

and so T'(X) & KxQ does not have Brouwer’s singularity.

Remark. Of course a similar result follows from West’s finite type theorem [14]
Notice that considerable smoothing is occurring — there are only countably many
Q-manifolds up to homeomorphism, but uncountably many ANR’s.

Now we give the solutions to problems of Borsuk regarding the behaviour of
these properties in cartesian products. Let P be a class of ANR’s. Then P is said to be:

(1) multiplicative if XeP and YeP implies Xx Y e P,

(2) ideally multiplicative if XeP and X nondegenerate implies X'x Y& P for
all ANR’s Y.

(3) factorisable if Xx Y eP implies XeP and YeP.

(4) prime factorisable if Xx Y e P implies XeP or YeP.

(5) additive if XeP, YeP and X YeP imply Xu YeP.

In [4; TX. 8 and VI. 5] the question of multiplicative and factorisable behaviour
of the singularites was raised.

ExamrLE A. Armentrout [1] has described a decomposition G of §3 into a null
sequence of arcs and points such that §3/G has the singularity of Mazurkiewicz.
By a result of Bass [3] if H, X are upper semi-continuous finite-dimensional cell-like
decompositions of §*, §™ respectively, then SY/H x S"/K = S"x S™, (Alternatively
a result of Smith [13] would suffice, except in Example B below). Hence S%/G x $3/G
= §3% 8% is a polyhedron having factors with the singularity of Mazurkiewicz,
(The likelihood of this was pointed out in [1].)

.EXAMPLE B. Cannon and Daverman [8] have described a finite-dimensional upper
semi-continuous cell-like decomposition G of S" (n=4) such that any contraction
of 2 certain loop in "G contains an open set. Thus $"/G bas the Peano singularity,
while by [3] SYGx8"G = "% S" is a polyhedron, and hence satisfies 4.

ExamreLE C. Take two discs which have a single boundary point in common.
In each disc match a 3-ball to an interior arc (cf. [4]; VI, 1) to obtain T say. Then
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thicken one of the modified discs by embedding it in the face of a cube, calling the
resulting space §. Take X = Y = S, with the cubes attached to different discs, so
that X n ¥ = T. Then clearly X, X n ¥ and ¥ have the Peano singularity. However
in X u Y the singular parts of the space lie in faces of the cubes, and by first pushing
into the interior of the cubes and then using ([4]; VIL 5.6) it is easy to see that the
space is free of the singularity of Peano and indeed satisfies 4. Hence the Peano
singularity is not additive. , .

Examprr D. Singh [12] has described a finite-dimensional cell-like upper semi-
continuous decomposition G of $° such that W = 5%/G contains no proper ANR
of dimension greater than 1. Hence W fails to satisfy 4 or I'. However by [3]
Wx W 8§3%x 8%

Examere E. Mimicking the idea of C, let W be the space of Example D. As
in [12], sW = S* Let X = sWVvWand Y= WvsW. Then XU ¥ = sWvsW
o S*x S* satisfies 4 and I', but X, ¥ and X~ Y all clearly fail to do so, since
they have the singularity of Mazurkiewicz.

ExamprLe F. Modify the example X of ([4]; VL. 1) by matching the segment L
in Q* with the 4-ball Q*. If B is the boundary of 02, then Q' B is contractible
in Q! x X, but is clearly not contractible in any 3-dimensional subset thereof. As Q*
has 4, this property is not ideally multiplicative. )

ExampLE G, We rocall the construction of the example X of ([4]; V1. 4). The
basic building operation is as follows; from the interior of a disc D delete the interiors
of two subdiscs D and D,; take another disc E, join two points of E by an arc 4
in Int& and identify the endpoints; glue BAE to BdD,, and glue the image of 4
to Bd D,. If we have performed this construction along a whole chain of discs ending
with a point, and if a contractible set (e.g. an AR) contains Bd D,, then Bd D, can
only be contracted in a subset containing Bd D,, and inductively it follows that the
contractible set contains the whole chain, By filling D with a countable number of
chains, dense in a suitable sense, one obtains a space X with the singularity of
Mazurkiewicz.

We claim that X% [0, 1] also has this singularity. Since [0, 1] satisfies 4, this
implies that 4 is not ideally multiplicative and that the singularity of Mazurkiewicz
is not factorizable. Now Z = Xx[0, 1] is obtained by iterating the following
operation, Bore two vertical holes in B* = B*x [0, 1]; take another copy B’ of B?,
and join an arc in the interior of the top face to one vertically below it in the interior
of the bottom face by means of a vertical rectangle R; identify the two vertical
edges of R, and glue the vertical faces of B’ to the boundary of the first bored-out
tube, and the image of R after identification to the boundary of the second bored-out
tube. It is easy to see by a standard general position argument that if ¢ is a loop
running once round the first tube, any singular disc with ¢ as boundary must contain
loops running in both directions around the second tube. Thus by arguing just as
in [4], it follows that if 4 is an AR in Z, we have p(4) = X (where p is projection
to the first coordinate). Thus Z does have the singularity of Mazurkiewicz.
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The information is summarised in the following table, in which 1 means true, [4] K. Bousuk, Theory of Retracts, Warszawa 1967,

fe ol . Foagere? . [S1 — Topological characterization of polyhedra, Ann. Soc. Polon. Math. 21 (1949), pp. 257-276.
0 means false. A reference‘ to a reason is given, letters referring to the above [6] E. Buchsteiner-Klessling, Zum Faktorisierbarkeitsproblem gewisser topologische Be-

examples. dingungen, Bull. Acad. Polon. Sci. 18 (1970), pp. 575-578.
[71 — Uber gewisse lokale und globale topologische Bedingungen, Bull. Acad. Polon, Sci. 21 (1973),
) pp. 1107-1110,
mult - ot fact. - fact. add. (8] J.W. Cannon and R.J. Daverman, 4 torally wild flow, Indiana Univ. Math. J. 30
(1981), pp. 371-387.
Peano 0: B 0: B, [6] or| 0: F ? 0: C [91 T.A. Chapman, Lectures on Hilbert cube manifolds, Amer. Math. Soc., Regional Con-
[1o] ference, series 28, 1976,
- [10} J. Lysko, A remark on the singularity of Peano, Bull, Acad. Polon. Sci. 21 (1973), pp. 161-162.
Mazurkiewicz | 0: D 0:DorThm | 0: G 1: see () 0: E [11} W. I R. Mitehell, General position properties of ANR’s, Math, Proe. Camb. Phil. Soc.
6or | 0: F 92 (1982), pp. 451466,
4 L: (4] p. 169) | 0: F 0: B, [6] 0: B 1: ([4], p. 167) [12} 8. Singh, 3-dimensional AR’s which do not contain 2-dimensional ANR’s, Fund. Math. 93
or [10] (1976), pp. 23-36.
131 B.J. Smith, Products of decompositions of E®, Trans. Amer. Math. Soc. 184 (1973), pp. 31-41.
1: (41, p. 177) ? 0:4or Thm | 0: 4 0: [2] {141 J. E. West, Mapping Hilbert cube manifolds to ANR’s: a solution of a conjecture of Borsuk,
Ann. of Math. 106 (1977), pp. 1-18,
A 1: [5]or(y 0: G 0:DorThm | 0: D ?
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Remarks. 1. Condition 4 is definitely stronger than condition I'. Indeed in England
the example of [2], the space X satisfies I'. However it is clear by the techniques
of that paper that an AR covering part of the interior of the “handle” of X must Accepté par la Rédaction le 22. 1. 1981
have an inverse image meeting both of the end discs, and so cannot be small. Thus A

fails for X.

2. The space constructed at the end of [7] does not satisfy condition 4 but is

free of the Peano singularity. It would be interesting to have similar examples for the
other conditions.

3. The bad behaviour with respect to dimension of subsets of cartesian products
makes it hard to determine whether the Peano singularity is prime factorisable.

4. In so far as they relate to the singularities of Peano and Mazurkiewicz,
-questions VI. 5.1, VL. 5.3, IX. 8.1, IX.8.2 and IX. 8.3 of [4] have been answered;
VL.5.2, IX. 13.1, 1X. 14.1 and the parts relating to the Brouwer singularity (with

the exception of V1. 5.1). remain open. It would also be interesting to know whether
the condition 4 is additive.
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(') Since the product of AR’s is an AR, if both X and ¥ have covers by small AR’s, s0
does Xx Y, ; .
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