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Powers of spaces of non-stationary ultrafilters
by

J.E. Vaughan (Greensboro, N. C.)

Abstract. Let X denote the space of all non-stationary ultrafilters on a regular uncountable
cardinal » (or more generally, the space associated with a normal ideal on #). These spaces were
recently introduced by Eric van Douwen, who showed that X is strongly -compact but not
x-bounded. We show in this paper- that X? is not strongly %-compact, X**is not totally initially
x-compact and X* (assuming GCH) is initially %-compact for all cardinals . These results answer
two basic questions concerning these compactness-like properties.

1. Introduction. The theory of products of countably compact and related spaces
is extensive, but the generalization of this theory to higher cardinals is not as well
developed. There are some very basic questions which have been answered in the
countable case but not in the uncountable case. Two of these questions are concerned
with the notions of strong x-compactness and TI-x-compactness.

A space X is said to be strongly %-compact provided that for every filter base
on X of cardinality <, there exists a compact set K= X such that Fn K # &
for all Fin %. A Ts-space X is TI-%-compact provided that for every filter base &
on X of cardinality <x, there exist a compact set K= X and a filter base & of cardi-
nality < such that ¢ is finer than & (i.e., every member of & contains a member
of %) and % converges to K in the sense that every open set containing X also contains
a member of ¥ (see § 2 for the definition of TI-x-compactness in general ‘spaces
and for all other definitions).

Clearly, every strongly x-compact space is TI-x-compact (take {4 to be
{FnK: Fe #Y)), and the converse is true if » = o (in the class of T;-spaces).
The simple proof of the equivalence of these two properties for the case % = « does
not extend to higher cardinals; so we have the basic question: '

1.1. For x>w, is every TI-x-compact space strongly %-compact?

An important property of the class of TI-x-compact spaces is that it is stable
under x-fold products (i.e., every product of <x TI-x-compact spaces is
TI-%-compact). The proof of this does not extend to strong »-compactness; so we
have a second basic question:

1.2. For x> w, is every product of no more than % strongly ¥~ compact spaces,
strongly s»-compact?
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We first considered these questions about ten years ago, and noticed then that
if we could find a strongly x-compact space X such that X™ was not strongly
x-compact (thus answering 1.2 in the negative) then the product space X™ also an-
swered 1.1 in the negative since TI-%-compactness is %-fold productive. We had
little hope, however, that a space X which answered 1.2 could be easily described or
that its productive properties could be easily derived. We were quite pleased, there-
fore, to find that some spaces recently introduced by Eric van Douwen do all of this
and more.

The purpose of this paper is to give a detailed description of the compactness-
like properties of powers of these spaces, and to use them to answer questions 1.1
and 1.2 for regular uncountable cardinals x in the negative. For 1.2 more is possible:
‘We show that a countable product of strongly x-compact spaces (for » regular and
uncountable) need not be strongly x-compact.

2. Statements of results. The spaces considered in this paper are subspaces of
the Stone-Cech compactification of a regular uncountable cardinal s (where % has
the discrete topology). In [5] van Douwen defined for each normal ideal # on »
the subspace X = X(f) of B(x) to be the set of all ultrafilters on x which contain
a member of the ideal #. He proved

2.1. X is A-bounded for all A<x.

2.2. X is not x-bounded.

2.3. X is strongly %-compact.

In this paper we study the compactness-like properties of powers of X and
show

24. X" is strongly »-compact for all n<wo (this property is obviously finitely
productive [18, p. 281]).

2.5. X% is not strongly wx-compact (see §4).

2,6, X* is TL-3- cémpact (this property is %-fold productive [22, Cor. 3.3]).

2.7. X*" is not TI-x%-compact (see § 5).

2.8. (GCH) X* is initially »%-compact for every cardinal u (see § 6).

From these results we can answer questions 1.1 and 1.2. ,

2.9. Let % be a regular uncountable cardinal. 4 countable product of strongly

%-compact spaces need not be strongly x-compact. Strong w-compactness is, however,
countably productive [6, 4.2.3] or [22, Cor. 3.2].

2.10. Let » be a regular uncountable cardinal. There exists a TI-%-compact
space which is not strongly x-compact (namely X in 2.5). In the class of Ts-spaces,
strong w-compactness and TI-w-compactness are equivalent [20, Lemma 2.1].

v
3. Definitions and known results. For an infinite cardinal %, we consider the
Stone-Cech compactification of » (where » has the discrete topology) as a space of
ultrafilters on x (see [3]). An ideal on a regular, uncountable » is normal provided
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it is non-trivial, <x-complete, and closed under diagonal union (see [5]). For
a normal ideal . the space associated with £ is

X(#) = U {dpd): Ie£}
considered as a subspace of f(x). These spaces were introduced by van Douwen
in [5]. We need very little about normal ideals in this paper (other than 2.1-2.3).
We mention that each singleton is in I; so x= X(#), and by 2.2 X(#) # B(x). We
also need that .# is countably complete, i.e., every union of countably many elements
of # is an element of # (this follows from <#x-completeness).

The set of all functions from % into X is denoted by *X, and such a function is
sometimes called a x-sequence. Let [x]” denote the set of all subsets of % having
cardinality », and define [2¢]<* to be the set of all subsets of » having cardinality <.

A filter base & on a set P is a non-empty collection of non-empty subsets of P
such that the intersection of any two members of & contains a member of .
A filter base & traces on a set T provided F N T # @ for all Fin #. A filter base
is finer than a filter base & provided that for each F in & there exists a G in & such
that G F. A filter base % on a cardinal x is called uniform provided that for each F
in &, |F| = ». Put

Unif (%) = {ue B(x): u is a uniform ultrafilter on x} .

The Generalized Continuum Hypothesis (GCH) is used several times in this paper.

‘We next give some definitions from topology. A filter base & on a topological
space X is called total provided that every filter base # finer than F has an adherent
point (i.e., () {H: He #} # Q). Clearly, the notion of total filter base generalizes
that of a convergent filter base (see [16], [21], and [22]).

For a family {X,: e<p} of topological spaces, where u is a cardinal number,
let T]{X,: a<p} denote the Cartesian product of the family endowed with the
(Tychonoff) product topology. In case each X, is homeomorphic to a single space X,
we write X* instead of [] {X,: a<p}, and say that X*is a power of X.

A topological space P is called

»-bounded [9] if for every H< P, and |H| < x there exists a compact subset T<P
such that H<T,

strongly x-compact [18] if for every filter base & on P, if |#|<x, then there
exists a compact set TP such that & traces on T,

totally initially x-compact (for short: TI-x-compact) [22] if for every filter
base & on P with |#|<x there exists a finer, total filter base ¥ with |%|<x, and

initially »-compact [1] if every open cover of P having cardinality < has
a finite subcover.

It is easy to see that for every infinite cardinal

%-bounded — strongly %-compact — T-x-compact — initially x-compact.

None of these implications can be reversed for every value of x. For x regular and
uncountable, the space X of van Douwen is strongly »%-compact but not »-bounded
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(2.2, 2.3), and the space X* is TI-x-compact but not strongly %-compact (2.5, 2.6).
For # infinite, Example 3.9 in [20] gives an initially %-compact space which is not
TI-%-compact. For the special case x = o, we refer the reader to [18, Remark 2.2],
[20, Lemma 2.1}, and [22, § 4], and mention agﬁin that for » = o the two middle
properties above are equivalent in 75-spaces.

It is interesting to note the extent to which each of these four properties is pre-
served under products (there is substantial variation). We start with

s%-boundedness: Since every product of compact sets is compact, it is clear that
every product of x-bounded spaces is x-bounded (for x>w) [9],

strong »-compactness: For regular »>cw, this property is finitely productive
(as is easy to see; [I8]), but is not countably productive (2.5),

TI-%-compactness: This property is x-fold productive for all xzw [22]. This
nice fact (as well as others) points up the interest in this property. TI-x-compactness
is not 2%fold productive in a strong sense (see Theorem 5.9), :

initial %-compactness: For regular %, this property is not finitely productive.
Van Douwen has shown (assuming GCH) that there exist spaces X and Y which are
initially %-compact, but X'x Y is not initially x-compact [4]. On the other hand,
if % is a singular cardinal, then (assuming GCH) every product of initially »-compact
spaces is initially x-compact [18] and [20].

4. Proof of 2.5: X® is not strongly »x~compact.

4.1. LEMMA. If X is a space such that X is strongly %-compact (for any x=w)
then every subse{ of X having cardinality <, is contained in a o-compact subset of X.

Proof. Let He[X]" then |H| = A<x. For every 4 e [H]*® put

F(4) = {fe®H: Range(f)>4}.

Then & = {F(4): Ae[H]™®} is a filter base on X (since "F(A4) n F(A')
= F(A4 u A") having cardinality <x. Since X is strongly »-compact, there exists
a compact set T'< X such that & traces on T. We show that He | {n(T): n<o}
where @, is the natural projection. Let x e H, and let 4 = {x}. Let fe F(4) n T,
which is non-empty because & traces on T. Then there exists n<w such that f' (n) = x.
Since f(n) is an element of m,(T), this shows x € m,(T). Thus, H is a subset of
a ¢-compact set.
. 4.2. LEMMA. If every ¢-compact subset of X is contained in a compact subsct

of X, and if X° is strongly x-compact for any infinite cardinal %, then X is »-bounded.

Proof. By 4.1, every subset of X of cardinality <x is contained in a o-compact
subset of X which by hypothesis is contained in a compact subset of X. Thus X is
x%-bounded.

The next lemma is implicit in [5, 3.1].

’ 4.3. LEMMA. Let # be an.ideal on » (x=w). For every compact set T< X (F),
there exists Ie.# such that Tccly,(D).
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Proof. This follows from the fact that {clg.,(I): T€.#} is an open cover of
X(#), and an ideal is stable under finite unions.

4.4 LemMA. If S is a countably complete ideal on % (%= w,), then every a-compact
subset of X(F) is contained in a compact subset of X ().

Proof. This is an jmmediate consequence of 4.3 and countable completeness.

Proof of 2.5: X® is not strongly x%-compact (x>w). This follows from
Lemmas 4.4 and 4.2.

5. Proof of 2.7: X% is not totally initially x-compact. According to
S. H. Hechler [10], the cardinal number K¢ is defined to be the smallest cardinal
number which is the cardinality of a family # <o such that for all He [w]® there
exists fe & such that f(H) = o. He proved

5.1. TrEoreM (Hechler [10]). If a product of at least K¢ spaces is strongly
o-compact, then at least one of the coordinate spaces is w-bounded.

A straightforward generalization of this result goes as follows. Define for every
cardinal %, the cardinal K¢(x) to be the smallest cardinal number which is the car-
dinality of a family & <*x such that for all He [2]* there exists fe & such that
F(H) = %. In analogy with 5.1, we have

5.2. THEOREM. If a product of at least Kc(x) spaces is strongly x-compact, then
at least one coordinate space is x-bounded.

Proof. For regular cardinals %, the proof is very similar to Hechler’s proof
of 4.1. For singular %, we use in addition Lemma 3.6 in [20].

In order to prove 2.7, we will first prove an analogue of Theorem 5.2 for
TI-%-compactness. Since TI-w-compactness is weaker than strong -compactness
in T, (not Ty) spaces (e.g. the space S of Example 5.13), this analogue will give
2 new result even in the countable case. This analogue is not quite as straightforward
as was Theorem 5.2 because we must work with filter bases instead of x%-sequences,
and we have to take into account what happens in the T, (not T5) case. In particular,
»-boundedness is not the correct property to use here. For this reason we define
the notion of a “x-total” space. We also need an analogue of the cardinal K¢(%).

5.3. DepNrTioN. For an infinite cardinal , let 2(x) denote the smcllest car-
dinal which is the cardinality of a family & «*x with the property that for every
uniform flter base # on x with |#|<»x there exists fe & such that f(H) contains
a final segment of x for all He .

To see that /(%) is well-defined, we show that & = *y has the property mentio-
ned in 5.3: Let # be a uniform filter base on » with |7 <. By the disjoint refine-
ment lemma [3, 7.5] there exists a family {By: He 2} of mutually disjoint subsets
of % such that By H and |By| = x for all He #. By mapping each By onto x we
can construct a function f& *x such that f(H) = x for all He #. Hence, h(x) is
well-defined and h(x)<2"

5.4. Remark. It is easy to see that x<h(x). Recall [22, Cor.. 3.3] that every
product of no more than % TI-%-compact spaces is TI-x-compact. Now X is
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TI-x%-compact (by 2.2), but by Corollary 5.10 below, X"™ is not TI-3-compact.
Thus A (3) .

5.5. DERINITION. A set T'= X is said to be total in X provided that the singleton
filter base {T'} is total in X.

5.6. LEMMA. The following are equivalent for a set Tc X.

1. T is total in X. .

2. Every filter base (ultrafilter) which traces on T has an adherent point (con-
verges to a point) in X.

3. Every open cover of X contains a finite subfamily which covers T.

The property considered in this lemma has been discovered independently by
at Ieast__ﬁve authors (see [7], [11], [12], [13], [15]).

If Tis compact, then T is a total set, and in T;-spaces the converse is true.
Examples abound of T', (not T3) spaces which contain total sets whose closures are
not compact: {7, Example 1], [12], [15, Example 2.1], [22, Example 2], and Example
5.13 below.

5.7. DEFINITION. For x>, a space X is called x-foral provided that every
subset of X of cardinality < is total.

5'87 Remark. The notion of ultracompactness was introduced by A. Bern:
stein [2] and extended by V. Saks to »-ultracompactness [17]. Contrary to what the
name suggests, ultracompactness is strictly weaker than compactness (the prefix
:.reffars to ultrafilters). Now it is easy to check that a space is x-total (%> w)if and only
if it is %-ultracompact, and therefore we may use the term %-total instead of
%-ultracompactness, and the term w-total instead of ultracompactness. We believe
this shorter terminology is: clearer.

‘ With these two definitions (5.3 and 5.7) we can prove the following result follow-
ing the basic outline of Hechler’s proof of Theorem 5.1. .

5.9. TeEOREM. If X = [ {X,: a<h(%)} is a product space which is TI-x-com-
pact, then there exists w<h(x) such that X, is x-total.

Proof. The proof is by contradiction. Assume for each a<x there exists 4 set
S,f:A?, which is not total and |S,|<x. List S, = {xj: f<x} in such a way that each
point in S, appears  times in the list. Let { £,: «<%(5)} be a subset of *» which satis-
fies the condition in the definition of A(x). Define a %-sequence < y,»> in the product

space X as follows: Let n, denote the usual projection map 7,: X — X,. Define
so that ‘ - yy

T(3y) = Xfuy) -
Let & b.e a filter base on x such that (1) |#|<x and (2) for every Ve [x]<*
there exists Se% such that SA V=& (for % singular, use [20, Lemma
3.6]). For‘ cach Sin define T(S) = {y,: €S}, and put I = {Ts,: Se &}
Then 7 is a filter base on X of cardinality <x; so by hypothesis, there exists.
a filter base ¢ of cardinality <x which is total and which is ﬁ;1er than 7~
For each G in ¥ define H(G) = {u<x: Y€ G} and put # = {H(G): Geg}:
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Then # is a filter base on x of cardinality <x and furthermore (by property 2 of &)
3 is uniform. Thus there exists ¢<x such that f,(Hg) contains a final segment, say
(g, %), for all G in %. By the definition of (y,> this implies that for each Ge &,
7 (G)>{x§: 16<B<x}. Hence (by the redundant listing of S,) 71 (G) =S, for all G
in %. Since the continuous image of a total filter base is total [21, Lemma 3], m(%).
is total, and therefore the finer filter base {S,} is also total. Thus S, is a total set,
and this contradiction completes the proof.

5.10. COROLLARY. If the product of at least h(x) Ts-spaces is TIL-x-compact,
then at least one of the coordinate spaces is w-bounded.

That X*® (a fortiori X2) is not TI-x-compact follows from this corollary
and 2.2.

We now turn to the countable case of Theorem 5.9.

5.11. LemmA. K¢ = h(w).

Proof. That 7 (w)< K follows at once from the well-known fact that for every
countable filter base # of infinite subsets of o there exists 4 € [»]” such that (4— H)
is finite for all H e #. We show that K.<h(w). Let # =“w satisfy the definition
of h(w). For every fe# and Fe [0]°® define g(f,F)e“w as follows: let
F = {x;: i<n} where n = |F| and set

f@) ifi¢F,
g(f’F)'__{j if ieFand i =x;.
Thus g(f, F) =f on o\F and g(f, F)(F)=nif n= |F|. Let
g ={g(f,F): feF and Felw]*"}.
Thus |#| = |#]. We have only to show that & satisfies the property in the definition

of K. Let H e [w]®, and let 4 be an infinite subset of H such that H— 4 is infinite.

There exists f& & such that f (4) contains a final segment of w; say
fA)>{i<w: izn}.

Let F be a subset of (H—A) having cardinality n. Then g(f, F)(H) = o.

From Theorem 5.9 we get the following analogue of Hechler’s theorem (5.1.

5.12. COROLLARY. If a product of at least K spaces is TI-w-compact then at
least one of the coordinate spaces is w-total. '

We mentioned that the concept of “w-total” is not new. It was first considered
by A. Bernstein under the name “ultracompact” [2] (a space is called ultracompact
provided every sequence has a D-limit for every D in B(w)\w). It has also been
considered by Hechler under the name “e-¥o-bounded.” Victor Saks [17, 5.6] gave
(modulo the existence of a wP-point in 8 (w)\w) an example of a T (not T) space
which is e~ total but not w-bounded. Saks’s example is now complete since K. Kunen
has shown that there exist wP-points in j(w)\w [14]

5.13. EXAMPLE. An -total space P which is not strongly «-compact. Let Sbe
the w-total not @-bounded space of Saks. The space S is not the desired example

i
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because it is strongly w-compact. It is not difficult, however, to modify the con-
struction of .S so as to get the desired example. We give here another method which
is based on the preceding results. Let P = $2°. Every product of x-total spaces
is %-total (see [13], [15], or note that this follows easily from the theorem of Pettis
which states that any product of total filter bases is a total filter base). Thus, since S
is w-total, so is P. By Hechler’s theorem (5.1) P is not strongly w-compact.

‘We have mentioned that there are a number of examples of total sets whose
closures are not compact. We point out that any »-total space which is not x%-bounded
(e.g. S) must have a total set of cardinality » which does not have compact closure.

6. Proof of 2.8: (GCH) Every power of X is initially »-compact. We say that
a space X is <x-bounded provided that X is A-bounded for every cardinal A<,
By 2.1 and 2.2, the space X is <x-bounded but not sx-bounded.

The following result, which is a direct analogue of Theorem 2.6 in [8] shows
what we must do to prove 2.8.
© 6.1. THBOREM. Let X be <ux-bounded, where x> w. The following are equivalent.

1. Every power of X is initially x-compact.

2. X* is initially %-compact.

3. XY is initially %-compact.

4. There exists D e Unif(x) such that X is D-x-compact.

Our plan of attack is to show that there exists D e Unif(x) such that X is
D-x-compact. First we recall the relevant definitions. Let D e Unif(x), let X be
a space, x € X, and fe “X. The point x is called a D-x-limit of f in X provided that
for every neighborhood U of x, {a<x: f(«)e U} e D. A space X is D-x%-compact
provided that every x-sequence in X has a D-x-limit [17].

The hypotheses of the next lemma were dictated by the space X.

6.2. LEMMA. If a space X is <x-bounded, and X*" is initially x- compact and
X = Y v Z where |Y|<2" and Z is »-bounded, there exists D & Unif(x) such that X
is D-x-compact.
Proof. We give a proof of this which follows the idea of 3 ~ 4 in Theorem 6.1
(or Theorem 2.6 of [8]). This method, which is a little shorter than our original
proof, was suggested by Victor Saks. If | Y| <, then X is x-bounded and there is
- nothing to prove. We assume that »%<|Y|<2" Let {f,: a<2"} list all %-sequences
in ¥, and define a x-sequence (y,» in X" by the rule m(y,) = f(y). Since there
are f € “Y which are one-one we have that the map y - yyis also one-one. Since X" is
initially %-compact there exists y € X2" such that for every neighborhood U of b A
{y<x: y,e U}| = » (i.e, y is a complete accumulation point of {y,: y<x}).
Thus, we may choose D e Unif(x) such that y is a D-x%-limit of the s- sequence
{»y>- Since D-x-limits are preserved by continuous maps, we have m(y) is
a D-x-limit of £, in X for all @<2". Thus, for this D, every x- sequence in Y has
a D-x-limit point in X. Now we can see that X is D-x- -compact, because every
®-sequence in X must map a member of D into ¥ or Z. In either case, the %-sequence
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will have a D-x-limit in X. It follows from Theorem 6.1, that every power of X is
initially »-compact.

Proof of 2.8. The space X is <x-bounded, and van Douwen has shown that
X = YuZ where Y = [B(»)\Unif(x)] and Z = X\Y, and Z is x-bounded.
Under (GCH) |Y] = 2% Since X is strongly x-compact, hence TI-x%-compact,
X*" = X*" is initially %-compact by Corollary 3.3 in [22]. Thus X satisfies the
hypothesis of Lemma 6.2, and therefore every power of X is initially »-compact.

We conclude with some open problems.

ProBLEM 1. For x> w, is every product of strongly x-compact spaces initially
»-compact? This problem was first raised by R. M. Stephenson, Jr. [19, p. 317].

ProBLEM 2. For % a singular cardinal, does there exist a strongly x-compact
space which is not %-bounded?

ProBLEM 3. Answer 1.1 and 1.2 for si}lgular cardinals x.
ProBLEM 4. Can (GCH) be deleted from 2.87
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On locally expansive selfcoverings of compact
metrizable spaces

by

Aleksander Calka (Wroclaw)

Abstract. This paper is concerned with characterizing, in terms of ‘certain properties of their
compositions, the open local expansions defined on compact locally connected Hausdorff spaces.

1. Introduction. Let (3, @) be a metric space and f: M — M a continuous self-
mapping of M. We will call f a local expansion_on (M, o) [3] (cf. also [2]) if

(A) for each ze M there is a neighborhood U of z and a number Ay>1 such
that :

m o(fx),fON)Zhpe(x,y) For x,yelU.

If there exists a number A>1 such that condition (A) holds with lg=1, we
say that f is a local A-expansion on (M, g).

Now let M be a metrizable topological space and f: M — M a continuous
selfmapping of M. We will say that /'is a topological local expansion (resp. topological
local A-expansion) on M if M admits a metric ¢ compatible with the given topology
and such that f is a local expansion (resp. local A-expansion) on (M, g).

(Note‘that if M is compact then f is a local expansion on (M, ¢) iff for some
A>1 it is a local A-expansion on (M, @)).

A sequence 4,, n=0,1, ..., of subsets of a topological space M is said to
be fine if for each open covering % of M there exists an integer n such that for m>n,
each connected component. of A,, is a subset of some member of €.

It is easily shown (cf. [2] or [3]) that if M is compact, locally connected and
metrizable and £ is an open topological local expansion of M onto itself, then f is
a local homeomorphism (and therefore a selfcovering of M) and

(B) for each point z of M there exists a neighborhood U of z such that the se-
quence f"(U), n= 0,1, ..., is fine.

Since this condition does not involve the metric and has a topological character,
it is natural to ask the following question. Let M be a compact, locally connected
Hausdorff space and f: M — M a local homeomorphism of M onto itself satisfying
the condition (B). Is it possible to find a metric ¢ generating the given topology of M
such that the mapping f is a local expansion on (M, 0)? ‘
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