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On the classical Krull dimension of rings
by

0. A.S. Karamzadeh (Ahwaz)

Abstract. If X = spec(R) is the set of prime ideals of a ring R, then X with a certain topology
has derived dimension if and only if R has classical Krull dimension. Moreover the two dimensions
then differ by at most 1.

Introduction. We recall the definition of the classical Krull dimension of aring R.

Let X = spec(R) be the set of all prime ideals of R.Let speco(R) denote the set of
all maximalideals of R.Then if «>0 is an ordinal, denote by spec,(R) the set of prime’
ideals P of R such that each prime Q properly containing P belongs to specy(R)
for some f<a. Then the smallest ordinal o for which X = spec,(R) is called the
classical Krull-dimension cl. K-dim(R) of R (for more details see {1}, [4]). We study
derived dimension of X with respect to certain topologies which we define on X and
show that derived dimension of X exists if and only if cl. X-dim(R) exists and the
two dimensions differ by at most 1. We now establish some notation to be preserved
throughout the paper. If 4 is a two-sided ideal of a ring R, we let ¥(4) denote the
subset of X = spec(R) consisting of those prime ideals that contain 4, and let
D(A4) = X—V(A). Now one can easily see that the sets D(A4) satisfy the axioms for
open sets in a topological space and we call this the Z-topology on X (for more
details see [6]). Now put B, = {V(4) n D(B): 4, Bareidealsin R}, B, = {V(4): 4
is an ideal of R}, then clearly each B;, i =1, 2, can be a base for a topology on X.
The topology on X which has B, as a base is clearly stronger than the Z -topology
and we call it the SZ-topology on X and the one with B, as a base is called the
V-topology. Let us recall that in a topological space X an element x & X is called
a limit point of a subset A of X if each open set containing x contains at least one
point of A distinct from x. The set of all limit points of 4 is denoted by 4’ and is
called the derived set of A and point ae 4 is called isolated whenever ae A —A".

The «-derivative of a topological space X is defined by transfinte induction:

Xo=X X4y =X, and X, = ) X,, for a limit ordinal o.. Clearly each X, isa closed

A<

subset of X and if for an ordinal & we have X, = O, then X is called scattered, see [5].
If X is scattered and « is the smallest ordinal such that X, = @, then o is called
derived dimension of X and is denoted by d(X) = o.

o
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Rings in this paper are associative with identity.

Krause [4] shows that having classical Krull-dimension is equivalent to having
‘acc on prime ideals. Using K6nig Graph Theorem, Gordon and Robson [1] have
shown that acc on prime ideals implies acc on finite intersections of prime ideals.
We give a proof to a slight generalization of this result.

We need the following lemma.

LemMa 1. Let S be a partially ordered set with the minimum condition and
Ay, Asy ., A, be nonempty subsets of S and let T = A3 x Ay %...x A4, be ordered
such that whenever (ay, dy, ..., @)z by, by, .., b,) then a;zb; for some 1<gi<n.
Then T has the minimum condition.

1 1 1 2 0

Proof. Let (ai,da},..,a)=(a?, a3, ..., aD)z..2(af, ak, ..., d)=... be an

inifinite chain in 7. For each 1<m<n let &) be a minimal element in the set
K

{op}i=1,2,.. and put r = Max(r;, r,, ..., 1,,) then we get

kb1 ki ket 1
3 2 ""Ja" )’

kK k
(al’az, ey an) = (al a Vk,>zl‘ .

Proposition 1. If a ring R has acc on prime ideals, then it has acc on ideals I of
k . .
the form I = (\ P, where F is a finite set of noncomparable prime ideals and k; is
PeF .

a positive integer.

Proof. Let I, cl,=...cl,c... be an infinite ascending chain of ideals, each of

which is of the form I, = () P¥, where F, is a finite set of noncomparable prime
PeF,

ideals and each k; is an integer. If it happens that F, = F,, = ... = F, = ..,
where ry<r,<..<r<... is an infinite sequence, then the previous lemma shows
that the chain I, =I,,...c ], ... can not be infinite and we are through. Therefore
without loss of generality we can assume F,,;—F, # @, Vn and complete the proof
by obtaining a contradiction. We note that F;_; N F,2F; n F,for all r and i—1>r,
for if not then there exists P;e F; N F, such that P, ¢ F,_;. Hence there exists
P;_yeF; .y such that P,_,cP; and since r<i—1, there exists P, e F, such that
P,&P;_y<P;, but P, P; are both in F, and can not be comparable. This shows that

without loss of generality we can assume that F;_; N F, = F,n F,, for all r and
m—1

i—1<r. Now given any integer m>0 let P, € F,,~F,,_,, then P, ¢ (J F, for other-
i=1

wise P, € F,, for some r<m—1 and F,, N F, = F,_, n F, implies that P, & F,

hich s i . ! m=—12
which is impossible. Hence there exists P,.,&F,_, such that P,_;cP, and

m—2

P,y ¢i£)1Fi, for otherwise P,_.,€F,.; nF, for some k<m-2 implies that

P, 1€ F,,, which is impossible. Repeating this process we get P, =P,c..cP,
a challn of length 7 and each P; belong to F;. Now put F} = {P, € F, : there exists
a chain Py cPpc...cP,, where P;e F;, i = 1, ..., n}. We have already shown that

F{ # @, Vn. Moreover Fj is finite and F}2F" for m>un, therefore the chain
2 2 2 - . @
Fi2Fi=2..2F{2.. is stationary and we can choose Q, e () FY. Now for each

n=1
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nz2, let F3 = {P,eF,: there exists a chain Q,=P,=..cP,, where P;eFy,
@

i=2,..,n}, it is clear that F; # &, Vn>2 and we can choose 0, €'\ F. Hence
n=2

proceeding inductively we get a chain 0; = Q,<...c Q,c...c which is the desired
contradiction.

‘The following lemma is well-known and easy to prove.

LemMa 2. Let X = spec(R) be with the Z-topology, then the followings are
equivalent.

1. X is Noetherian (acc on open subsets).

2. Every subset of X is quasi-compact.

3. R has acc on intersections of prime ideals.

COROLLARY 1. Let a ring R have classical Krull-dimension and have only finitely
prime ideals minimal over any ideal, then every prime ideal is minimal over some
finitely generated subideal.

Proof. If 4 is an ideal in R, let P(4) denote the intersection of all prime ideals
containing 4. It is sufficient to show that P(4) = P({xg, Xz, s X,»), where
{3y, X, ens Xy is the ideal generated by some elements Xy, X3 ... x,ed. It is
clear that ¥ (4) = ﬂAV((x» and X—V(4d) = UA(X —¥((x))). Now by Prop-

XE xe

osition 1, we note that R has acc on intersections of prime ideals and therefore
Lemma 2 shows that every subset and in particular X— V(4) is quasi-compact. Thus
n

there are some elements X;,X,,..., X, € 4 such that X—V(4)= U(x- V({x))-
i=1"

Hence V(4) = F) V(<x;») implies that P(4) = P({xy, X5 vees Xad)s
i=1 .

Next we prove a stronger result.

PROPOSITION 2. Let R be a ring with cl. K-dim(R) = n and have only finitely
many prime ideals minimal over any ideal, then every prime ideal is minimal over
a subideal generated by <n elements.

Proof. Let P be a prime ideal and P = Po2Py=>...2P, be a chain of prime
ideals, then by Lemma 1.3 of [4] we have ol.K-dim(R/P,)>cl.K-dim(R/P,,_ (}> ...
...>clL.K-dim(R/P). This shows that rank(P)<cl. K-dim(R). Now if we assume
that the zero ideal is generated by the empty set, then one can proceed by induction
on k = rank(P)<n and show that P is minimal over a subideal generated by <k
elements. For k = 0 it is clear by our assumption. Let us assume it true when
rank(P)<k~1 and let rank(P) = k. Now let Py, P,, ..., P, be all minimal prime

ideals, then since k>0 we have P& |J P;. Thus there exists x, € P such that x,¢ Py, V5.
=1 .

Consider R = R/<{x1), P = P[<¢x,, where (x;) is the ideal generated by x;. Now
it is clear that rank(P)<k—1 and by the induction hypothesis P is minimal over
(R Ty, ooy T Now suppose x; =f (%), i=2,3, ..,k where f: R R is
the natural epimorphism, then it is clear that P is minimal over {Xj, Xz; .5 Xpe
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The following result must be well-known, but we give a proof for the con-
venience of the reader.

- LemMA 3. Let X be a topological space, then the followings are equivalent.
1. Every nonempty subset of X contains an isolated point.
2. There is an ordinal «>0 such that X, = &.

Proof. (1) = (2): let X, & for all ordinal a, It is clear that X, = X,—S,,
where S, is the set of all isolated. points of X, and since S, # @ we get X, X, for
each ordinal o which is impossible.

(2) = (1): Assume X, = & for some ordinal ¢>0, and let S be a nonempty
subset of X. Let p be the smallest ordinal among the ordinals <o for which
S Xy = @ Itis clear that for each « we have X, = X— (J S,, where 5, is the set

y<a

of all isolated points of X,. Now S n X}, = @ implies that S« U S,. Let y be the

<p
first ordinal among the ordinals <f such that § n S, # @. Suppose thatxe Sn S,
then we claim that x is an isolated point of S. To see this it is sufficient to show
that ScX,. But X, = X— (S, and SnS; =0, Vi<y implies that SSX,.
A<y

COROLLARY 2. Let R have classical Krull-dimension equal to o, then X = spec(R)
with either the SZ-topology or the V-topology have derived dimension and d(X)<o+1.

Proof. Let S be a nonempty subset of ¥, then since R has acc on prime ideals,
there exists 2 maximal P € § of S. We note that ¥'(P) A S = {P}. This shows that P
is an isolated point of S with respect to the F-topology on X, but clearly SZ-topology
is stronger than ¥-topology, therefore P is also-an isolated point of S with respect
to the SZ-topology. Hence d(XX) exists and to show that d(X)<a+1, it is sufficient
to prove specu(R)SﬂU Sy, where Sj is the set of all isolated points of X,, for

<a

X = specy(R) implies that X,,; = X— U X, = & We proceed by induction on o.
<a

For o= 0 we must show that specy(R)<.S,, but clearly each maximal ideal is an
isolated point of X. Let us assume that for ordinals f>u we have spec,,(R)C U Sy.

Now suppose that P e spec,(R), then P<Q implies that Q e specy(R) f01 somc
B<u, then the induction hypothesis shows that Qe s, for some y<a. Now if
P¢ )S then Pe X, = X— U S, and we claim that Pe S,. To see this we prove

y<a y<a
-that P is a maximal element in X;. So let Q2 P, then we have already shown that
(0] espec,,(R) for some f<a, therefore Q¢ X,. Thus spec,(R)s U S.
. p<a

PrOPOSITION 3. Let clk-dim(R) = « and suppose R has only finitely many
Drime. ideals minimal over any ideal, then X = spec(R) with the SZ-topology Imve
\denved dimension which is not a limit ordinal and d(X)<o+1.

‘ Proof All we have to do is to show that d(X) is not a limit ordinal. Let
ax ) =a, where o is a limit ordinal. But we have X, = ﬂ X,, and { X}, ., is a family

<of closed subsets with the finite intersection property. We claim that X, % @, which
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is a contradiction. It is sufficient to prove that X with the SZ-topology is quasi-
compact. We observe that X with the Z-topology is T, and every subset is quasi-
compact and also every nonempty irreducible closed subset has a generic point
{see [6] Corollary 9.7), therefore X with the Z-topology is spectral in the sense of [2].
Now we note that S = {V(4), D(B): 4, B are ideals of R} is an open sub-basis
for X with the SZ-topology, therefore the SZ-topology on X i$ exactly the patch
topology on X (see [2]) and by Theorem 1 of [2] it is compact.

LemMA 4. Let X = spec(R) be with the V-topology and Sc X, then an element
Pe S is an isolated point of S if and only if it is a maximal element of S.

Proof. If P& S is maximal, then ¥(P) n S = {P} shows that P is isolated. Now
suppose that P e S is isolated then there exists an open subset G such that Pe G,
G n S = {P}. But there exists ¥(4) such that P e V(A4)<G, then ¥V (4) n S = {P}.
Now we claim that P is maximal in S, for if P< Q and Q € S, then Q € ¥ (4) which
is impossible. ‘

COROLLARY 3. Let X'=

spec(R) be with the V-topology, then speca(R) = 8,
p<a

where Sy is the set of isolated points. of X;.

Proof. We proceed by induction on o. For o = 0 it is clear. Let us assume that
specy(R) = U S, for all f<a. Now let Pe |J S;, then P& Sy for some f<a. If

p<a
PesS,, then P is a maximal element of X, and so Qe X, Q2P implies that
Q¢ X, =X— U S,, which implies that Qe S, for some f<a. Thus Qel) S,
<8
= specy(R) 1mphes that P € spec,(R) and if P ¢ S, then P e S, for some f<a implies

that Pel) S, = specy(R)=spec,(R). Therefore we have | S;sspec(R). Con-
7<p p<a T

versely, let P e spec,(R), then if P ¢ U Sy we show that P e S,. To this end let Q € X,

US,,ﬂ<zx1mphesthat Q¢X,=X- S, but Pe X,

7<a

shows that P must be a mammal element in X,, ie. P€S,. Thus we have
spec,(R)s U Sy.

Bsa
COROLLARY 4. Let X = spec(R) be with the V-topology, then d(X) exists if and
only if cl.K-dim(R) exists and d(X) = cl.K-dim(R) if d(X)is a limit ordinal and
d(X) = cLK-dim(R)+1 if d(X) is not a limit ordinal.
Proof. spec,(R) :,,9 Sy and Xoyy = X—BQ Sy shows that d(X) exists if
s sa

Q=P, then 0 especy(R) =

and only if cLK-dim(R) exists. Now let d(X) =« be a limjt ordinal, then

X, =X~ U S,, =@ implies that X = U S;= U S,, spec,(R). Hence
B<a
cl. K—dxm(R)<a But by Corollary 2, we have d(X)<c1K dim(R)+1. Thus

cL.K-dim(R) = a. Now let d(X) = f+1, then we show that cl. K-dim(R) = §.
‘We note that X, = @ implies that X = U Sp = specy(R). Thus cl.X-dim R<p

and d(X)<clLK-dim(R)+1 implies that cl K- dim(R) = f.
Remark. There are commutative rings with arbitrary classical Krull-dimension,
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see [1], this and the previous result show that given any nonlimit ordinal o, there
exists a topological space with derived dimension «4-1. We also observe that
Lemma 3, Lemma 4 and Corollary 4 immediately yield the well-known fact that
asserts acc on prime ideals is equivalent to having classical Krull-dimension.

Added in proof. There exists a commutative Noetherian ring R with an arbitrary
classical Krull dimension (see [1]). Hence X = spec(R) with the V-topology is quasi-compact
(see Proposition 3). This immediately shows that given a nonlimit ordinal a, there exists
a space X such that d(X)=a.

References

[11 R. Gordon and J. C. Robson, Krull dimension, Mem. Amer. Math, Soc. 133 (1973).
[21 M. Hochstexr, Prime ideal structure in commutative rings, Trans. Amer. Math. Soc. 142 (1969),
pp. 43-60.
[31 I Kaplansky, Commutative Rings, Allyn and Bacon, Boston 1970,
[41 G. Krause, On fully left bounded left noetherian rings, J. Algebra 23 (1972), pp 88—99
[51 R.S. Pierce, Existence and uniqueness theorems for extensi of zero-di
metric spaces, Trans. Amer. Math. Soc. 148 (1970), pp. 1-21.
[6] R.C. Swan, Algebraic X-Theory, Springer-Verlag, Lecture Notes in Math. 76 (1968).

4

COLLEGE OF MATHEMATICS AND
COMPUTER SCIENCES
JUNDI-SHAPUR UNIVERSITY
Ahwaz, Iran

Accepté par la Rédaction le 3. 11. 1980

Strictly convex spheres in V-spaces
by

Raymond Freese (St. Louis, Mo.) and Grattan Murphy (Orono, Maine)

Abstract. A well known theorem of Functional Analysis states that Strict Convexity is equi~
valent to unique metric lines in a Banach space. In this paper that result is put in a more general
setting — the class of V-spaces. The class of V-spaces includes Banach spaces, as well as other
metric spaces.

Rotundity or Strict Convexity has been studied extensively in Banach spaces.
It is well known that metric lines are unique in a Banach space B if and only if B is
strictly convex [1, 4, 5, 7, 10, 14]. The list of conditions in B equivalent to strict
convexity (and therefore unique metric lines) is long. Day [7] lists six such conditions,
Bumcrot [4] gives four other conditions, Andalafte and Valentine [1] list some of”
the conditions of Day and Bumcrot as well as four others. In related result Reda [13]
proved the equivalency of algebraic and metric lines in Hilbert space and Nitka and
Wiatrowska [12] proved that in Minkowski space, both more restricted than Banach
space. Freese [9] found a number of conditions equivalent to the monotone property
in a complete, convex, externally convex metric space. He also showed that the-
monotone property was equivalent to unique metric lines in a Banach space. In
this paper it will be shown that unique metric lines and strict convexity (redefined
in purely metric terms) are equivalent in a larger class of spaces.

I

Many of the conditions mentioned above may be defined in purely metric terms.
and, hence, discussed in that more general setting.

It is not difficult to find examples of complete, convex, externally convex metric
spaces in which the concepts of strict convexity and unique metric lines are not
equivalent. Therefore the spaces of Freese’s result are too general if we wish to show:
the equivalency of unique metric lines and strict convexity. The spaces considered
here are all complete, convex, and externally convex metric spaces, however, and we-
will call those spaces line spaces. In a line space more than one metric line may con--
tain two given points.
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