Close PL involutions of 3-manifolds which are conjugate
by a small homeomorphism

by
W. Jakobsche (Warszawa)

Abstract. Let M be a closed PL 3-manifold and let g be a metric on M. It is shown that for
every PL involution f: M — M, and every &> 0 there exists an %> 0, such that if g: M -~ M is

a PL involution, 7j-close to £, then there exists a homeomorphism %: Fix( f) fit; Fix(g) which is
&-close to the inclusion idpix(ry: Fix(f) - M. Fix(f) denotes here the fixed point set of f. In the
case where f is a PL-involution of M and Fix( f) contains no components of dimension 1 it is shown
that every PL involution of M which is sufficiently close to fcan be joined with f by a PL isotopy
consisting of involutions close to f. (%)

1. Introduction. Let M be a closed PL 3-manifold and ¢ a metric on M. We
prove the following

TuEorEM (1.1). Let f: M — M be any PL involution of a closed, PL 3-mani-
fold M, i.e. f* = id. Then for every £>0 there exists an n>0 suchthat for every PL,
involution g: M — M satisfying condition: suE (Q( f(x), g(x)))<11, there exists

a homeomorphism h: Fix(f) — Fix(g) taking a fixed point set of f onto a fixed point
set of g and such that sup (o(x, h(x)))<e.

xeFix(

(1.1) is an extension of Theorem (5.1) of [6].

This easily follows from our Theorem (2.1) in Section 2, combined with The-
orem (5.1) of {6].

Another consequence of (2.1) is the following Theorem (1.2), which justifies
the title of the paper; #p (M) denotes the space of all PL homeomorphisms of M
with compact-open topology.

THEOREM (1.2). Let f+ M — M be any PL involution of a closed PL 3-manifold
M such that the fixed point set Fix(f) of f has no components of dimension 1. Then,
for every neighbourhood V of idy in #pr (M), there is a neighbourhood U of f in
Hp (M) such that for every PL involution g: M — M such that g € U there exists
a PL isotopy hy: M — M, te0,1] such that h,e V for any te[0, 1], hy = idy,
and hi'ogoh, = f. ,

Theorem (1.2) implies that the space I(M) of all PL involutions on M is locally
arcwise connected at every point fe J(M) such that Fix(f) has no components

(%) See ,,Added in proof” at the end of the paper.
1 — Fundamenta Mathematicae CXVI/2
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of dimension 1 in the following sense: for every neighbourhood U of f in I(M),
there is a neighbourhood ¥ of f in U such that for every point g € ¥ there is an
arc £: [0, 1] = U such that £(0) = f, £(1) = g. Theorem (1.2) can be contrasted
with the situation in dimension 4; by Section 3, there are PL involutions of S*,
as close as we need to the standard PL involution f on S*, with Fix(f) = S*<=S%,
which are not conjugate to f. ‘

In the whole paper we use the following mnotation, which is also used
in [6]: let M be a compact PL 3-manifold. Then we denote by dM the boundary
of M and by #p (M, K) the space of PL homeomorphisms of M onto itself which
are identity on a subset K< M.

Hor(M) = #p(M,D). By I(M) we denote the subspace of #p (M) con-
sisting of PL involutions. All the described spaces are considered with compact-
open topology. In the whole paper we reserve the terms map, isotopy, homeo-
morphism, and action for the PL map, PL homeomorphism, PL isotopy, and PL
action. .

If any map is not PL, then we call it a fopological map. If he #p (M), We
define A% feI(M) by hofoh™* = hxf. For any feI(M) we denote by Fix(f)
the fixed point set of f and by Fix'(f) the sum of all i-dimensional components
of Fix(f). We have fixed some metric ¢ on M, coincident with the topology on M.
Suppose that K is a subset of M. Then the space of functions from K to M is
a metric space with the metric gx(f, g) = suE‘ (e(f(=), g(x))}, and I(M) is a metric

XE

subspace of #p (M). For any fe I(M) the quotient space M/f is a PL space (poss-
ibly not a manifold) obtained by the identification of x and f(x) for any x e M
and the projection map, of M onto M|f, which we shall denote by p;, is PL. If K is
an f-invariant PL submanifold of M, then I(X, f) denotes a space of all involutions
g e l(M) such that g|M\K = f|M\K and I'(K,f) is a space of all involutions
g € I(K) such that there is a g’ € I(X, f) such that g'|K = g. For any space W and
any subspace T of W, we denote by Inty,7, and Cl,T the topological interior of
T in W and a closure of T in W respectively.

Finally we put FryT' = ClyT\Inty T.

The author wishes to thank prof. H. Toruficzyk for many suggestions on
improving the exposition, and to prof. H. Patkowska and referee for correcting
SOme €Irors.

2. The main theorem. Our goal is to prove the following

THEOREM (2.1). Let M be a closed 3-manifold, fe I(M) and let L, and L, be
two closed, regular f-invariant neighbourhoods of Fix'(f) in M such that L,
clntyL,, and L, n (Fix(fINFix* (f)) = B. Then, for every neighbourhood V of
idyy in #p (M) there exists a neighbourhood U of f in I(M) such that for every g € U
there is a homeomorphism hy: M - M, such that hy eV, and h|L, = idy,, and
hy xg|MN\L, = f|MN\L,. Moreover there exists an isotopy h,, t e [0, 1], joining hy
with hy = idyg, such that hye V and L, = idy,.
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Proof of (2.1). Each 3-dimensional component of Fix(f) is a 3-dimensional
PL-homology manifold, so it is a component of M, and so we can put %, = id
on it. Hence we can assume that dim(Fix(f))<2.

If we find & = h, sufficiently close to id,, then the existence of /i, automatically
follows from Lemma (3.2) of [6].

Now Theorem (2.1) can be reduced to the following proposition:

ProrosiTION (2.1.8). Let M be a closed 3-manifold, feI(M), dim(Fix(f))
<2, and let L be a compact f-invariant, 3-dimensional PL-submanifold of M, such
that Fix' (f)cnty L and (Fix(fINFix! (f)) n L = @. Then, for every neighbour-
hood V of idy in #Hp (M), there is a regular, f-invariant neighbourhood K of
Fix(fNFix*(f) in M such that KL =@, and for every component F of
Fix(f)\Fix! (f) there exists a neighbourhood Uy of f in I(Kp,f), where Ky is
a component of K containing F, such that for any g € Uy there is a homeomorphism
heV n Hp (M, MNKy) such that h+g = f.

We omit the reduction of (2.1) to (2.1.2), which can be easily done, using
Theorem (3.1) of [6]. We have only to prove (2.1.a).

Proof of (2.1.a). Let M, f and L be as in (2.2), and let ¥ be any neighbour-
hood of id,; in #p(M); then we can find a regular f-invariant neighbourhood X of
Fix(f)\NFix'(f) in M, such that K n L = & and that p(K) is a regular neighbour-
hood of p(Fix(f WFix! (f)) in M|f. Moreover, we claim that K is chosen so that
for every 0-dimensional component F of Fix(f) (such a component must be
a point) Ky is a 3-cell, so small that #p (M, M\Kp) <V, and for every 2-di-
mensional component F of Fix(f), which by [1], p. 76 and [12], p. 280 must be
a PL surface in M, K is a total space of a locally trivial PL fibre bundle gp: Kp— F,
such that every fibre g5 '(a), a € F is homeomorphic to the interval [0, 1], B(q,?l(a))
= 8Ky 0 g7 Ha), and g5 (@) n F = {a}. We fix Ky and gp having the desired
properties, for all the whole proof.

The case of 0-dimensional components of Fix(f). Now we suppose that F is
a 0-dimensional component of Fix(f), i.e. F = {a} for some point a of M. Then
Ky is a cone ¢(9Ky) over 0K with vertex a. f'|9Kp is a free involution on 0Ky = S2,
and so the quotient space p(0Kp) = (0Kp)/(f|0Ky) is homeomorphic to the
projective space P2. p;(Ky) is a regular neighbourhood of ps(@) in M[f, and so it
is a cone over p(3Kp) = P e piKp) = ¢(P?). Now, using Theorem (4.3) of [4],
we find a neighbourhood Uy of fin I(Ky, @), such that for every g € Uy, g|Ky has
a single fixed point.

Let g€ Uy be any such involution, and let o’ € Ky be a fixed point of g|Kg.
Then we can choose a regular g-invariant neighbourhood T of @’ in Kp\0Kp, such
that p,(T) is a regular neighbourhood of py(a”) homeomorphic to c(P?). K \(TN\IT)
is homeomorphic to S2x[0, 1], and 8Ky and 8L correspond to S?x {0} and
S2x {1}, respectively. By the theorem of Livesay [8], p. 582, p,(Kp\(T\OT)) is
homeomorphic to P?x [0, 1]. This implies that Kr/(g]Kp) is homeomorphic to
»
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g(Pz), and so there is a homeomorphism h': Kp/(g|Kp) — Kp/(f|Kp) which
takes p,(a’) onto p(a). But the maps

; PJEAG s KNa' — (Kr/ (9| KR)\py(@)
and

pflKF\a: Kp\a — (KF/(fl KF))\pf(a)
are the universal covering maps, and so /' lifts to a homeomorphism 2": Kg — K
such that pyo k" = I op,. Then, we have A" og = fol'", and I'|0Ky = idg,.-
So, we can take h|Ky=Ph" and hM\Ky= idyp gpe Of course

he Hp (M, MNKp)=V.

The case of 2-dimensional components of Fix(f). Then suppose, that F is
a 2-dimensional component of Fix(f WFix! (f); then F is a closed surface.

The definition of the neighbourhoods ¥’ and U,. Let ¥’ be a neighbourhood
of id,, in V. First, we find a neighbourhood U, of fin I(Kg, f), such that for every
g e U, satisfying condition: F = Fix(g|Kr), there exists an Hy € V 0 Hpr(M, MNKy)
such that H, * g = f. Let us denote by M a 3-manifold with a boundary obtained
from M by splitting M along the surface F. Then, there is a natural map q: M — M,
such that g(8M) = F, qloM: 08 — F is a double covering map, and

q|(M~051): (M85 ~ M\F
is a homeomorphism.

Note that if F is two-sided in M, then 8i is homeomorphic to two copies
of F, and if F is not two-sided, then OM is a connected double covering of F. Let
Rp = g '(Kp). Then it is easy to see that for every g & I'(Kp,f), such that F
= Fix(g) there is a unique free involution § on Ky, such that goglKs=¢qo§
and that for every homeomorphism v & Hp((M, MNK ) L F), there exists a unique
homeomorphism & € #p (M, #NKz) U 8M) such thatveg = g o Let us define
a space Z<I(Ky) as follows: g'e o/ iff there exists a g € I'(Kp,f) such that
g’ = §. Then, we define maps:

a: of = I(Kp, f)and B: #p(Rp, 0K )~ 3o (M, (M Kp) U F) as follows: for
any g' € o, a(g’) = g, where g is a unique involution in (K, /) such that Jg,= ¢,
where gg, = g|Kp, and for any v’ & Hor(Kr, ORp), B(v') = v, where v” is a unique
homeomorphism in J#p (M, (M\Kp) U F) such that 3Rp = v'. It is easy to see
that « is a homeomorphism of 7 onto a(sf)<I(Kp,f) and B is a homeomorphism
of #p(Rp, 8Rp) onto #p (M, (MNKp) v F). Then let

7= BV 2 Har (M, MUNED) U F)).

7 is an open neighbourhood of idg,, in #p(Ky, 8K;). Then we can use Theorem
(3:1) of [6] to find an open neighbourhood U of ]‘K,, in I{K;) where fx,. = f|Krp,
such that for any ge U n o = {geU: g|oKy = Jx,J0K,} there exists an h e ¥,
such that h, % g = fx,. Then a(U v &) is an open neighbourhood of f in a(s/),
and so there is an open neighbourhood Uy of f in I(Kp,f) such that U; n a(#)
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= a(U A ). This U, is the required neighbourhood, because, for every g € U;

- such that Fix(g) = F, we have gea(s) and a"*(g) € U ~ o, and so there is an

o1y € ¥ such that -1y % a7 2(g) = fi; but this implies that if Hy = B(hs-145)
€V then Hy* g = fg,..

The definition of the neighbourhoods U, and U;. Then we find a neighbourhood
U, of fin U, and §>0 such that the following condition is satisfied: if g € U,
and there is a homeomorphism hy: F, » F, where F, = Fix(g|Kp) satisfying
or (K, idp,) <8, then there exists a homeomorphism Hye V' n #p (M, MNKy)
such-that HJ|F, = h,; and Hy*ge U,. Then, clearly, Fix(Hy * (glKp) = F.

The existence of U, and § easily follows from Theorem (1) of [11].

Let U, be a neighbourhood of f|K; in I'(Ky, f) defined as follows: g € Uy
iff there exists a g’ € U, such that g'|Kr = g.

Theé definition of the neighbourhood U3, and the proef of (2.1.2). Finally, we
shall find a neighbourhood Uj of f|Kp in Uj such that for any g€ Us there
exists a homeomorphism h;: F, - F with or, (g, idg,) <8, where 6 is a number
we have chosen together with U,, and F, = Fix(g). This will complete the proof
of (2.1.a) in the case of dim(F) = 2, because then we can take

U={gel(Kp,f) = glKre Us}. _
Then, by the choice of Us, for any g € U there is a homeomorphism k;: F, - F,
with Qpﬂ(h;, idg,)<d; by the choice of 6 and U,, we can find a homeomorphism
H,e V' n #p (M, MNKy) such that g' = H,*ge U;, and Fix(g) = F. Then,
by the choice of Uy, there is a homeomorphism H,. € V"’ such that Hyx g’ = f
and HyeV'. Then f= Hy# (Hy*g) = (HyoHy) +g and Hyo Hje V if only
V' is sufficiently small. )

We have only to find Uj satisfying our requirements. We shall use the following
notation: fe I'(Kg, ), Fy = Fix(f) and if D=Kj, then fID] =D uf(D). I Tis
a subpolyhedron of a surface L, then T'is a closure in L of the set of all points of T,
having in T the neighbourhood homeomorphic to R2, ‘

To describe U; we shall need some lemmas: .

Lemma (2.2). There is a neighbourhood U' of f|Kp in I'(Kp, 1), such that for
every g e U’ the fixed point set F, = Fix(g) is a surface and the map qgp\F,: Fy— F
induces an isomorphism

(g5l Fpx: Hi(Fg,ZZ) — H{(F,Z,)
on Z,-homology for any i. In particular qp|Fy: F,— F is onto.

Proof of (2.2). The proof is analogous to the proof of (5.5) in [6]. The only
difference is that F is a surface, not a circle. This implies, that if U’ is chosen suf-
ficiently small, then, for any g € U', F,isasurface such that Hy(F,, Z,) = H{F,Z,)
(see [4], Theorem (4.3)). So, for any ge U’, F, is homeomorphic to one of two
surfaces, F' and F” which have the same Z,-homology as F. Then, instead of the
map s: S — F; used in the proof of (5.5) of [6], we consider a homeomorphism
s: F - F,, where F is this of the surfaces F’ and F” which is homeomorphic to F,.
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Then the proof goes as in [6]. To show that gz|F, is onto F, we suppose that on the
contrary it is not. Then there is a point d € F such that (g5l F,) (Fp = F\{d}. This
implies that (gp|F,)«(H2(F,, Z,)) = 0, because H,(FN\{d},Z,) = 0. But

(qFIFﬂ)*(HZ(Egv Zz)) = Hy(F,Z,) = Z,.
This is a contradiction. )

Lemma (2.3). If D is a compact, connected PL-surface in F and g eI'(Kg, f)
then g[q;‘(D)]\FH has no more than itwo components.

Proof of (2.3). Let us denote D = glgz '(D)], and D° = Intx, D. D\F, is
g-invariant, so g’ = g| D\F, is a free involution, and p,: D\F, — (D\F)/g’ is con~
nected. Actually, D is connected, SO gr YInty D) is connected, and so D° is con-
nected. This implies that D°/g’ is connected, where g = g|D°. Then from Lemma
(2.1) on page 198 in [1], applied to g it follows that p,(F, N Dy=d(p,(D%) (note that
p,(D°is a manifold). This fact and the fact that p,(Cly, D) = (D\F,)/g'> D°[g " imply
that (E\Fg)/g’is connected. But p,.is a double covering map, whence there are no
more than 2 components of D\F,.

Lemma (2.4). Let W be a compact, 3-dimensional PL submanifold of Kp and
T be a closed 2-dimensional PL submanifold of Ky, such that T is transversal to 0D,
TcKNoKp, and let Ty = T nn D. Then T, is a compact surface in D such that
8T, 8D and if T~ 1Intg, D = @ then Ty + 3. )

The proof of (2.4) is easy, and so we omit it.

LEMMA (2.5). Let A be a closed PL-disc in F and W be a 3 -dimensional PL-sub-
manifold of qr {(IntpA). Suppose that g e I'(Ky, f) is such that F, is transversal to
8(qr '(4)) and that qz|F,: Fy — F induces isomorphism on Z,-homology. Then, for
every component T of W F, we have T =@ or Tis a sphere with holes.

Proof of (2.5). First we prove that T'is orientable. Let T be the component
of g5 '(4) A F, containing T. If T were non-orientable, then T; would be a non-
orientable surface in a 3-cell g7'(4), with 8T, =dg7*(4). Such surfaces do not
exist. By the classification of surfaces every orientable compact surface is a sphere
with some holes and some handles attached. Let us suppose that, for some com-
ponent T of Wn F,, Tis a surface containing at least one handle. Then there is
a ze Hy(T, Z,) such that i,(z) # 0, where i, is a homomorphism induced on
Z,-homology by the inclusion i: T~ F,. On the other hand (qz|Fp«: H(F,, Z,)
- H,(F, Z,) is an isomorphism, and the homomorphism i: H;(4, Z,) — H(F, Zy)

_induced by the inclusion i': 4 — F is trivial, because Hy(4, Z;) = 0. q¢| T maps T
into 4, and s0 gpoi = i’ o (gF|T), thus

0= (i’ ° (‘IF]T))*(Z) = (groi)alz) = ((QF)* °e i*)(z) #0.

This is a contradiction, and so T is a sphere with holes or T = @.

LeMMA (2.6). Let A and B be the closed PL-disc in F, such that glgr *(B)]
c’IntKF(q; 1(A)), and geI'(Kp, f). Suppose that F, is transversal to g7 (0A). Then
g7 (B) n F, is contained in certain component of i n F,.
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Proof of (2.6). Suppose that on the contrary, there are poinisa, b€ g7 (B) n
n F, which are contained in distinct components T, and T}, of g7 '(4) 0 F,. g~ x(4)
is a 3-cell and a, b € Int, (g7 2(4)), because B<IntpA. This implies, that T, and T,
are compact surfaces in g "(4), such that 0T,c8(gr *(4)) for i = 1, 2. From this
and from duality it follows that each T} disconnects g7 '(4), and so g7 (ANTNT,
has at least 3 components. The fact that T, 0 Inte (g g7 l(B)]) #Q for i=1,2
implies that each of these components has a non-empty intersection with g [g7 "(B)].
So glgr Y(B)NT\T, has at least 3 components, and so glgr ‘(B)]\Fg has at least
3 components. This contradicts Lemma (2.3).

Lemma (2.7). Let R be a PL surface in Ix(31)* where nl = [—n,n]<RL.
Suppose that 8R r (Ix((31)%)) # @, ORI x0I%) # @, OR=Ix (0@BI* U ar*) and
that R intersects IxdI% transversaly. Then Ix (3IY¥\R contains at least two com-
ponents, having a non empty intersection with I 3((20)?). Consequently, if Ry and R,
satisfy the described conditions then IX (3I>\(R; U R,) contains at least three
components having a non empty intersection with Ix a(en?d).

Proof of (2.7) easily follows from the duality.

LemMaA (2.8). Let A and B be the closed PL discs in F, such that BcIntpA. Sup-
pose that gel'(Kg, f) is sufficiently close to f. Then for n=0,1 each map
S" — g7 ‘(Intz B) N F, is a homotopic to a constant in qEI(IntFA) N F,.

Proof of (2.8). Let Ao, Ay, Ay, A3, A, be the closed PL discs in F such
that 4, = 4, A, = B, and 4;,;cIntz4,. We assume that g is so close to f that

1) glar (A;+01=gr '(4) for i<3 and gs|F,;: F, = F induces isomorphism on
Z,-homology. )

For the technical reasons, we assume first, that
(2) F,is transversal to gri( U 84)).
i<4

If n =0 then (2.8) follows from (2.6). Suppose, that n = 1 and let &: S*
— g7 '(B) N F, be a PL-map, which is homotopic to a constant in g7t (4) n F,.
Let T be a component of gri(4y) N F,, containing £(SY). By (1) and (2.5) Tis
a sphere with holes, containing £(SY). £ is not homotopic to a constant in T, so
TNE(SY) has two components, T, T, such that T; n 0T # & for i=1,2. Let
R, = T; n g7 "(4,\IntzB). Then R; is a sphere with holes, whose boundary is
contained in g5 (84, L 8B) and intersects both g7 '(84,) and g7 *(8B). By .7)
g7 '(ANIntp B)NR{\R, has at least 2 components intersecting g7 '(4,\Inty4,),
hence g[gr (4\IntzA3)\NF, has more than 2 componenis (note that by (1)
glgr (4;NIntp A3)]C 4, N\Ay).
This contradicts (2.3) and so proves that if (2) is satisfied then each map &: S™
- g7i(B) o F, is homotopic to a constant in g7 (4;) " F,.
Now we consider the general case, i.e. we do not assume that (2) is satisfied.
Let &: S" — g7 ‘(Int; B) N F, be any map. By the general position theorem there
exists a PL-homeomorphism h: Ky — Kp such that A|0Kp =id and A(F) is
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transversal to g7 '( U 84;). We can choose & so close to idy that g" =hxg
satisfies the condlitiors‘t

g'lgr (i )l=gr (4 for

hE(SHeqr ' (ntpB)  and  hTlgr(A)Sgr (4).

By our previous consideration applied to g’ and to the map ¢ = h€ we infer
that hé: 5" — qF '(4y) N h(F,) is homotopic to a constant. Then &: §” = ¢z '(4) n
N F, is homotopic to a constant.

LemMA (2.9). Let N be a closed surface. Then for every open cover o of N, there
exists an open cover B of N sucki that for every closed surface M and maps §,: M — N
and £,: N — M such that £, o £,: N — N is B-close to idy, there exists a PL-homeo-
morphism h: M — N which is a-close to &, (if Bis an open cover of N, and Iy, hy:
M =N are the maps, then we say that hy and h, are - close, if for every x € M there
exists be B, with {h(x), hy(x)} <b).

Proof of (2.9). We shall use the a-approximation theorem of Chapman
and Ferry [3]..This theorem was proved in [3] for dimensions n3>5, but the proof
can be extended to the case n = 2 (see [7], Theorem. (1.2)).

Now to get (2.3), we need only to combine this theorem with Theorem (3)
of [5] and with Theorem (5.1) p. 88 of [2], which in view of compactness of M
and N and of the Jocal contractability of ANR-spaces implies that if the mapping
£, 0 &, N — N is sufficiently close to idy then it is homotopic to idy, and moreover
homotopy can be chosen to be small. Then Theorem (3) of [5] and (1,2) of [7] imply
the existence of a topological homeomorphism f’: M — N approximating &,
which by [9] p. 63 can be approximated by the PL-homeomorphism h: M — N.

i<3,

The description of U3. Now, to find the required Us we use Lemma (2.9), with
N = F and o— any cover of F, such that for aea, diama<d where J is a number
found together with U,. Let 8 be a cover of F, guaranteed by (2.9). We intend to
find U3 so small, that for any g € U3 we are able to find £,: F — Fjand &,: F, — F,
such that &, 0 &, is B-close to the identity. Let ay, a5, a3, &5 be covers of F by
the closed PL discs such that o, = f and there exist maps w;: o; = ¢;44 for i<3,
satisfying conditions: for aea;, i = 1, 3 or 4, acIntz(w(a)) and for ae oy, St?a
cIntp{w,a@)). Then we claim, that U; is so small, that for any g e Us, g satisfies
the requirements of (2.2) and of (2.8) with 4 = a, B = w(a), for any aea;, and
i=1 or 3. Then we take M = F,, ¢, = qz|F,, and we have only to construct
&t F— F,. Let © be a triangulation of F, such that for any vertex ve 70, St(v)ca
for certain a € oy, and we establish & |v to be any point of g5 (V) N F, (this set
is' # @, by (2.2) and our choice of Uj). Then, we use (2.8) with n = 0, to extend
&, to 7' in such a way, that for any I1-simplex, ¢!, éjl(crl)cq;‘(b) for a certain
bea, (b may be chosen to be w,(a) where aew, is a disc containing the star of
one of the vertices of o). Then, the image by &' of the boundary of each 2-simplex
a? of 7% is contained in gz '(St?(b)), for a certain b e ay, and so in g5 *(c), where
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¢ = wy(b) e a;. Then we use (2.8) again, with n = 1, to extend &; w0 the map
of F onto F, such that for each ¢® e 1? (6®) =gz '(d) for a certain d e «y.

Let us note that &;, £, satisfy our requirements. Actually, for x e F, &, 0 &, (x)
is B-close to x. This fact and (2.9) complete the description of U;, and so the proof
of (2.1).

3. The failure of the 4-dimensional analogue. Theorem (1.2) may be contrasted
with the situation in dimension 4. Let f be a standard orthogonal involution on S%,
such that Fix(f) is a standard unknotted S?2cS*. Then there exists a sequence f;
of PL involutions on S*, such that g5,(f,f;) — 0, and no f; is conjugate to f. f; are
constructed as follows: let K, be a sequence of f-invariant 4-cells in S*, such that
K; nFix(f) is a 2-cell in X, for every i, and that diam(K};) — 0. Then we take
FISNK; = fIS™\K;, and on K; we define f; to be a non-standard involution, as
described in [8], p. 347.

Added in proof. Since the time this paper and [6] have been written, there appeared the
“gquivariant Dehn Lemma® (W. H. Meeks 11l and S.-T. Yau, Comment. Math. Helv. 56 (1981),
pp. 225-239) and a proof of the “Smith conjecture”. These two theorems make it possible to
strengthen the result of [6] and to obtain it with much less effort. This, together with the
result of the present paper, gives the following theorem, which is an extension of both (1.1)
and (1.2):

TueOREM. Let f: M—M be any PL map of a closed PL 3-manifold M such that fP = idpy,
for a prime number p. Then, for every neighbourhood V of idy in HpL (M) there is a neigh-
bourhood U of f in HpLAM) such that, for any geU, with gP = idar there exists a PL-isotopy
kit M—>M, hy eV such that hy = idy and h* © g o by = f.
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