On classification of weakly infinite-dimensional compacta
by

Roman Pol* (Warszawa)

Abstract, A classification of weakly infinite-dimensional compacta by means of a Lusin-
Sierpitiski index in the hyperspace of the Hilbert cube is given. This classifization is applied to
answer two questions of D. W. Henderson concerning the transfinite inductive dimension Ind and
essential maps onto “transfinite cubes”. For each a< w, a countable dimensional compactum is
constructed which contains topologically all compacta with transfinite dimension not greater
| than a.

Introduction

1. Terminology and motation. In this paper we consider only separable metriz-
able spaces, and a compactum means a compact space. Our terminology concerning
analytic set theory follows [K1], and the terminology related to dimension theory
follows [A-P] and [El].

A partition L in a space X between two disjoint sets 4 and B in X is a closed
set such that X\L = Uu V, where U and V are disjoint open sets with AcU
and Bc V. .

Throughout this paper o denote the set of natural numbers, 7 the unit interval
[0, 1], I” the Hilbert cube, w® the Baire space, i.e. topologically the irrationals,
and 2° the Cantor cube {0, 1}%.

We denote by H the hyperspace of the Hilbert cube, i.e. the space of all closed
subsets of I endowed with the topology induced by the Hausdorff distance.

Given a linearly ordered set M we denote the order type of M by type M. The
symbol X = Y means that the spaces X and Y are homeomorphic.

2. Conntable-dimensional spaces and transfinite dimensions. A space X is count-
able-dimensional if X = () X, with X, zero-dimensional.
i

The transfinite dimensions ind and Ind are the ordinal-valued functions obtained
by the extension of the classical notions of the small and large inductive dimension
respectively, by transfinite induction, i.e. for example, Ind X<« if for each pair
(4, B) of closed disjoint sets in X there is a partition L in X between 4 and B such

* This paper was completed while the author was visiting the University of Washington.
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that IndL<«, o being an ordinal [H-W; p. 50], [A~P; Ch. 10, § 11, [N2; Ch. VI];
a comprehensive survey of the topic is [E2].

The transfinite dimension ind or Ind is defined for a complete space X if and
only if X is countable-dimensional, and then ind ¥<Ind X and these ordinals are
countable.

There exists a function @ which maps the set of countable ordinals w, into
itself such that for each countable-dimensional compactum X, ind X<Ind X<o
(ind X) and thus, although the exact relations between the transfinite dimensions
ind and Ind are very interesing [Lu], globally both of the functions provide es-
sentially the same classification of the family of countable-dimensional compacta.

3. Weakly infinite-dimensional compacta. A compactum & is weakly infinite~
dimensional if for each infinite sequence (Ay, By), (42, By), ... of pairs of closed
disjoint sets in X there are partitions L; in X between 4, and B, such that OLl =

[A-P; Ch. 10, § 47], [N1], [N2; Ch. VI]. We call compacta which are not weakly-
infinite dimensional strongly infinite-dimensional; strongly infinite-dimensional
compacta can also be characterized as the compacta which have an essential map
onto the Hilbert cube, see footnote ().

Hurewicz [H-W; Ch. IV, § 6 (A)] (cf. also [A; §4]) proved that countable-
dimensional compacta are weakly infinite-dimensional. There exist, however, quite
natural examples of weakly infinite-dimensional compacta which are not countable-
dimensional [P].

4. Results. In § 1 we assign in a natural way to each weakly infinite-dimensional
compactum X a countable ordinal index X which is a topological invariant. The
index can be interpreted as a Lusin-Sierpifiski index when one considers compacta
as the points in the hyperspace of the Hilbert cube. Thus the classification of the
weakly infinite-dimensional compacta by means of the index is quite regular from
the point of view of analytic set theory; we do not know how regular the classifi-
cation of the countable-dimensional compacta by means of the transfinite dimensions
is from this point of view. The index is bounded over each family of countable-
dimensional compacta with bounded transfinite dimensions. The converse is not
true: there exists A<w, such that sup{ind X: X is a countable-dimensional com-
pactum with index X<} = w;. This result is obtained by a certain kind of ap-
proximation of an arbitrary compactum by compacta which are countable disjoint
unions of finite polytopes (we call them “transfinite polytopes™), which we discuss
in § 2. In § 3 we use the index and the result we have just mentioned to answer two
questions raised by Henderson [He] concerning essential maps onto “transfinite
cubes” defined by him. It seems worthwhile to notice that, when answering one
of these questions, we prove an existence of a compactum with certain “transﬁnité
dimensional” properties using an existence of an analytic non-Borel set, and we
do not know how to do this in more explicit way. In the last paragraph, which is
independent of the rest of the paper, we construct for each {<w, a countable-
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dimensional compactum X, containing topologically all compacta S with ind S< &
(we do not know what the ordinal ind X} is). The construction is based upon a clas-
sical idea of a universal function for a given family of sets.

Generally speaking, the common idea underlying this paper is the investigation
of the collection of weakly infinite-dimensional compacta, considered as the subset
of the hyperspace of the Hilbert cube, using some classical methods and concepts
of analytic set theory in the form given by Kuratowski in Topology [K1].

§ 1. The Lusin-Sierpifiski index of a weakly infinite-dimensional compactum

1. The Brouwer-Kleene exder. We shall consider the set Fino of all nonempty
finite subsets of w with the order < inverse to the lexicographic order, ie. o<t
means that there is an new such that o n {1, ..,n~1} =7z {1,..,n—1} and
neo\t.

In the sequel we use the following well-known property of the order < [K~M;
Ch. X, § 7, Corollary 4]. ’ ’

Lemma 1.1, Given a decreasing seqitence oy >0, ... of elements of Finc, there

exists an increasing sequence j(1)<j(2)< ... of natural numbers such that for every
k there exists an m with {j(1), ..,j(k)}=o,,.

2. Essential families. We say that a family & = {(4;, B): ieJew} of pairs
of closed disjoint subsets of a compactum X is essential if for arbitrary partitions L,
in X between 4; and B, the intersection (\{L;: ieJ} is nonempty (cf. [Z; Defini-
tion 7]). Thus strongly infinite-dimensional compacta are the compacta which
have an infinite essential family.

If we assign to each pair (4;, B;) from the family &/ a continuous map f;: X— I
such that f;(4;) = 0 and f;(B;) = 1, then the diagonal map ( f});e;: X — _1’ is es-
sential if and only if the family & is essential [A-P; Ch. 3, § 5, Ch. 10, §4], [El;
Problem 1.9.A] (*).

3. The index. Let X be a compactum. We say that a sequence
(3.1) & = {(4;, B): iew}

of pairs of closed disjoint sets in X is separating if for each pair (4, B) of disjoint
closed sets in X ‘

(3.2) Acd, and BcB, for infinitely many indices i (%).
It is easy to construct a separating sequence in X considering finite sums of elements
of an arbitrary base of X.

™) A map f: X ~I' is essential, where J < w is infinite, if for each finite 6 <J the com-
position pg o f2 X -I° of the map with the projection pg: 7> I° is essential in the classical sense
[A-P], [El].

() Cf. [A-P; Ch. 10. § 7, Lemma 2 and Appendix, Lemma 3].
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Given a separating sequence & in X let us put
(3.3) M,(X) = {0 € Fino: the family {(4;, B)): i € o} is essential} ,

We shall consider the set My (X) with the order < defined in section 1.

LemMA 3.1, Let & = {(d;, B): ie o} and &' = {(4}, B): i€ w} be two sep-
arating sequences in X. Then the ordered set My(X) is similar to a subset of the ordered
set My(X), and vice versa.

Proof. Choose, using (3.2), a sequence j(1)<j(2)<.. such that 4i=d,
and BjcBjy,. If o€ My(X) then j(o) € My (X), for, if Lyy is a partition in X
between A and By then this is also a partition between 4; and B; and hence
N{Ljn: iec} # B, since ¢ My(X). The map o — j(s) is thus an order-pre-
serving embedding of My.(X) into Mg(X). The symmetric argument proves the
converse.

LeMMA 3.2. A compactum X is weakly infinite-dimensional if and only if for
some (equivalently — for each) separating sequence & in X the set Myu(X) is well-
ordered.

Proof. Let & be a separating sequence (3.1). Assume that X is strongly in-
finite-dimensional and let {(E;, F}): i € 0} be an infinite essential family in X. By
(3.2) one can choose numbers j(i)<j(2)<... such that E;cA;;, and F;cByq.
Then a; = {j(1), ..., j({)} € Mp(X) and o3>0, ..., i.e. Mu(X) is not well-ordered.

Conversely, assume that there exist o, & My(X) such that 0y >~03>... and
let j()<j(2)<... be a sequence such as in Lemma 1.1. The infinite family
{(4jay, Bjy): i€ w} is then essential. Indeed, given partitions L, in X between
Ajs and By and an arbitrary k € o one can find an m such that {j(1), ..., j(k)}
<o, € My(X) and hence () {Lju: i<k} # @, ie. N {Ljn: i€} # & by com-
pactness of X.

The statement in parenthesis follows from Lemma 3.1,

The two lemmas justify the following definition.

DermNiTION 3.3. Let X be a weakly infinite-dimensional compactum. Then
the order type of the set M(X) is a countable ordinal which is independent of

the choice of the separating sequence & in X, i.e. this is a topological invariant.
We define

(3.4) index X = type M (X)

and call index X the Lusin-Sierpiriski index of X (3).

Remark 3.4. The index can be also defined by means of maps into I°. Given
a continuous map f: X — I? of a compactum X put M(f) = {0 € Finw: p,of is
essential}, where p,: I® — I° is the projection (cf. footnote (*)); then index X

= sup{type M(f): f* X — I}, provided that X is weakly infinite-dimensional.
This easily follows by a remark in section 2.

(®) Thé terminology is explained in the next section.
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We finish this section with a simple observation which yields monotonicity
of index.

LemMma 3.5. Let & = {(4;, B): ic o} be a separating sequence in a compactum
Y and let X be a compact set in Y. Then &' = {(4; n X, B, X): ie w} is
a separating sequence in X and MyAX) = {0 € My (X): the family {4;n X, B, 0 X):
i€ o} is essential in X}, In particular, if Y is weakly infinite-dimensional then index X'
< index Y.

Proof. This follows immediately from a lemma on extension of partitions
[A-P; Ch.10, 3, Lemma 1], [El; Lemma 1.2.9].

4. The index as a Lusin-Sierpinski index. Let us fix a separating sequence &
= {(4;, B): i€ w} in the Hilbert cube. For every o e Finw let us put

W, = {XeH: the family {(4;n X, B, X): icc} is essential},
H being the hyperspace of I°.
The sets W, are closed, for if X ¢ W, then there are partitions L, in 7° between
4; and B, such that X is disjoint from L="1){L;: ie o} (cf. [El; Lemma 1.2.9])
and the set {de H: 4 N L = @} is a neighbourhood of X disjoint from W,.
Thus (cf. sec. 1)
W= {W,: oeFino,<}

is a closed Lusin sieve in the hyperspace H.
For each compactum Xe H let us put

M(X) = {seFinw: Xe W,}

and let us recall [K1; § 3, XV] that the set L(W¥) sifted by the sieve W is defined
by the formula

(XeL(W) = (M(X) is not well-ordered by <)

and also, that the Lusin-Sierpifski index of an X ¢ L(W) with respect to the sieve
W is the order type of the set M(X).

Now, it is clear by Lemma 3.5 and Definition 3.3 that L(W) is exactly the
set of strongly infinite-dimensional compacta contained in I and if X is a weakly
infinite-dimensional compactum in I* then the Lusin-Sierpifiski index of X with
respect to the sieve W coincides with the topological invariant index X (*).

5. Families of compacta with bounded index. In this section we give a few
corollaries to the following two basic properties of the Lusin-Sierpifiski index
[K1; §39, Theorem 4 and Corollary 5a]:

(A) For every a<w, the set of all points whose Lusin-Sierpifiski index is not
greater than o is analytic (in fact Borel).

R 1

4 .
() We show in the sequel that the set L(J¥) is non-Borel, or equivalently, that the index is
unbounded (see sec. 2 in § 2).
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(B) The Lusin-Sierpifiski index is bounded over every analytic set disjoint
from the set sifted by the sieve. ‘

TreoreM 5.1. Given a family E of weakly infinite-dimensional compacta, there
exists a weakly infinite-dimensional compactum containing topologically each member
of E if and only if sup{index X: Xe E}<o;.

This follows from the monotonicity of the index (Lemma 3.5), the property (A)
of the Lusin~Sierpiﬁski index, and the following lemma.

LeMMaA 5.2. Let EcH. There exists then a weakly infinite-dimensional com-~
pactum E containing topologically each member of E if and only if there exists an
analytic set A< H containing E and consisting of weakly infinite-dimensional compacta.

Proof. Assume that the compacturn E exists and let 4 = {Xe H: X can be
embedded in E}. The set 4 is analytic, for, if € = C(I®, I°) is the space of all
continuous maps from I” into itself endowed with the compact-open topology,
then A = projection {(X,f)eHx%: f(X)=E and f|X is an injection}, where
we assume that E- is embedded into 1°; cf. [K1; §44].

Conversely, assume that the analytic set 4 exists and let &: 0® — A be
a continuous surjection of the irrationals onto 4. Let G={(t,x): xe @(1)}. The
projection @: G - o is a closed map whose fibers n~i(t) = &(t) are weakly in-
finite-dimensional compacta and the range is zero-dimensional; therefore G is
weakly infinite-dimensional [Le]. Since G is closed in w®x I®, this is a complete
space, and hence there exists a compactification E of G with countable-dimensional
remainder ENG (°). The space E is the compactum we are looking for, see [A-P,
Ch. 10, § 5, Theorem 21].

THEOREM 5.3. For each a<w,; we have

_sup{index X: ind X<a} <, ®.

The theorem follows from the next lemma and the property (B) of the Lusin—
Sierpinski index (one can also use Lemma 5.2 instead of this property).

Lemma 5.4 (cf. [K1; § 45, IV Theorem 4]). For each a<cw,; the set I,
={XeH: indX<a} and I, = {Xe H: Tnd X<a} are analytic. :

Proof. We shall check this only for I,; the case of I, is similar, and even
simpler. The proof is by transfinite induction on «; we refer the reader to [K1;
§43] for some -details we omit.

There is nothing to prove if o = —1; assume. that for f<a the sets I; are
analytic. Let & = {(4;, B)): ie »} be a separating sequence in I”. At first let us
check that the set M = {(4, B,L)e HxHxH: L is a partition in 1” between A4

(%) This is a well-known fact following easily from a classical theorem of Kuratowski [K2;
Théoréme 2]; cf. also [E2; 4.15]. In the case of our “graph” G one can construct the compactifi-
cation E in a particularly simple way such that in addition & extends to a continuous map 7 E~C
with zero-dimensional range and 7~%(z) is finite-dimensional for ¢ ¢ w® (cf. sec. 3 in § 2).

(°) Cf. Theorem 3.2 in § 2. '
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and B} is an F,-set. Indeed, if (4, B, L) ¢ M then either L N (4 LU B) # & (and
this formula describes a closed set) or there is a continuum in I* disjoint from L
which intersects both sets 4 and B (and this formula describes an open set). This
observation and the inductive assumption yield the analycity of the set

Ahiz...fn= {(XaLln maLl,.): (Ai’BhLi)EM and XﬁLiG U !ﬁ for i= fl,...,in},
B<a

and hence the set
n n
4y =U{di,n 4= U4, Be N B}
i=1 i=1
is analytic for every ie w. It remains to notice that I, = () projection 4,.
. i

THEOREM 5.5. If D is an upper semicontinuous decomposition of a compactum
X into weakly infinite-dimensional compacta then

sup{index4: A e D}<w, .

Proof. One can assume that XTI and then D is an analytic set in H [K1;
§43], and hence the assertion follows from the property (B) of the Lusin-Sier-
pinski index.

6. Remarks and questions. R. D, Mauldin has kindly pointed out to the author
that the' transfinite inductive dimensions can be viewed as special cases of the
notion of monotone inductive operators investigated in [C-M]. Let us consider
for example the transfinite dimension Ind. Let (cf. the proof of Lemma 5.4) &
= {(4,, B)): i € w} be a separating sequence in I” and let L; be the set of all parti-
tions in J* between 4; and B; (L, is a G,-set in H). Let us define a monotone in-
inductive analytic operator I' over the hyperspace H (see [C-M; (1.5)]) assuming
for AcH

I'(4) = {XeH: there exist L,e L; for i =1,2,... such that XnLedlud,

and let I'* be the «th iteration of I' (ie. I'*i(d)=TI(I(4) and I *(4)
= | {I'(4): a<A} for limit ordinals).

Then I**'({@}) = {XeH: Tnd X<a-1} and the closure I*'({}) of the
operator I' [C~M; sec. 1] is the set of all countable-dimensional compacta in H.

We do not know how regular from the point of view of analytic set theory
the operator I' is. For example: is the analytic set {X e H: Ind X<a} always a Borel
set? If < this is the case [K1; § 45, IV Theorem 4]. Is the set I'*({@}) a C4-set
in 1?7 One can show that this is a PCA-sct, using the fact that the subspace
of I consisting of the points which have only finitely many rational coordinates
is universal for the class of countable-dimensional spaces [N2, Theorem IV.5],
or alternatively, using the general results from [C-M]. And finally, does Ind have
the property (B) of the Lusin-Sierpiiski index formulated in sec. 5?

The last question can also be formulated in the following way (see the proof
of Lemma 5.2 and Theorem 5.5):

3 ~ Fundamenta Mathematicae CXVI/3
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QUESTION 6.1. Assume that D is an upper semicontinuous decomposition of
a compactum X into countable-dimensional compacta. Is it true that sup {Ind 4:
Ae Di<w,? )

Yet another formulation of this question is given in sec. 2, § 4.

§ 2. Transfinite polytopes

1. A theorem of W. Hurewicz. The line of reasoning in this paragraph is
based upon the following lemma, which is a reformulation of a theorem of Hu-
rewicz [Hu] in the spirit of Kuratowski and Szpilrajn [K~S].

Lemma 1.1. Let p: K — L be a continuous surjection of the compactum K onto
the compactum L, let A< H be an analytic set and let Q be a dense-in-itself count-
able subset of L (") such that each compactum contained in p~*(Q) can be embedded
into some member of A. Then there exists a t € L\Q such that the compactum p~*(t)
can be embedded into some Ae A.

Proof. Let K and L be hyperspaces of the compactum K and L réspectively.
It is a theorem of Hurewicz [K1; § 43, VII, Corollary 3] that the subset of L

1.n Q={XeL: XcQ}
On the other hand (see the proof of Lemma 5.2 in § 1), the subset of K

is not analytic .

B = {XeK: X embeds in some Ae A} is analytic,

and hence, also the subset of L (cf. [K1; §43])
12 C={XeL: p~i(X)eB}

The assumption about p~'(Q) implies that Q= C and thus (1.1) and (1.2) together

yield an existence of an X'e C with X\Q # @. Now, each e X\Q has the re-
quired property.

is analytic .

2. The Yu. M. Smirnov’s compacta. Smirnov [S], [A-P; Ch. 10, § 1], [E2]
defined compacta Sy, S5, ..., S, ..., a<w;, by transfinite induction in. the follow~
ing way:

(21) } Sl =I3 Sa.+1 =SaXI:
(22) if o is a limit ordinal then S, is the one-point compactification of the
free union @ S.
p<a
Smirnov proved that Ind.S, = «; the reasoning in the proof of Lemma 2.2 in § 3

shows also that index S, >«. Notice that each compactum S, is a countable disjoint
union of finite-dimensional cubes "

In the sequel we need the following universal property of Smirnov’s compacta.

() By virtue of a generalization of the Hurewicz’s theorem due to Christensen [Ch], it is
enough to assume that Q is not a Gs-set in L.
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Lemma 2.1. The class of compacta which have at most countably many components
and each of which is finite-dimensional coincides with the class of compacta which
can be embedded into some Smirnov’s compactum.

Proof. Given a countable compactum C, let y(C) be the ordinal « such that
the ath derived set C® of C is finite, and let C, be the class of compacta X which
admit a continuous map p: X — C with finite-dimensional fibres onto a count-
able compactum C with y (C)<a. Clearly, it is enough to check that for each a<wy
there is ¢ («) <, such that each X e C, can be embedded into Syqy. We shall verify
this by induction. )

By the classical embedding theorem we can put ¢(0) = w. Assume that the
required ¢ (p) is defined for all f<a, let X& C, and let p: X — C be a map such
as in the definition of C,. Let C = Cy=C;>... be open-and-closed sets such that
N C=C9 and let X;=p (CACisy), Xo=p '(C*®). Since X;eCy, for

! .
some f;<«, there is an embedding f;: X; —» Sy, Let f be the map of X into the
one-point compactification of the free union @ Sypy which coincides with f; on
i

each X; and which takes X, to the point at infinity. By (2.2) one can assume that
the range of f is contained in S, where £ is the least ordinal greater than any of
¢(B). Now, again by the classical embedding theorem, there exists an embedding
g: X, — I", and let i: X — I" be a continuous extension of g. The diagonal map
(fr9): X~ SexI" = Sgy, is then an embedding and hence one can take ¢ (x)
= sup{p(B): f<a}+20.

TueoreM 2.2. If a complete space X contains edch Smirnov’s compactum S,
topologically, then X contains the Hilbert cube topologically.

In fact, we shall prove a somewhat more general fact (%) _

THEOREM 2.2'. Let A<H be an analytic set. If for each Smirnov's compactum Sa
there exists an A, € A containing S, topologically, then there exists an Ae A which
contains the Hilbert cube topologically.

Proof. Put J = {0} U [, 1]=T and let p be the mapping of K=J° onto
L = 2° defined by the formula

‘ 0 ifx=0,
p(Ge)) = (v where  y,= {1 B,

Let Q = {(y)eL: y; =0 for all but finitely many i}. Then
(2.3) if te Q, then p~H(1) = I" for some n,
@4) if teINg, then p7H1) = I*

() To derive Theorem 2.2 from Theorem 2.2” assume that X < I @andput A= {de H: A= X}
3


GUEST


178 R. Pol

If C<Q is a compactum then the components of the compactum p~HC) are the-

fibers p~1(¢), for te C, and hence by (2.3) and Lemma 2.1 it follows that p~YC)
embeds into some compactum S, and hence, by the assumption, into some A4, € 4.
Lemma 1.1 yields thus an existence of a t € L\Q such that the fiber p~1(z) embeds
into some 4 € A and this completes the proof by (2.4).

Remark 2.3. (a) Theorem 2.1 can be considered as a generalization of the
well-known (and easy to prove) fact that each G;-set containing the subspace of
the Hilbert cube consisting of the points with all but finitely many coordinates
equal to zero, contains the Hilbert cube topologically [A-P; Ch. 10, § 71, [E2].

(b) Theorem 2.2 implies that there is no universal space in the class of all
weakly infinite-dimensional compacta; cf. Smirnov [S] where the compacta S,
were used in a proof that there is no universal space in the class of countable-di-
mensional compacta.

(c) Theorem 2.2 yields also the following corollary:

Let X be a complete space such that the cone over each o-compact subset
of X has a continuous injection into X; then X contains the Hilbert cube topo-
logically.

Indeed, the assumption allows one to embed in X, step by step, all Smirnov’s
compacta.

3. Transfinite polytopes. We shall call a compactum X a transfinite polytope
if X is a disjoint union of at most countably many finite polytopes. In other words,
a transfinite polytope is a compactum which has at most countably many com-
ponents and each of which is a finite polytope.

In particular, each Smirnov’s compactum is a transfinite polytope and each
transfinite polytope embeds into some Smirnov’s compactum by Lemma 2.1.

Now, we shall describe a certain kind of approximation of an arbitrary com-~
pactum by transfinite polytopes which we use in the proof of Theorem 3.2, a main
result of this section.

Let us fix an enumeration ¢, ¢,, ... of the subset Q of the Cantor cube 2%
consisting of the points all but finitely many of whose coordinates are equal to zero,

Throughout this section X denotes a compactum and f;: X — W, are continu-
ous 1/i-maps (ie. diamf;'(y)<1/i for ye W,) onto finite polyhedra W,.

We denote by X(f;,f,, ...) the compactum obtained from the product 22 x X
by attaching to each compactum {g;} x X the polyhedron W; by the map f;. More

precisely, we consider in the compactum 2°xX the decomposition into the .

singletons {(z, x)}, where 7 ¢ O, and into the sets {g;} xf;i *(»), where y € W,. This
is an upper semicontinuous decomposition and the quotient space is the com-
pactum X(fi,f5, ...). .

Assigning to the equivalence class of the point (¢, x) the point ¢ one defines
a_ continuous “projection”

@) P XSS ) - 20
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such that (cf. (2.3) and (2.4)

G2 Pg) = W, for geQ,
(3.3) 0] = X for te2™NQ.

Let
(3.4) Q = {Cc=Q: Cis a compactum} .
The objects we are interested in are the transfinite polytopes
(3.5) X(Cy=pYC), where CeQ.

ProrosITION 3.1. The space X is countable-dimensional if and only if
A fyoSps ) = sup{ind X(C): CeQ}<w,. The same is true for Ind and one can
also replace “countable-dimensional” by “weakly infinite-dimensional” and “ind” by
“index” in this statement.

Proof. If X is countable-dimensional then so is X(fi,fs,...) and then
Mfi Loy )<SIndX(f1,f5,...). To prove the converse, put K = X(fi,f2,..-),
L=2% A={deH: indd<i(fy,/2,..)} and apply Lemma 1.1, using (3.2),
(3.3) and Lemma 5.4 in §1.

If X is weakly infinite-dimensional then so is X(f},fs, ...) (by the properties
of the map p defined in (3.1) and a theorem in [Le]) and hence A(fi,f>,...)
< index X(fy,/2, ), since the index is monotone (Lemma 3.5 in § 1). To prove
the converse one can repeat the argument for ind, because the set {4 € H: index 4
</} is analytic (see sec. 4 in §1).

Tueorem 3.2. There exists a family T of transfinite polytopes such that

sup{indexT: Te T} <sup{indT: TeT} = o,.

Proof. Let X be a weakly infinite-dimensional compactum which is not count-
able-dimensional [P] and let

3.6) T={X(C): Ceg},

where Q is defined by (3.4) and X(C) by (3.5). The family T' has the required pro-
perties by Proposition 3.1.

Remark 3.3. (a) In the proof of Theorem 3.2 we used a compactum X
which is weakly infinite-dimensional but not countable-dimensional to produce
the family T. Conversely, given such a family T' one can construct a compactum
X with these properties using Theorem 5.1 in § 1. It seems interesting (but also
difficult) to obtain the family T in Theorem 3.2 in a more explicit way; cf. Remark
2.4 in § 3.

(b) Theorem 3.2 and Theorem 5.1 in § 1 yield an existence of a weakly in-
finite-dimensional compactum containing compact subspaces with arbitrarily
large transfinite dimensions. (one can take for this purpose the compactum
X(fy>fa, ...) considered in the proof of Theorem 3.2).
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ExaMPLE 3.4. (a) Let X be a continvum which is countable-dimensional but
not finitely-dimensional (for example, let X be the continuum H, defined in sec, 1
§3) and let us consider the family of transfinite polytopes X(C) defined by (3.5).
Then sup{Ind X(C): CeQ}<w, and sup{indexX(C): CeQ}<w;, by Propo-
sition 3.1 but there is no a<w, such that all compacta X(C) can be embedded
into the Smirnov’s compactum S,-compare with Lemma 2.1.

Indeed, if there were such an « then the reasoning in the proof of Proposition 3
with A = {4 € H: A embeds into S,} would lead us to the conclusion that X embeds
into S,, which is false. '

(b) Let X = KxKx .. be the countable product of the pseudo-arc [KI;
§ 48, X]. The compactum X does not contain the Hilbert cube topologically and
for every i = 1,2, ... there is a 1/i-map fi: X — I' of X onto the i-dimensional
cube. Let, as in (a), the transfinite polytopes X(C) be defined by (3.5). The compo-
nents of each X(C) are finite-dimensional cubes (see (3.2)) and the transfinite di-
mensions and the index are unbounded over the family {X(C): Ce @} (by Propo-
sition 3.1, since X is strongly infinite-dimensional). However, the compactum
X(fysf2>-.) which contains all members of this. family does not contain the
Hilbert cube topologically; this is a contrast to Theorem 2.2.

§ 3. On two questions of D. W. Henderson

1. The D W. Henderson’s compacta. Henderson [He] defined AR -compacta
H, H,, ..., ., a<w;, and their boundaries 0H, by transfinite induction in
the followmg way (cf. sec. 2 in §2).

Let Hy =1, 0H, =0l ={0,1},p, = {0} and assume that for f<a the
compacta Hp, their boundaries dH, and the points p, € dH) are defined. If « = f+1
then we let Hy,; = HyxI, 0Hy,y = (8Hyx1) U (Hyxal), and pgiy = (pg, py)-
If « is limit, let K}, be the union of Hj and a half-open arc4, such that 4; N H;
= {py} = (the end point of A,). Define H, to be the one-point compactification
of the free union @ K, 0H, = H,\ U (H,,\HH,,) and let p, be the compactifying

B<a
point. Henderson called a continuous map fr X = H, essential if cach continuous
extension over X of the restriction f]f ~*(0H,) maps X onto H,.In the case where

o = i<w, H; is the i-dimensional cube, 8H, is its boundary and the notion of -

essential maps coincides with the classical one [A-P], [E1].

It was shown in [He] that if a countable-dimensional compactum X admits
an essential map onto H, then IndH>a.

2. Results. The theorem below answers affirmatively the second question raised
by Henderson in [He; p. 168].

THEOREM 2.1. 4 compactum which admits for every a<w, an essential map
onto the Hendersow’s compactum H, is strongly infinite-dimensional.

This result follows immediately from the following lemn'n which we prove

in the next section.
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LemmA 2.2. If a weakly infinite-dimensional compactum X admits an essentzal
map onto H, then index X>o.

The next theorem answers negatively the first question formulated by Hen-
derson in [He; p. 168].

TueoreM 2.3. There exists a countable-dimensional compactum X such that
IndX = o but X does not admit any essential map onto the Henderson's com-
pactum H,, o« being an arbitrary countable ordinal.

Proof. Let T'be the family of transfinite polytopes described in Theorem 3.2
in §2 and let A = sup{indexT: Te T}. Then any X e T with IndX = a>A has
the required property by Lemma 2.2.

Remark 2.4. (a) The proof of Theorem 2.3 is based on an existence of the
family T which, in fact, we derived from an existence of an analytic set which is
non-Borel (cf. the proof of the Hurewicz’s theorem given in [K1; § 43, VII]). In
effect, we have only a vague idea how the compactum X looks and we have no infor-
mation on the least o for which such a compactum exists. As was pointed out in
Remark 3.3 (2) in § 1, a more constructive method would be of interest.

(b) By virtue of Theorem 2.3 one can ask the following natural extension
of the Henderson’s question: does there exist for each ¢ <, an AR -compactum B,
and its subcompactum 0B, such that, with the definition of essential maps
i X - B, analogous to that in sec. 1, a countable-dimensional compactum X
admits an essential map onto B, if and only if Ind X>a.

We also do not know the situation if one replaces Ind by index in the Hen-
derson’s question.

3. Proof of Lemma 2.2. We shall define for each a<®; by transfinite induction
a sequence of pairs of closed disjoint sets in H,

(3.1) (43, BY), (43, By),
(3.2) a set C, of closures of some components of H,\OH,,

and for each Ce C, a homeomorphism

(3.3) hgr €= 1" such that  ho(C n 8H,) = aI'"®,
in such a way that if we put

(3.4) M, = {o e Finw: there is Ce C, such that the pairs
(helds ~ C), he(BF n €)) are distinct opposite
faces of the cube I"© for ieal,

then we have
(3.5) type M, >a

(recall, that we consider Fine with the order introduced in sec. 1 in § 1).
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Observe, that M, is well-ordered, since for a separating sequence & = {(X;, ¥}):
iew} in H, with X,; = 4, and Y,, = B; we have M,=My(X) and the com-
pactum H, is weakly infinite-dimensional (see sec. 3 in §1).

The construction is evident for & = 1. Assume that the objects are defined
for an o and put (cf. the definition of H,,, in sec. 1):

Coiy = {CxI: CeC} and  howy = hexidy,
A7 = Hx {0}, BYTT = H,x{1},
AGY = 4%xT, Bl =BixI, i=1,2,..

Let us check that type M, =a+1, where M, is defined by (3.4). ‘

For every o e M, let o* = {i+1:ie o} L {1} and M} = {¢*: ¢ & M,}. Obsecrve,
that o* e M, ., (see (3.4)) and that the injection ¢ — ¢* preserves the order, and
hence type M = type M, >, by the inductive assumption (see (3.5)). Now, = = {1}
is an element of M, greater than each of the elements of M} and therefore type
M, 1 =type MF+1za+1, as required.

Assume now that « is a limit ordinal and that the construction is performed
for each f<a. To make the ath step we need only enumerate in an appropriate
way the objects we have constructed. Let us split @ into disjoint infinite sets Ny,
for f<o let us fix for each f§ an order-preserving enumeration Jp: @ = Ny and let
us put (47, BY) = (Af;r(i), Bj’ﬁ—t(,-)) for ie Ny, and C, = |J) Cj (cf. the definition

<

[
of H, in sec. 1). Then M, contains for each f<a the set {j(¢): o My} similax
to M, and hence type M,>sup{type M;: f<o}=e

Having completed the construction of the objects (3.1)~(3.5), we are now in
a position to prove the lemma. :

Let f: X' —~ H, be an essential map of the weakly infinite-dimensional com-
pactum X and let & = {(4;, B)): iew} be a separating sequence in X (see sec. 3
in § 1). By (3.5) it is enough to find an order-preserving injection of M, into M,(X)
(see (3.3) in § 1). Let us choose (see (3.2) in § 1) a sequence J(1)<j(2)<... of natural
numbers such that (see (3.1))

(3.6) f-I(A?)CAj(i) and fﬁi(Bi)C‘Bj(n-

Since the correspondence ¢ — j(o) is an order-preserving injection we have only
to verify that

3.7 Jj(o)e My(X), whenever oeM,.

If 0 € M, then there exists a Ce C, such as in (3.4). Now, Henderson [He; Propo-
sition 3] has shown that f is also an essential map when restricted to the set ¥
=f7HC) and 50 is the map g = hoof|Y: ¥ — I" (see (3.3)). By the choice of
the set C, the pairs (f"(4fn C), f~UBY n C)), where ieo, are the inverse
images by g of distinct pairs of the opposite faces of the cube I"©, Hence they
form an essential family in the space Y, since g is essential. It follows by (3.6) that
the family {(d;q), By,): i€ o} is essential which completes the proof of (3.7).
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§ 4. Universal functions for the families of compacta
with transfinite dimension <o

1. Results.

THEOREM 1.1. For each a<w, there exists a continuous function P,: 0° - H
of the irrationals into the hyperspace of the Hilbert cube such that:

() if XeH and ind X<o then X = ®t) for some te 0,

(i) ind G, = a, where G, = {(t,x): xe P ()} cw®xI°.

THEOREM 1.2. For each a<w, there exists a continuous function ®.: w, — H
such that:

() if XeH and Ind X<« then X = &(t) for some t € wy,

(i) If CaGy = {(t,x): x e ®,(1)} is a compactum then Ind C<a.

Since each of the complete spaces G, and G, has a countable-dimensional
compactification X, and X; respectively (see footnote (%)), we also have the follow-
ing corollary.

COROLLARY 1.3. For each a<wy there exist countable-dimensional compacta X,
and X, such that X, contains topologically all compacta S with indS<o and X,
contdins topologically all compacta S with IndS<o.

‘We do not know the least possible transfinite dimension ind X, and Ind X, of
the compacta X, and X described in Corollary 1.3.

2. Remarks and questions. Given a continuous map ¥: «o” — H let us put
Gy = {(t,x): xe¥Y({)}.

It is a reformulation of Question 6.1 whether always sup {Ind¥?(¢): t € 0} <, ?

QuEsTION 2.1. Assume that Ind ¥ (1)<« for every ¢ € wy. Does the space G(P)
need to be countable-dimensional? (See: Added in proof).

Remark 2.2. There exists a map ¥ such that G('V) is not countable-dimensional.
In fact, one can show that:

there exists an open map g: Z — C of a compact space Z onto the Cantor
set C such that each fiber g~*(¢) is countable-dimensional but Z is not countable-
dimensional.

Indeed, there exists a compact space X and a continuous map f: X — C onto
the Cantor set such that cach fiber £ ~Y(f) is countable-dimensional but X is not
countable-dimensional [P; Comment B], and one can adopt easily a construction
of Michael and Stone [M--S; Proof of Theorem 1.1] to define a compact space
Zo X with dim(ZN\X) = 0 and an open extension g: Z — C of the map f (cf. also
[E1; Problem 1.12, G]). Now, given g as above one can take ¥(f) = g~ (), since
¥ is continuous and G(¥) is homeomorphic with Z.

We do not know whether the map ¥ provides a counterexample to Question 2.1
or whether the construction can be modified to produce such a counterexample.

Remark 2.3, One can define for each ¢<w, a map ¥ = ¥, such that ¥,(?)
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is finite-dimensional for each 7 but Ind G(¥,)>«. Indeed, let C, be the space of the
components of the Smirnov’s compactum S,/ (see §2 sec. 1). The quotient
map n: S, = C, is open and hence the map y.: C,— H defined by the formula

Y!(1) = n~1(¢) is continuous. One can assume that C, cw® and then, if we put
Y, = W, or,r: 0 - C,being a retraction, the function ¥, has the desired property,
because G(¥,) n (C, ><I“’) S and IndS,>a. "

3. Proof. We shall prove only the first theorem; the second one can be proved
in a similar way with some obvious modifications.

The proof is by transfinite induction on a. For o = —1 we put ¢_,(t) = &
and let us assume that we have defined for every <o a continuous map ®;: @~ H
satisfying the conditions (i) and (i) in Theorem '1.1. The main step in the construc-
tion of &, is the proof of the following statement which is a little bit weaker than
we need (compare the conditions (i) in this lemma and in Theorem 1.1).

LemMA 3.1. There is a continuous function ®: ©® — H such that:

() if Xe H and ind X<« then X <D(t) for some e @®,

(i) indG = o, where G = {(t,x): xe D (1)} cw® %1%

Proof. Let p;: HI — I, be the projection of the Hilbert cube onto the ith
axis and let

[€3)) c=p7N0),  Fy=pit).

Let us split w into disjoint infinite sets Ny, Ny, ..., Ny, ...
the set of all X'e H satisfying the following conditions:

, for <o and let E be

(3.2)  if xe X\F, Fc X being closed, then x € E; and F<F; for some ie w,

(3.3) if je Nj then there exists'a partition L in I* between E; and F; such that
ind(X n L)<KB.

We shall verify that

(3.4) E is an analytic set,

(3.5) if XeE then ind X<a,

(3.6) if Kis a compactum with ind K<« then K is homeomorphic to some X ¢ E.

The assertion (3.4) follows from the observation that {XeH: X satisfies (3.2)}
="H\ () projection {(X, x, F): x¢ F=X and either x ¢ £, or FF} and that,
i

in notation of Lemma 5.4 in § 1, {Xe H: X satisfes (3.3)} = () () 131"0]6011101’1

A<wiaN,

{(X,L): (E;, F;,,L)e M and X nLely}, see proof of Lemma 54 in § 1.

The assertion (3.5) is obvious.

To prove the last assertion (3.6) let us fix in 2 compactum 'K with ind K<a
a separating sequence {(4;, B): ie w}, see (3.1) in § 1. Let o’ be the set of all
i€ w such that there is a partition L in K between 4; and B; with 'indL = f<a.
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Let B(i) be the smallest such f§ for i e w'. Let ¢: @' — o be an injection such that

oi)e N,,(,) and let, for cvery ie ', fit K- I be a continuous map such that

A; =f7*0) and B; = f7*(1). The diagonal map f= (f)iew maps the com-

pactum K onto the subspace X = f(K) of the product IT 7,¢ which we identify
iew’

with the subspace of the Hilbert cube [ 7; consisting of the points (x;) all whose

iew

coordinates x; with 7 ¢ ¢ (w’) are zero. Let us verify that X e E. For every x e KN\F,
Fe K being closed, there is an i e o' such that x e 4; and FcB;, and we have then
Jx)yefdy = X Eyyy and J(F)<f(B) = X  Fyy. Hence (3.2) holds and f is
a homeomorphism onto X. To check (3.3), let j = @(i)e N, (if j¢ p(w’) then
F;n X = & and we bave nothing to do) and let L’ be a partition in X between
A; and B; such that indL'<B(i) = ff. The partition f(L') in X between X NE;
and X n Fy (scc above) can be extended to a partition L in I between E; and F;,
and since ind(X N L) = indf(L) = indL’ = f, we are done.
Let us consider now the space S of all sequences

(37) (Xv Y—lzz-l’YO:Z()s Yl,Zl,..., t—lato,t;L, r--)EﬂXEX e X% 0% %

satysfying the following three conditions:

(38) .Xek,
(39) Y,vZ;=1I° EcV, FcZ, (EUF)n(Y,nZ)=0

(3.10) if ie Ny, then X Y, N Z; = §yt), for f<a.
[ [

Since the set E is analytic and the maps &, are continuous, it is routine to check
that the set S is analytic, cf. [KI; § 43]. Thus there exists a continuous parametri-
zation of the set S by irrationals

(B1) s 0(X (), Yeoi(s)s Z1(5), Yols), Zo(s), Yi(5), Z4(8), s 2
We shall verify that the function we are looking for is
3.12) P(s) = X(s).

The property (i) follows from (3.6) and the fact that $(w®) = E which is
a consequence of the inductive assumption about @,
Thus, it remains to show that

—1(3)9 to(S), t1(3), )

(3.13) indG = ,  where G = {(s,x): xeX()}.
At first Iet us show that
(B.14) ifie N/, then there exists a partition L in @® xI® = T between o® x E; = C;

and o®x F, = D, such that ind(G n L)<p.

“For this purpose fix an i € N, and put

(3.15) Y={0sx):xeY)}, and Z={(x): xeZ(}
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Both sets ¥ and Z are closed subsets of T such that (see B9 YuZ=T,Ccy,
D,cZ, (C;uD)n(YnZ)=@andhence L=YNnZ is a partition in T" between
C; and D;. To check that ind(G n T)<p observe that by (3.10)-(3.12) we have

(3.16) G AL ={(s,x): xe®)},

and therefore, having in mind the properties of ®;, we need only the following
simple fact: !

SUBLEMMA 3.2. Let Mcw®xI® be a closed set, let t: ©° = & be a contimious
map, and let N = {(s, x): (t(s), x) € M}. Then ind M < ind M.

This can be easily verified by induction on ind M, and so (3.14) follows.

Let us show how one obtains (3.13) from (3.14). Let Fcw®x I be a closed
set, and let p = (5, @) € G\F. Since X(s) € E there is by (3.2) an i e w such that
aeE; and ({s}x X(s)) n F=F;, and let L be a partition such as in (3.14). Then
for a sufficiently small open-and-closed neighbourhood ¥ of s the set L n (V'x1?)
is 4 partition in ©®xJ* separating the point p from the set F. This completes the
proof of Lemma 3.1.

‘We shall show now how one can modify the function ¢ in Lemma 3.1 to
construct the function &, we are looking for.

Let J = [—1,2] and let I' be the space of all autohomeomorphisms of the
cube J? endowed with the compact-open topology. Since the space I' is complete
there is a continuous surjection y: o® — I'. Let us put

(3.16) (s, 1) = p(s)(P(r)), where (s5,1)€ w”x0”
Notice that
(3.17) if Xe H and ind X<a then X = ¥(s, 1) for some (s, ) € 0% 0®.

Indeed, by Lemma 3.1(i) there is # € ®»® such that X = @ (1), and since both com-
op

pacta X and &(¢) are contained in the “pseudointerior” (—1, 2)°® of the cube J
there is (see [B-P; Lemma 1.3, p. 150]) an. autohomeomorphism 4 € I" such that
X = h(®(1)) and hence X = ¥(s, t), where y(s) = h.

Let us verify that

(3.18) indG(¥Y) =« where G(¥) = {(s, 1, x):xe ¥(s, 1)} c®x 0® x I°.

This follows immediately from the following easy fact:

SuBLEMMA 3.3. Assume that M<cw® x1° is a closed set and let M = {(s, t, x):
t, v(®) " (x)) € M}. Then ind M<ind M.

We shall prove this assertion by transfinite induction on ind M. The case ind M
= —1 is evident. Assume that we have verified the assertion for all f<a, and let
indM = o. Let p = (u,v,d) e M\F, Fe{ being closed. Let us put H=Fn
A {(u, )} x I and let A(s, t, %) = (¢, y(s)"*(x)). The map 1: M — M is continu-
ous and it is injective with respect to the variable x. Thus A(p) ¢ 2(H) and hence
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there exists a partition L in M between A(p) and the compact set A(H) such that
indL<a. The set L= A7*(L) = {(s, 7, %): (t,7(s)"*(x)) e L} is a partition in i
between p and H, and by the inductive assumption ind L<indL <« Since the
set M is closed in the product w®xw®xI® there exists an open-and-closed
neighbourhood U of the point (v, t) in ©®x »® such that L A (UxI®) is a parti-
tion in M between p and F and this ends the proof.

Now, to complete the proof of Theorem 1.1 it is enough to modify the func-
tion ¥ slightly in the following way. Let us put 4 = Y~Y(H) and let 7: 0® x 0? » 4
be a retraction onto the closed set A. Since one can identify the space w®xw®
with @®, it is easy to see that the function ¢, = ¥ o r has the required properties
(cf. (3.17), (3.18) and Sublemma 3.2). .

Remark 3.4. The idea of the proof has points in common with the idea of
the proof of a factorization theorem of Pasynkov given in [A-P; Appendix]
(although formally, the subjects seem far). The idea of continuous parametrization
of families of compact sets in the construction of special sets goes back to Mazur-
kiewicz [M].

Added in proof. 1. P. Borst solved independently the first question of Henderson [He]
constructing a space X with Ind X == w+-1 and without any essential map onto Hy.4, and
J. Dijkstra modificd Borst’s construction to obtain a compactum with these properties; see
J. Nagata, Topies in dimension theory, Proc. Fifth Prague Top., Symp. 1981, Berlin 1982,
Theorem 2. Notice that in Theorem 2.3 in § 3 the gap between Ind X and a for which X has
no essential map onto H, can be arbitrarily large.

2. Question 2.1 in § 4 has a negative answer; in fact the map ¥ considered in Remark
2.2 § 4 provides a counterexample, see Proc. Fifth Prague Top. Symp. 1981, p. 556,

3. One can prove that if D is an upper semicontinuous decomposition of a compactum
X into compacta which are countable unions of finite-dimensional compacta, then sup{Ind4:
AeD}<wy; cf. Question 6.1 in § 1.
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Spaces defined by topological games, IT *

by
Rastislav Telghrsky (Carbondale, TI1.)

Abstract. The paper reports some results on the game G(K, X) introduced in [7]. The main
results: 1, The space favorable for Player [ is the union of countably many K-scattered subsets.
2. Reduction theorems for actions of Player 1. 3. Covering characterization of the spaces favorable
for Player II. 4. Indeterminacy of the game in ZFC.

The main object of this work is the topological game G (K, X), so the present
paper is a continuation of [7]. Some of the results included here were announced
earlier in [8] and [9]. The game G(K, X) was used recently for proving general
sum theorems for the dimension dim by the author and Y. Yajima [10] and for
the dimension Ind by Y. Yajima [12]. Furthermore, a general product theorem
for paracompact spaces involving that game was established by Y. Yajima in [13].

Section | contains the following: if Player J has a winning strategy in G(K, X),
then X is the union of countably many K-scattered subsets. In sections 2 and 3
there are introduced auxiliary games G*(K, X) and G*(K, X) in order to prove
reduction theorems concerning the actions of Player 7. Section 4 introduces a con-
venient equivalent form of the game G(K, X), denoted by G'(K, X). A modification
of that game involving G, sets and thus denoted by G°(K, X) is studied in section 5.
The dual game G*(K, X) to the game G'(K, X) is introduced in section 6; it pro-
vides, as a by-product, a covering characterization of spaces favorable for Player II.
Finally, in section 7, the indeterminacy of G(K, X) in ZFC is established.

For the topological background and undefined notions we refer to R. En-
gelking's monograph [1]. Each space considered here is assumed to be completely
regular. N denotes the set of positive integers. 2% denotes the family of closed sub-
sets of the space X. K denotes a class of spaces such that (i) X contains all singletons,
and (ii) K is invariant with respect to closed subspaces, i.e., X e K implies 2¥< K.
1, F, C and D denote the classes of all singletons, finite'spaces, compact spaces,
and discrete spaces respectively. DK, LK and SK denote the classes of spaces being
free unions of spaces from K, locally K, and K-scattered, respectively. Inspite of
the notation used in [7], I(K, X) (II(K, X)) denotes the following statement:
Player I (Player II, resp.) has a winning strategy in G (K, X). For the modifications

* This paper was completed during the author’s sabbatical year 197980 from the Institute
of Mathematics, Wroclaw Technical University, Wroclaw, Poland.
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