

Extension of group-valued set functions defined on lattices

by

Geoffrey Fox (Montréal, Qu.) and Pedro Morales (Sherbrooke, Qu.)

Abstract. The extension theorem of Sion for a group-valued function on a ring is generalized to extension theorems for a group-valued function on a lattice.

1. Introduction. We explain the minimal terminology necessary to state, in more general setting, the result of [2] which will be the basis for the generalization of the Sion extension theorem, presented in section 2.

The term lattice refers to a lattice $\mathscr L$ of subsets of a fixed set T such that $\varnothing \in \mathscr L$. Let λ map $\mathscr L$ into an abelian group G: it is said to be strongly additive if $\lambda(\varnothing) = 0$ and $\lambda(E \cup F) + \lambda(E \cap F) = \lambda(E) + \lambda(F)$ for all $E, F \in \mathscr L$. We will use without explicit mention the following result of Pettis ([8, p. 189], [6, p. 327]): "Every strongly additive set function $\lambda \colon \mathscr L \to G$ extends uniquely to an additive set function on the ring $\mathscr R(\mathscr L)$ generated by $\mathscr L$ ". This Pettis extension will be denoted by the same symbol λ .

In the rest of the paper, G is assumed to be a complete Hausdorff abelian topological group. It is well known that the topology of G can be generated by a family P of continuous invariant pseudo-metrics on G [4, p. 82]. For $p \in P$ we put $|x|_p = p(x, 0)$, $x \in G$. Then $|x|_p = 0 \Leftrightarrow x = 0$, $|-x|_p = |x|_p$ and $|x+y|_p \leqslant |x|_p + |y|_p$. Henceforth we write $|\cdot|$ for an arbitrary $|\cdot|_p$, $p \in P$.

The term function refers to a set function λ mapping a lattice $\mathcal{D}(\lambda)$ into G. We say that λ is σ -additive $(\delta$ -additive) if, for every increasing (decreasing) sequence (L_n) in $\mathcal{D}(\lambda)$ with $\lim_{n \to \infty} L_n \in \mathcal{D}(\lambda)$, we have $\lambda(L_n) \to \lambda(\lim_n L_n)$. If λ is σ -ad-

ditive and δ -additive we say that λ is (σ, δ) -additive. If for every monotone sequence (L_n) in $\mathcal{D}(\lambda)$, $(\lambda(L_n))$ converges, we say that λ is monotonely convergent.

Let λ be a function of domain $\mathscr{L} = \mathscr{D}(\lambda)$ and let $E \subseteq T$. The class $\{L \in \mathscr{L} : L \subseteq E\}$ is non-empty and directed by \supseteq ; it defines the net $(\lambda(L))_{L \subseteq E, L \in \mathscr{L}}$. Similarly, if the class $\{L \in \mathscr{L} : L \supseteq E\}$ is non-empty, it is directed by \subseteq and defines the net $(\lambda(L))_{L \supseteq E, L \in \mathscr{L}}$.

Let λ , μ be functions; we say that (a) λ is μ -lower regular if, for every $E \in \mathcal{D}(\lambda)$, $\lim_{L \subseteq E, L \in \mathcal{D}(\mu)} \mu(L) = \lambda(E)$; (b) λ is μ -upper regular if, for every $E \in \mathcal{D}(\lambda)$, the class $\{L \in \mathcal{D}(\mu): L \supseteq E\}$ is non-empty and $\lim_{L \supseteq E, L \in \mathcal{D}(\mu)} \mu(L) = \lambda(E)$.

Suppose that λ is strongly additive, (σ, δ) -additive and monotonely convergent. From Lemma 2.4 (Lemma 2.5) and Lemma 2.6 of [2], it follows that the function $\lambda_{\sigma}(E) = \lim_{L \subseteq E, L \in \mathcal{Z}} \lambda(L), \ E \in \mathcal{L}_{\sigma} \ (\lambda_{\delta}(E) = \lim_{L \supseteq E, L \in \mathcal{Z}} \lambda(L), \ E \in \mathcal{L}_{\delta})$ is well defined and is strongly additive, monotonely convergent and σ -additive (δ -additive).

If a lattice $\mathscr L$ is closed under countable unions and countable intersections we say that $\mathscr L$ is a (σ, δ) -lattice.

Taking into account the generalization of Kranz [5], the Theorem 2.10 of [2, p. 104] can be stated:

- 1.1. THEOREM. Let λ be a function such that $\mathcal{D}(\lambda) = \mathcal{L}$. If λ is strongly additive and (σ, δ) -additive, then λ extends uniquely to a strongly additive (σ, δ) -additive function on the (σ, δ) -lattice generated by $\mathcal L$ if and only if
 - (a) λ is monotonely convergent,
 - (b) λ_{σ} is λ_{δ} -lower regular or (equivalently) λ_{δ} is λ_{σ} -upper regular.

In section 3 we prove the σ -additivity of the Pettis extension of a strongly additive function λ , under hypotheses related to tightness. We also study the existence of a unique σ -additive extension of λ on the σ -ring generated by $\mathcal{D}(\lambda)$. This last part of the paper is motivated by the work of Lipecki [7].

If $\mathscr L$ is a lattice, a set $L \in \mathscr L$ may be called an $\mathscr L$ -set; a sequence in $\mathscr L$ may be called an $\mathscr L$ -sequence. The symbol $\exp(T)$ denotes the set of all subsets of T.

- 2. Lattice extension. We will need the following generalization of Lemma 2.3 of [2, p. 100]:
 - 2.1. Lemma. Let λ be a function and let μ be a strongly additive function:
- (a) If λ is μ -lower regular, then for every decreasing $\mathcal{D}(\lambda)$ -sequence $\{E_n\}$ and every $\varepsilon > 0$, there is a decreasing $\mathcal{D}(\mu)$ -sequence $\{F_n\}$ such that $F_n \subseteq E_n$ and $|\mu(L) \lambda(E_n)| < \varepsilon$ whenever $L \in \mathcal{D}(\mu)$ and $F_n \subseteq L \subseteq E_n$.
- (b) If λ is μ -upper regular, then for every increasing $\mathcal{D}(\lambda)$ -sequence $\{E_n\}$ and every $\varepsilon > 0$, there is an increasing $\mathcal{D}(\mu)$ -sequence $\{F_n\}$ such that $F_n \supseteq E_n$ and $|\mu(L) \lambda(E_n)| < \varepsilon$ whenever $L \in \mathcal{D}(\mu)$ and $F_n \supseteq L \supseteq E_n$.

Proof. (a) We note the identity for any finite $\exp(T)$ -sequence $\{A_k\}_1^n$, n>1:

(i)
$$A_n - \bigcap_{k=1}^{n} A_k = \bigcup_{k=1}^{n-1} [\{A_n \cap \bigcap_{i=1}^{k-1} A_i\} - \{A_n \cap \bigcap_{i=1}^{n} A_i\}] \text{ where } \bigcap_{i=1}^{n} A_i = T \text{ for } k = 1.$$

We note also the following property of μ :

(ii) Let $E \in \exp(T)$, $\varepsilon > 0$: If F is a $\mathscr{D}(\mu)$ -set contained in E such that $F \subseteq F' \subseteq E$, $F' \in \mathscr{D}(\mu)$ imply $|\mu(F') - \mu(F)| < \varepsilon$, then $A, B \subseteq E, A - B \subseteq E - F$ and $A, B \in \mathscr{D}(\mu)$ imply $|\mu(A - B)| < 2\varepsilon$.

In fact,

$$\begin{split} |\mu(A-B)| &= |\mu(A \cup B \cup F) - \mu(B \cup F)| \leqslant |\mu(A \cup B \cup F) - \mu(F)| + \\ &+ |\mu(F) - \mu(B \cup F) < \varepsilon + \varepsilon \,. \end{split}$$

By the lower regularity there is a $\mathscr{D}(\mu)$ -sequence $\{B_n\}_1^{\infty}$ such that $B_n \subseteq E_n$ and $|\mu(F) - \lambda(E_n)|$, $|\mu(F) - \mu(B_n)| < \varepsilon/2^{n+2}$ whenever $B_n \subseteq F \subseteq E_n$ and $F \in \mathscr{D}(\mu)$. Setting

 $F_n = \bigcap_{i=1}^n B_i$, n = 1, 2, ..., we have the decreasing $\mathscr{D}(\mu)$ -sequence $\{F_n\}$ such that $F_n \subseteq E_n$. It remains to show that $F_n \subseteq L \subseteq E_n$, $L \in \mathscr{D}(\mu)$ imply $|\mu(L) - \lambda(E_n)| < \varepsilon$. This is clear for n = 1 so we suppose n > 1. Since

$$|\mu(L)-\lambda(E_n)| \leq |\lambda(E_n)-\mu(B_n\cup L)| + |\mu(B_n\cup L)-\mu(L)| < \frac{\varepsilon}{2^{n+2}} + |\mu(B_n-L)|$$

it will suffice to show that $|\mu(B_n-L)| < \frac{1}{2}\varepsilon$.

By (i) we have

$$B_{n}-L = (L \cup B_{n}) - (L \cup F_{n}) = (L \cup B_{n}) - \bigcap_{k=1}^{n} (L \cup B_{k})$$

$$= \bigcup_{k=1}^{n-1} [\{(L \cup B_{n}) \cap \bigcap_{i=1}^{k-1} (L \cup B_{i})\} - \{(L \cup B_{n}) \cap \bigcap_{i=1}^{k} (L \cup B_{i})\}].$$

The kth term of this partition is a difference, contained in $E_k - B_k$, of $\mathcal{D}(\mu)$ -sets contained in E_k , so by (ii),

$$|\mu[\{(L \cup B_n) \cap \bigcap_{i=1}^{k-1} (L \cup B_i)\} - \{(L \cup B_n) \cap \bigcap_{i=1}^{k} (L \cup B_i)\}]| < \frac{\varepsilon}{2^{k+1}}$$

and therefore $|\mu(B_n-L)| < \frac{1}{2}\varepsilon$.

(b) We note the identity for any finite $\exp(T)$ -sequence $\{A_k\}_{1}^{n}$, n>1:

$$(iii) \bigcup_{k=1}^{n} A_k - A_n = \bigcup_{k=1}^{n-1} \left(\bigcup_{i=k}^{n} A_i - \bigcup_{i=k+1}^{n} A_i \right).$$

We note also the following property of μ :

(iv) Let $E \in \exp(T)$, $\varepsilon > 0$: If F is a $\mathscr{D}(\mu)$ -set containing E such that $F \supseteq F' \supseteq E$, $F' \in \mathscr{D}(\mu)$ imply $|\mu(F') - \mu(F)| < \varepsilon$, then $A, B \supseteq E, A - B \subseteq F - E$ and $A, B \in \mathscr{D}(\mu)$ imply $|\mu(A - B)| < 2\varepsilon$. In fact,

$$\begin{split} |\mu(A-B)| &= |\mu(A\cap F) - \mu(A\cap B\cap F)| \leqslant |\mu(A\cap F) - \mu(F)| + \\ &+ |\mu(F) - \mu(A\cap B\cap F)| < 2\varepsilon \,. \end{split}$$

By the upper regularity there is a $\mathscr{D}(\mu)$ -sequence $\{B_n\}$ such that $B_n \supseteq E_n$ and $|\mu(F) - \lambda(E_n)|$, $|\mu(F) - \mu(B_n)| < \varepsilon/2^{n+2}$ whenever $B_n \supseteq F \supseteq E_n$ and $F \in \mathscr{D}(\mu)$. Setting $F_n = \bigcup_{i=1}^n B_i$, n=1,2,..., we have the increasing $\mathscr{D}(\mu)$ -sequence $\{F_n\}$ such that $F_n \supseteq E_n$. It remains to show that $F_n \supseteq L \supseteq E_n$, $L \in \mathscr{D}(\mu)$ imply $|\mu(L) - \mu(E_n)| < \varepsilon$. We may suppose n > 1. Since

$$|\mu(L) - \lambda(E_n)| \le |\mu(L) - \mu(L \cap B_n)| + |\mu(L \cap B_n) - \lambda(E_n)| < |\mu(L - B_n)| + \frac{\varepsilon}{2^{n+2}}$$

G. Fox and P. Morales

it will suffice to show that $|\mu(L-B_n)| < \frac{1}{2}\varepsilon$. By (iii),

$$L-B_n = (L \cap F_n) - (L \cap B_n) = \bigcup_{k=1}^n (L \cap B_i) - (L \cap B_n)$$
$$= \bigcup_{k=1}^{n-1} \bigcup_{i=k}^n (L \cap B_i) - \bigcup_{i=k+1}^n (L \cap B_i)].$$

The required conclusion will follow as in (a), using (iv), if we show that, for $1 \le k < n$.

$$x \in \bigcup_{i=1}^{n} (L \cap B_i) - \bigcup_{i=k+1}^{n} (L \cap B_i)$$
 implies $x \in B_k - E_k$.

We have $x \in L \cap B_k$. If we suppose that $x \in E_k$, then $x \in L \cap B_i$ for $k < i \le n$, a contradiction.

We call a function v continuous if, whenever (E_n) , (F_n) are decreasing, increasing $\mathcal{D}(v)$ -sequences, respectively, such that $\lim E_n \subseteq \lim F_n$, we have

$$\lim \left[\nu(E_n) - \nu(E_n \cap F_n)\right] = 0.$$

Specializing each sequence, in turn, to an appropriate constant sequence, we see that a continuous function is (σ, δ) -additive.

In the rest of this section, $\lambda\colon \mathscr{L}\to G$ is a strongly additive monotonely convergent continuous function whose domain is a lattice $\mathscr{D}(\lambda)=\mathscr{L}$.

2.2. Lemma. λ_{σ} is continuous.

Proof. Let (E_n) , (F_n) be decreasing, increasing \mathscr{L}_{σ} -sequences, respectively, such that $\lim_{E_n} \subseteq \lim_{n} F_n$. It must be shown that $\lambda_{\sigma}(E_n) - \lambda_{\sigma}(E_n \cap F_n) \to 0$. Let $\varepsilon > 0$. By Lemma 2.1 there is a decreasing \mathscr{L} -sequence (L_n) such that $L_n \subseteq E_n$ and $L_n \subseteq L \subseteq E_n$, $L \in \mathscr{L}$ imply $|\lambda(L) - \lambda_{\sigma}(E_n)| < \varepsilon$. Also, $L_n \subseteq H \subseteq E_n$, $H \in \mathscr{L}_{\sigma}$ imply $|\lambda_{\sigma}(H) - \lambda_{\sigma}(E_n)| < 2\varepsilon$ (for we may choose $L \in \mathscr{L}$ such that $L_n \subseteq L \subseteq H$ and $|\lambda(L) - \lambda_{\sigma}(H)| < \varepsilon$). Now $E_n \cap F_n$, $L_n \cap F_n$ are \mathscr{L}_{σ} -sets contained in E_n such that $E_n \cap F_n - L_n \cap F_n \subseteq F_n - L_n$, so, since λ_{σ} is strongly additive, $|\lambda_{\sigma}(E_n \cap F_n) - \lambda_{\sigma}(L_n \cap F_n)| < 4\varepsilon$, and therefore $|[\lambda_{\sigma}(E_n) - \lambda_{\sigma}(E_n \cap F_n)] - [\lambda(L_n) - \lambda_{\sigma}(L_n \cap F_n)]| < 5\varepsilon$. Since $|\cdot|$ and $\varepsilon > 0$ are arbitrary, this reduces the proof to showing that $\lambda(L_n) - \lambda_{\sigma}(L_n \cap F_n) \to 0$.

Let $\varepsilon>0$. For $n=1,2,\ldots$ there is an increasing $\mathscr L$ -sequence $(F_{n,m})_{m=1}^\infty$ converging to F_n , such that $F_{n,1} \subseteq L \subseteq F_n$, $L \in \mathscr L$ imply $|\lambda(L) - \lambda_\sigma(F_n)| < \varepsilon$. Let $K_m = \bigcup_{m=1}^m F_{n,m}$; then $K_m \subseteq F_m$, $K_m \in \mathscr L$ and $K_m \upharpoonright \lim_n F_n$. Also $K_m \subseteq K \subseteq F_m$, $H \in \mathscr L_\sigma$ imply $|\lambda_\sigma(H) - \lambda_\sigma(F_m)| < 2\varepsilon$. Since $L_n \cap F_n$, $L_n \cap K_n$ are $\mathscr L_\sigma$ -sets contained in F_n such that $L_n \cap F_n - L_n \cap K_n \subseteq F_n - K_n$, $|\lambda_\sigma(L_n \cap F_n) - \lambda(L_n \cap K_n)| < 4\varepsilon$. This reduces the proof to showing that $\lambda(L_n) - \lambda(L_n \cap K_n) \to 0$. But this follows from the continuity of λ_n because $\lim_n L_n \subseteq \lim_n K_n$.

2.3. LEMMA. λ_{δ} is λ_{σ} -upper regular.

Proof. Let $E\in \mathscr{L}_{\delta}$. By Lemma 2.5 of [2], $\mu(E)=\lim_{H\supseteq E,\,H\in\mathscr{L}_{\sigma}}\lambda_{\sigma}(H)$ exists.

It must be shown that $\mu(E) = \lambda_{\delta}(E)$. Let $\varepsilon > 0$. There exists $K \in \mathscr{L}_{\sigma}$ such that $E \subseteq K$ and $E \subseteq H \subseteq K$, $H \in \mathscr{L}_{\sigma}$ imply $|\lambda_{\sigma}(H) - \mu(E)| < \varepsilon$. Let (L_n) be a decreasing \mathscr{L} -sequence converging to E. Then

$$\begin{split} |\mu(E) - \lambda(L_n)| &\leq |\mu(E) - \lambda_\sigma(K)| + |\lambda_\sigma(K) - \lambda(L_n)| \\ &< \varepsilon + |\lambda_\sigma(K - L_n)| + |\lambda_\sigma(L_n - K)| \\ &= \varepsilon + |\lambda_\sigma(K) - \lambda_\sigma(K \cap L_n)| + |\lambda_\sigma(L_n \cup K) - \lambda_\sigma(K)| \\ &< \varepsilon + 2\varepsilon + |\lambda_\sigma(L_n \cup K) - \lambda_\sigma(K)| \;. \end{split}$$

Since λ_{σ} is δ -additive (Lemma 2.2), $|\lambda_{\sigma}(L_n \cup K) - \lambda_{\sigma}(K)| \to 0$ so $|\mu(E) - \lambda(L_n)| < 4\varepsilon$ if n is great enough. Hence $\lambda(L_n) \to \mu(E)$. On the other hand, $\lambda(L_n) \to \lambda_{\delta}(E)$, so $\mu(E) = \lambda_{\delta}(E)$.

Lemma 2.3, with Theorem 1.1, yields the following result:

2.4. THEOREM. A strongly additive monotonely convergent continuous function λ on a lattice \mathcal{L} of subsets of a set T, taking values in G, extends uniquely to a strongly additive (σ, δ) -additive function on the (σ, δ) -lattice generated by \mathcal{L} .

Let λ be an additive function on a ring $\mathscr R$ of subsets of T, taking values in G. If, for every disjoint sequence $\{R_n\}$, in $\mathscr R$, $\lambda(R_n) \to 0$, λ is said to be s-bounded [9, p. 654]. We note that if λ is s-bounded then, for every increasing sequence $\{R_n\}$ in $\mathscr R$, $\{\lambda(R_n)\}$ converges. In fact, if this were not so, there would exist an increasing sequence $\{R_n\}$ in $\mathscr R$, $\varepsilon > 0$, a continuous quasi-norm $|\cdot|$ on G and a strictly increasing sequence of positive integers $p_1 < q_1 < p_2 < q_2 \ldots$ such that $|\lambda(R_{q_n} - R_{p_n})| \ge \varepsilon$. This contradicts the s-boundedness, because $\{R_{q_n} - R_{p_n}\}$ is a disjoint sequence in $\mathscr R$.

The following corollary is the extension theorem of Sion [10, p. 92] as improved by Drewnowski [1, p. 441]:

2.5. COROLLARY. An s-bounded σ -additive function λ on a ring \mathcal{R} of subsets of T, taking values in G, extends uniquely to a σ -additive function on the σ -ring $\sigma(\mathcal{R})$ generated by \mathcal{R} .

Proof. Since λ is σ -additive, it is strongly additive and continuous. Since λ is s-bounded, $\{\lambda(L_n)\}$ converges for every increasing \mathscr{R} -sequence. If $\{L_n\}$ is a decreasing \mathscr{R} -sequence, $\{\lambda(L_1-L_n)\}$ converges and $\lambda(L_1-L_n)=\lambda(L_1)-\lambda(L_n)$, so $\{\lambda(L_n)\}$ converges. Hence λ is monotonely convergent. The corollary follows from the theorem because the (σ, δ) -lattice generated by \mathscr{R} is $\sigma(\mathscr{R})$.

3. Ring extension. The Carathéodory process of measure extensions was applied by Sion [10] to a group-valued function on a ring. The purpose of this section is to extend the application to a group-valued function on a lattice.

If $\mathscr L$ denotes a lattice (of subsets of T), $\mathscr H(\mathscr L) = \{ H \in \exp(T) \colon H \subseteq L \text{ for some } L \in \mathscr L \}$ is the smallest hereditary ring containing $\mathscr L$. If we wish to indicate

that an at most countable union $\bigcup_n E_n$ is disjoint we write it $E_1 + E_2 + ...$ or $\sum_n E_n$ and refer to it as a *sum*. For $E \in \exp(T)$, E^c denotes the complement of E in T. In his Lemma 2.2, Sion [10, p. 91] abstracts the essential step of the Carathé-

odory process. The following lemma is the version needed here:

3.1. Lemma. If $\mu: \mathcal{R} \to G$ is a function on a ring \mathcal{R} , such that $\mu(\emptyset) = 0$, then $M(\mu) = \{M \in \mathcal{R}: \mu(R) = \mu(R \cap M) + \mu(R - M) \text{ for all } R \in \mathcal{R}\}$ is a subring of \mathcal{R} and the restriction $\mu(M(\mu))$, of μ to $M(\mu)$, is additive.

Proof. Let M_1 , $M_2 \in M(\mu)$ and let $R \in \mathcal{R}$. Then

 $\mu(R) = \mu(R \cap M_1 \cap M_2) + \mu(R \cap M_1 \cap M_2^c) + \mu(R \cap M_1^c \cap M_2) + \mu(R \cap M_1^c \cap M_2^c).$

Replacing R by $R \cap (M_1 \cup M_2)$,

$$\mu[R \cap (M_1 \cup M_2)] = \mu(R \cap M_1 \cap M_2) + \mu(R \cap M_1 \cap M_2^c) + \mu(R \cap M_1^c \cap M_2).$$

Therefore $\mu(R) = \mu[R \cap (M_1 \cup M_2)] + \mu[R - (M_1 \cup M_2)]$, proving that $M_1 \cup M_2 \in M(\mu)$. Replacing R by $R - (M_1 - M_2) = R \cap (M_1^c \cup M_2)$ in the first equation, we conclude similarly that $M_1 - M_2 \in M(\mu)$, proving that $M(\mu)$ is a ring. Supposing that $M_1 \cap M_2 = \emptyset$ and setting $R = M_1 + M_2$ in the second equation, we have $\mu(M_1 + M_2) = \mu(M_1) + \mu(M_2)$, proving the additivity of $\mu|M(\mu)$.

Let $\lambda\colon \mathscr{L}\to G$ be a function on a lattice \mathscr{L} . If, for every increasing (decreasing) \mathscr{L} -sequence (L_n) , $(\lambda(L_n))$ converges we say that λ is increasingly convergent (decreasingly convergent). Weakening the first condition, we say that λ is locally increasingly convergent if, for every increasing \mathscr{L} -sequence (L_n) such that $L_n\subseteq L$ (n=1,2,...) for some $L\in\mathscr{L}$, $(\lambda(L_n))$ converges. Thus, λ is monotonely convergent if and only if it is increasingly convergent and decreasingly convergent. We say that λ is locally monotonely convergent if it is decreasingly convergent and locally increasingly convergent. Weakening the δ -additivity condition, we say, following Halmos [3, p. 39], that λ is continuous at \mathscr{O} , if, for every decreasing \mathscr{L} -sequence (L_n) converging to \mathscr{O} , $\lambda(L_n) \to 0$.

3.2. Lemma. If $\lambda\colon \mathscr{L}\to G$ is an increasingly convergent (locally increasingly convergent) function on a lattice \mathscr{L} , then $\lim_{L\subseteq E,L\in\mathscr{L}}\lambda(L)$ exists for every $E\in\exp(T)$ (for every $E\in\mathscr{H}(\mathscr{L})$).

Proof. Suppose that λ is locally increasingly convergent and that $\lim_{L \in \mathcal{E}, L \in \mathcal{L}} \lambda(L)$ does not exist for some $E \in \mathcal{H}(\mathcal{L})$. There exists a continuous quasi-norm $|\cdot|$ on G and $\varepsilon > 0$ such that, for every \mathcal{L} -set A contained in E, there is an \mathcal{L} -set B such that $A \subseteq B \subseteq E$ and $|\lambda(A) - \lambda(B)| \geqslant \varepsilon$. Hence we may construct inductively an increasing \mathcal{L} -sequence (L_n) such that $L_n \subseteq E$ and $|\lambda(L_n) - \lambda(L_{n+1})| \geqslant \varepsilon$ (n=1,2,...). There is an \mathcal{L} -set E containing E, so that E and E is second statement of the lemma is proved. The same argument, with E suppressed, proves the first statement.

Let $\lambda \colon \mathscr{L} \to G$ be a function on a lattice \mathscr{L} . By Lemma 3.2, if λ is increasingly

convergent (locally increasingly convergent), $\lambda_*(E) = \lim_{L \subseteq E, L \in \mathcal{L}} \lambda(L)$ is defined for all $E \in \exp(T)$ (for all $E \in \mathcal{H}(\mathcal{L})$); we note that $\lambda_*|\mathcal{L} = \lambda$. Assuming λ to be strongly additive and locally increasingly convergent, we say that λ is λ -inner tight if $\lambda_*(L-K) = \lambda(L-K)$ for all $L, K \in \mathcal{L}$.

3.3. THEOREM. Let $\lambda \to G$ be a function on a lattice \mathcal{L} . If λ is strongly additive, continuous at \emptyset , locally increasingly convergent and λ -inner tight then its Pettis extension is σ -additive. If, further, λ is increasingly convergent, it extends uniquely to a σ -additive function on $\sigma(\mathcal{L})$.

Proof. It will be shown that $\mathscr{L}\subseteq M(\lambda_*|\mathscr{R}(\mathscr{L}))$. Let $L\in\mathscr{L}$, $R\in\mathscr{R}(\mathscr{L})$. There exists an \mathscr{L} -set K contained in R such that $K\subseteq H\subseteq R$, $H\in\mathscr{L}$ imply $|\lambda(H)-\lambda_*(R)|<<\varepsilon$. There exist \mathscr{L} -sets K_1 , K_2 bearing the same relation to R-L, $R\cap L$, respectively. We may suppose that $K_1+K_2\subseteq K\subseteq R$. Since $\lambda(K-L)=\lambda_*(K-L)$, there exists an \mathscr{L} -set A such that $K_1\subseteq A\subseteq K-L\subseteq R-L$ and $|\lambda(A)-\lambda(K-L)|<\varepsilon$. Then, by the definition of K_1 , $|\lambda(A)-\lambda_*(R-L)|<\varepsilon$, therefore

$$(1) |\lambda(K-L) - \lambda_*(R-L)| < 2\varepsilon.$$

Since $K_2 \subseteq K \cap L \subseteq R \cap L$ and $\lambda(K \cap L) = \lambda_*(K \cap L)$, there exists an \mathscr{L} -set B such that $K_2 \subseteq B \subseteq K \cap L \subseteq R \cap L$ and $|\lambda(B) - \lambda(K \cap L)| < \varepsilon$. Then, by the definition of K_2 , $|\lambda(B) - \lambda_*(R \cap L)| < \varepsilon$, therefore

$$(2) |\lambda(K \cap L) - \lambda_*(R \cap L)| < 2\varepsilon.$$

Since λ is strongly additive, (1) and (2) imply

$$\begin{aligned} |\lambda_*(R) - \lambda_*(R - L) - \lambda_*(R \cap L)| &= \left| \left(\lambda_*(R) - \lambda(K) \right) - \\ &- \left(\lambda_*(R - L) - \lambda(K - L) \right) - \left(\lambda_*(R \cap L) - \lambda(K \cap L) \right) \right| < 5\varepsilon \ . \end{aligned}$$

Since |.| and ε are arbitrary, this proves what was claimed.

It follows from this and Lemma 3.1 that $M(\lambda_*|\mathcal{R}(\mathcal{L}))=\mathcal{R}(\mathcal{L})$ and that $\lambda_*|\mathcal{R}(\mathcal{L})$ is additive. Therefore $\lambda_*|\mathcal{R}(\mathcal{L})$ is the Pettis extension of $\lambda\colon\mathcal{L}\to G$. Let (R_n) be a decreasing $\mathcal{R}(\mathcal{L})$ -sequence converging to \varnothing . Since λ_* is λ -lower regular, Lemma 2.1 asserts the existence of a decreasing \mathscr{L} -sequence (L_n) such that $L_n\subseteq R_n$ and $|\lambda(L_n)-\lambda_*(R_n)|<\varepsilon$ (n=1,2,...). Since λ is continuous at \varnothing , $\lambda(L_n)\to 0$. Hence, $|\cdot|$ and ε being arbitrary, $\lambda_*(R_n)\to 0$. This proves that $\lambda_*|\mathscr{R}(\mathscr{L})$ is σ -additive.

Suppose, further, that λ is increasingly convergent. Let (R_n) be an increasing $\mathscr{R}(\mathscr{L})$ -sequence. There exists an \mathscr{L} -sequence (L_n) such that $L_n \subseteq R_n$ and $L_n \subseteq L \subseteq R_n$,

$$L \in \mathcal{L} \text{ imply } |\lambda(L) - \lambda_*(R_n)| < \varepsilon \text{ } (n = 1, 2, ...). \text{ Setting } K_n = \bigcup_{i=1}^n L_i \text{ } (n = 1, 2, ...)$$

we obtain the increasing \mathscr{L} -sequence (K_n) such that $|\lambda(K_n) - \lambda_*(R_n)| < \varepsilon$ (n = 1, 2, ...). Then $(\lambda(K_n))$ is Cauchy. Since $|\cdot|$, ε are arbitrary, it follows that $(\lambda_*(R_n))$ is Cauchy. Thus the σ -additive function $\lambda_*|\mathscr{R}(\mathscr{L})$ is increasingly convergent and so extends uniquely, by Corollary 2.5, to a σ -additive function on $\sigma(\mathscr{L})$.

3.4. Remark. Theorem 3.3 is contained in Lipecki's result [7, p. 110], proved by a different method. It is included here because it is one of four extension theorems coming out of the same Carathéodory argument.

3.5. Lemma. If $\lambda \colon \mathcal{L} \to G$ is a decreasingly convergent function on a lattice \mathcal{L} , $\lim_{L \ni E, L \in \mathcal{L}} \lambda(L)$ exists for every $E \in \mathcal{H}(\mathcal{L})$.

Proof. Dual of the proof of the first statement of Lemma 3.2.

Let $\lambda\colon \mathscr{L} \to G$ be a function on a lattice \mathscr{L} . By Lemma 3.5, if λ is decreasingly convergent, $\lambda^*(E) = \lim_{L \supseteq E, L \in \mathscr{L}} \lambda(L)$ is defined for all $E \in \mathscr{H}(\mathscr{L})$. We note that $\lambda^*|\mathscr{L} = \lambda$. Assuming λ to be strongly additive and decreasingly convergent, we say that λ is λ -outer tight if $\lambda^*(L-K) = \lambda(L-K)$ for all $L, K \in \mathscr{L}$.

3.6. THEOREM. Let $\lambda \colon \mathcal{L} \to G$ be a function on a lattice \mathcal{L} . If λ is strongly additive, σ -additive, decreasingly convergent and λ -outer tight then its Pettis extension is σ -additive. If, further, λ is increasingly convergent, it extends uniquely to a σ -additive function on $\sigma(\mathcal{L})$.

Proof. It will be shown that $\mathscr{L}\subseteq M(\lambda^*|\mathscr{R}(\mathscr{L}))$. Let $L\in\mathscr{L},\ R\in\mathscr{R}(\mathscr{L})$. There exists an \mathscr{L} -set K containing R such that $K\supseteq H\supseteq R,\ H\in\mathscr{L}$ imply $|\lambda(H)-\lambda^*(R)|<<\epsilon$. There exist \mathscr{L} -sets $K_1,\ K_2$ bearing the same relation to $R-L,\ R\cap L$, respectively. We may suppose that $K\supseteq K_1\supseteq R-L$ and $K\cap L\supseteq K_2\supseteq R\cap L$. Then $R\cap L\supseteq R\cap K_2\supseteq R\cap (R\cap L)=R\cap L$, so $R\cap L=R\cap K_2$. Since $\lambda(K_1-K_2)=\lambda^*(K_1-K_2)$, there exists an \mathscr{L} -set A such that $K_1\supseteq A\supseteq K_1-K_2=(K_1\cup K_2)-K_2\supseteq R-K_2=R-(R\cap K_2)=R-(R\cap L)=R-L$ and $|\lambda(A)-\lambda(K_1-K_2)|<\epsilon$. Then, by the definition of $K_1,\ |\lambda(A)-\lambda^*(R-L)|<\epsilon$, therefore $|\lambda(K_1-K_2)-\lambda^*(R-L)|<2\epsilon$. Since $K\supseteq K_1\cup K_2\supseteq R$,

$$|\lambda^*(R) - \lambda^*(R - L) - \lambda^*(R \cap L)| =$$

$$= |(\lambda^*(R) - \lambda(K_1 \cup K_2)) - (\lambda^*(R - L) - \lambda(K_1 - K_2)) - (\lambda^*(R \cap L) - \lambda(K_2))| < 4\varepsilon.$$

Since | . | and & are arbitrary, this proves what was claimed.

It follows from this and Lemma 3.1 that $\lambda^*|\mathscr{R}(\mathscr{L})$ is the Pettis extension of $\lambda\colon\mathscr{L}\to G$. Let (R_n) be a decreasing $\mathscr{R}(\mathscr{L})$ -sequence converging to \mathscr{D} . Let L be an \mathscr{L} -set containing R_1 , so that $(L-R_n)\uparrow L$. Since λ^* is λ -upper regular, Lemma 2.1 asserts the existence of an increasing \mathscr{L} -sequence (L_n) such that $L_n\supseteq L-R_n$ and $L_n\supseteq H\supseteq L-R_n$, $H\in\mathscr{L}$ imply $|\lambda(H)-\lambda^*(L-R_n)|<\varepsilon$ (n=1,2,...). Setting $K_n=L_n\cap L$ (n=1,2,...) we have $K_n\uparrow L$ and $|\lambda(K_n)-\lambda^*(L-R_n)|<\varepsilon$ (n=1,2,...). Since λ is σ -additive, $|\lambda(L)-\lambda^*(L-R_n)|<2\varepsilon$ for n large enough. Since L, $R_n\in\mathscr{R}(\mathscr{L})$, $\lambda(L)-\lambda^*(L-R_n)=\lambda(L)-(\lambda^*(L)-\lambda^*(R_n))=\lambda^*(R_n)$, so $|\lambda^*(R_n)|<2\varepsilon$ for n large enough. Since |.|, ε are arbitrary this proves that $\lambda^*(R_n)\to 0$, from which it follows that $\lambda^*|\mathscr{R}(\mathscr{L})$ is σ -additive.

Suppose, further, that λ is increasingly convergent. Let (R_n) be an increasing $\mathscr{R}(\mathscr{L})$ -sequence. By Lemma 2.1, there exists an increasing \mathscr{L} -sequence (L_n) such that $|\lambda(L_n)-\lambda^*(R_n)|<\varepsilon$ (n=1,2,...). Since |...|, ε are arbitrary, it follows that

 $(\lambda^*(R_n))$ is Cauchy, proving that $\lambda^*|\mathscr{R}(\mathscr{L})$ is increasingly convergent. By Corollary 2.5, $\lambda^*|\mathscr{R}(\mathscr{L})$ extends uniquely to a σ -additive function on $\sigma(\mathscr{L})$.

3.7. LEMMA. Let $\lambda \colon \mathscr{L} \to G$ be a strongly additive locally monotonely convergent δ -additive function on a lattice \mathscr{L} . Then $\lambda_{\delta} = \lambda^* | \mathscr{L}_{\delta}$ is strongly additive, locally monotonely convergent and δ -additive.

Proof. It will be shown first that if (L_n) is a decreasing \mathscr{L} -sequence converging to a set K then $\lambda(L_n) \to \lambda_\delta(K)$. There exists an \mathscr{L} -set L containing K such that $L \supseteq A \supseteq K$, $A \in \mathscr{L}$ imply $|\lambda(A) - \lambda_\delta(K)| < \varepsilon$. We have

$$\begin{split} |\lambda(L_n) - \lambda_{\delta}(K) \leqslant |\lambda(L_n) - \lambda(L)| + |\lambda(L) - \lambda_{\delta}(K)| &= |\lambda(L_n - L) - \lambda(L - L_n)| + |\lambda(L) - \lambda_{\delta}(K)| \\ \leqslant |\lambda(L_n \cup L) - \lambda(L)| + |\lambda(L) - \lambda(L \cap L_n)| + |\lambda(L) - \lambda_{\delta}(K)| \\ \leqslant |\lambda(L_n \cup L) - \lambda(L)| + 2\varepsilon + \varepsilon \,. \end{split}$$

Since λ is δ -additive, $|\lambda(L_n \cup L) - \lambda(L)| \to 0$, so $|\lambda(L_n) - \lambda_{\delta}(K)| < 4\varepsilon$ for large enough n. This, with |.|, ε arbitrary, suffices.

To show that λ_{δ} is strongly additive, let $A, B \in \mathcal{L}_{\delta}$ and let (A_n) , (B_n) be decreasing \mathcal{L} -sequences converging to A, B respectively. Applying the first paragraph and the strong additivity of λ ,

$$\begin{split} \lambda_{\delta}(A) + \lambda_{\delta}(B) - \lambda_{\delta}(A \cup B) - \lambda_{\delta}(A \cap B) \\ &= \lim_{n} \left[\lambda(A_{n}) + \lambda(B_{n}) - \lambda(A_{n} \cup B_{n}) - \lambda(A_{n} \cap B_{n}) \right] = 0 \; . \end{split}$$

To show that λ_{δ} is δ -additive (and, in particular, that λ_{δ} is decreasingly convergent), let (K_n) be a decreasing \mathscr{L}_{δ} -sequence converging to a set K. For each $n=1,2,\ldots$, there is a decreasing \mathscr{L} -sequence $(L_{nm})_{m=1}^{\infty}$ converging to K_n . Write $A_m=\bigcap_{n=1}^{\infty}L_{nm}$ $(m=1,2,\ldots)$, so that (A_m) is a decreasing \mathscr{L} -sequence converging to K such that $K_m\subseteq A_m\subseteq L_{nm}$ $(m=1,2,\ldots)$. By the first paragraph, $\lambda(A_m)\to \lambda_{\delta}(K)$. We may suppose the $(L_{nm})_{m=1}^{\infty}$ $(n=1,2,\ldots)$ chosen so that $L_{n1}\supseteq A\supseteq K_n$, $A\in\mathscr{L}$ imply $|\lambda(A)-\lambda_{\delta}(K_n)|<\varepsilon$. Then $|\lambda(A_m)-\lambda_{\delta}(K_m)|<\varepsilon$ $(m=1,2,\ldots)$. Since $|\cdot|$, ε are arbitrary, this shows that $\lambda_{\delta}(K_m)\to \lambda_{\delta}(K)$.

It remains to show that λ_δ is locally increasingly convergent. Let (K_n) be an increasing \mathcal{L}_δ -sequence such that, for some $K \in \mathcal{L}_\delta$, $K_n \subseteq K$ (n=1,2,...). Then $K \subseteq L$ for some $L \in \mathcal{L}$. Since λ_δ is λ -upper regular, Lemma 2.1 asserts the existence of an increasing \mathcal{L} -sequence (L_n) such that $L_n \supseteq K_n$ and $L_n \supseteq A \supseteq K_n$, $A \in \mathcal{L}$ imply $|\lambda(A) - \lambda_\delta(K_n)| < \epsilon$ (n=1,2,...). Writing $A_n = L_n \cap L$ (n=1,2,...), (A_n) is an increasing \mathcal{L} -sequence such that $A_n \subseteq L$ and $|\lambda(A_n) - \lambda_\delta(K_n)| < \epsilon$ (n=1,2,...). Since $(\lambda(A_n))$ converges and $|\cdot|$, ϵ are arbitrary, $(\lambda_\delta(K_n))$ converges.

Let $\lambda\colon \mathscr{L}\to G$ be a strongly additive locally monotonely convergent δ -additive function on a lattice \mathscr{L} . Since λ_δ is locally increasingly convergent (Lemma 3.7), Lemma 3.2 asserts that λ_δ extends to

$$(\lambda_{\delta})_*(E) = \lim_{\mathtt{K} \subseteq E, \, \mathtt{K} \in \mathscr{L}_{\delta}} \lambda_{\delta}(K) \;, \quad E \in \mathscr{H}(\mathscr{L}_{\delta}) = \mathscr{H}(\mathscr{L}) \;.$$

We say that λ is λ_{δ} -inner tight if

$$(\lambda_{\delta})_*(L-K) = \lambda(L-K)$$
 for all $L, K \in \mathcal{L}$.

3.8. Lemma. If $\lambda\colon \mathscr{L}\to G$ is a strongly additive locally monotonely convergent δ -additive function on a lattice \mathscr{L} , then $(\lambda_\delta)_*\colon \mathscr{H}(\mathscr{L})\to G$ is δ -additive.

Proof. Let (H_n) be a decreasing $\mathscr{H}(\mathscr{L})$ -sequence converging to a set H. Let K be an \mathscr{L}_{δ} -set contained in H such that $K \subseteq A \subseteq H$, $A \in \mathscr{L}_{\delta}$ imply $|\lambda_{\delta}(A) - (\lambda_{\delta})_*(H)| < \epsilon$. Since $(\lambda_{\delta})_*$ is λ_{δ} -lower regular, Lemma 2.1 asserts the existence of a decreasing \mathscr{L}_{δ} -sequence (K_n) such that $K_n \subseteq H_n$, $|\lambda_{\delta}(K_n) - (\lambda_{\delta})_*(H_n)| < \epsilon$ (n=1,2,...) and $K \subseteq B \subseteq H$, where $B = \lim K_n$. We have

$$\begin{split} |(\lambda_{\delta})_*(H_n) - (\lambda_{\delta})_*(H)| &\leqslant |(\lambda_{\delta})_*(H_n) - \lambda_{\delta}(K_n)| + |\lambda_{\delta}(K_n) - \lambda_{\delta}(B)| + |\lambda_{\delta}(B) - (\lambda_{\delta})_*(H)| \\ &< \varepsilon + |\lambda_{\delta}(K_n) - \lambda_{\delta}(B)| + \varepsilon \;. \end{split}$$

Since λ_{δ} is δ -additive (Lemma 3.7), $|\lambda_{\delta}(K_n) - \lambda_{\delta}(B)| \leq \varepsilon$ for large enough n and then $|(\lambda_{\delta})_*(H_n) - (\lambda_{\delta})_*(H)| < 3\varepsilon$. Since $|.|, \varepsilon$ are arbitrary, this proves that $(\lambda_{\delta})_*(H_n) \to (\lambda_{\delta})_*(H)$.

3.9. Lemma. If $\lambda\colon \mathscr{L}\to G$ is a strongly additive locally monotonely convergent δ -additive λ_{δ} -inner tight function on a lattice \mathscr{L} , then $\lambda_{\delta}(K-L)=(\lambda_{\delta})_*(K-L)$ whenever $K\in \mathscr{L}_{\delta}$ and $L\in \mathscr{L}$.

Proof. Since λ_{δ} is strongly additive and δ -additive (Lemma 3.7), (L_n) being a decreasing \mathcal{L} -sequence converging to K, we have

$$\lambda_{\delta}(K-L) = \lambda_{\delta}(K) - \lambda_{\delta}(K \cap L) = \lim_{n} [\lambda(L_{n}) - \lambda(L_{n} \cap L)] = \lim_{n} \lambda(L_{n} - L).$$

Since λ is λ_{δ} -inner tight and $(\lambda_{\delta})_*$ is δ -additive (Lemma 3.8), $\lim_{n} \lambda(L_n - L) = \lim_{n} (\lambda_{\delta})_* (L_n - L) = (\lambda_{\delta})_* (K - L)$.

3.10. THEOREM. Let $\lambda: \mathcal{L} \to G$ be a function on a lattice \mathcal{L} . If λ is strongly additive, δ -additive, locally monotonely convergent and λ_{δ} -inner tight then its Pettis extension is σ -additive. If, further, λ is increasingly convergent, it extends uniquely to a σ -additive function on $\sigma(\mathcal{L})$.

Proof. We note first that, if λ is increasingly convergent, so is λ_{δ} (Lemma 2.1). Then, taking account of Lemma 3.7, it suffices to retrace the proof of Theorem 3.3 with λ_{δ} in the approximating role of λ (and therefore $(\lambda_{\delta})_*$ in the role of λ_*), applying λ_{δ} -inner tightness in the form of Lemma 3.9.

3.11. Lemma. Let $\lambda\colon \mathscr{L}\to G$ be a strongly additive locally monotonely convergent σ -additive function on a lattice \mathscr{L} . Then $\lambda_{\sigma}=\lambda_{*}|\mathscr{L}_{\sigma}$ is strongly additive, monotonely convergent and σ -additive.

Proof. The dual of the proof of Lemma 3.7 shows that λ_{σ} is strongly additive, locally monotonely convergent and σ -additive. Then, the locally increasingly convergent function λ_{σ} , whose domain \mathcal{L}_{σ} is a σ -lattice, is increasingly convergent.

Let $\lambda\colon \mathscr{L}\to G$ be a strongly additive locally monotonely convergent σ -additive function on a lattice \mathscr{L} . Since λ_{σ} is decreasingly convergent (Lemma 3.11), Lemma 3.5 asserts that λ_{σ} extends to

$$(\lambda_{\sigma})^*(E) = \lim_{K \ni E, K \in \mathscr{L}_{\sigma}} \lambda_{\sigma}(K), \quad E \in \mathscr{H}(\mathscr{L}_{\sigma}).$$

We say that λ is λ_{σ} -outer tight if

$$(\lambda_{\sigma})^*(L-K) = \lambda(L-K)$$
 for all $L, K \in \mathcal{L}$.

3.12. Lemma. If $\lambda \colon \mathscr{L} \to G$ is a strongly additive locally monotonely convergent σ -additive function on a lattice \mathscr{L} , then $(\lambda_{\sigma})^* \colon \mathscr{H}(\mathscr{L}_{\sigma}) \to G$ is σ -additive.

Proof. Dual of the proof of Lemma 3.8, with Lemma 3.11 in the role of Lemma 3.7.

3.13. THEOREM. If $\lambda: \mathscr{L} \to G$ is a strongly additive locally monotonely convergent σ -additive λ_{σ} -outer tight function on a lattice \mathscr{L} , then $\lambda_{\sigma}(K-L)=(\lambda_{\sigma})^*(K-L)$ whenever $K \in \mathscr{L}_{\sigma}$ and $L \in \mathscr{L}$.

Proof. Dual of the proof of Lemma 3.9, with Lemmas 3.11, 3.12 in the roles of Lemmas 3.7, 3.8, respectively.

We will need a generalization of Theorem 3.13. As intermediate step, we prove the following additive property of $(\lambda_{\sigma})^*$:

3.14. Lemma. Let $\lambda \colon \mathscr{L} \to G$ be a strongly additive locally monotonely convergent σ -additive λ_{σ} -outer tight function on a lattice \mathscr{L} . If $L \subseteq K \subseteq E$, where $K, E \in \mathscr{L}_{\sigma}$ and $L \in \mathscr{L}$, then

$$(\lambda_{\sigma})^*[L+(E-K)] = \lambda(L) + (\lambda_{\sigma})^*(E-K).$$

Proof. Let H be an \mathscr{L}_{σ} -set containing E-K such that $H \supseteq A \supseteq E-K$, $A \in \mathscr{L}_{\sigma}$ imply $|\lambda_{\sigma}(A) - (\lambda_{\sigma})^*(E-K)| < \varepsilon$. We may suppose that $E-K \subseteq H \subseteq E$. Let P be an \mathscr{L}_{σ} -set containing L+(E-K) such that $P \supseteq A \supseteq L+(E-K)$, $A \in \mathscr{L}_{\sigma}$ imply $|\lambda_{\sigma}(A) - (\lambda_{\sigma})^*[L+(E-K)]| < \varepsilon$. Writing $H_1 = P \cap H$, we have

$$L+(E-K)\subseteq P\cap (L\cup H)=L\cup H_1\subseteq P,$$

$$E-K\subseteq H_1\subseteq H.$$

By the definitions of H and P,

 $(1) |\{(\lambda_{\sigma})^*[L+(E-K)]-\lambda(L)-(\lambda_{\sigma})^*(E-K)\}-\{\lambda_{\sigma}(L\cup H_1)-\lambda(L)-\lambda_{\sigma}(H_1)\}|<2\varepsilon.$

Since λ_{σ} is strongly additive (Lemma 3.11), $\lambda_{\sigma}(L \cup H_1) - \lambda(L) - \lambda_{\sigma}(H_1) = -\lambda_{\sigma}(L \cap H_1)$, so (1) may be written

$$(2) \qquad |(\lambda_{\sigma})^*[L+(E-K)]-\lambda(L)-(\lambda_{\sigma})^*(E-K)+\lambda_{\sigma}(L\cap H_1)|<2\varepsilon.$$

Since $\lambda_{\sigma}(H_1-L)=(\lambda_{\sigma})^*(H_1-L)$ (Lemma 3.13), there is an \mathscr{L}_{σ} -set Q such that $H_1-L\subseteq Q\subseteq H_1$ and

$$|\lambda_{\sigma}(Q) - \lambda_{\sigma}(H_1 - L)| < \varepsilon.$$

Since $E-K\subseteq H_1$ and $L\cap (E-K)=\emptyset$, $E-K\subseteq H_1-L\subseteq Q\subseteq H_1\subseteq H$, so, by the definition of H.

$$|\lambda_{\sigma}(Q) - \lambda_{\sigma}(H_1)| < 2\varepsilon.$$

By (3) and (4),

(5)
$$|\lambda_{\sigma}(H_1 \cap L)| = |\lambda_{\sigma}[H_1 - (H_1 - L)]| = |\lambda_{\sigma}(H_1) - \lambda_{\sigma}(H_1 - L)| < 3\varepsilon$$
.

By (2) and (5),

$$|(\lambda_{\sigma})^*[L+(E-K)]-\lambda(L)-(\lambda_{\sigma})^*(E-K)|<5\varepsilon$$
.

This, with |.|, & arbitrary, proves the lemma.

3.15. Lemma. If $\lambda: \mathcal{L} \to G$ is a strongly additive locally monotonely convergent σ -additive λ_{σ} -outer tight function on a lattice \mathcal{L} , then $\lambda_{\sigma}(E-K)=(\lambda_{\sigma})^*(E-K)$ for all $E, K \in \mathcal{L}_{\sigma}$.

Proof. We may suppose that $K \subseteq E$. Let (L_n) be an increasing \mathscr{L} -sequence converging to K, so that $[L_n + (E - K)] \uparrow E$. Since $(\lambda_\sigma)^*$ is σ -additive (Lemma 3.12),

(1)
$$(\lambda_{\sigma})^*[L_n + (E - K)] \to (\lambda_{\sigma})^*(E) = \lambda_{\sigma}(E) .$$

Applying Lemma 3.14, we may write (1) in the form

(2)
$$\lambda(L_n) + (\lambda_\sigma)^*(E - K) \to \lambda_\sigma(E) .$$

Because λ_{σ} is σ -additive (Lemma 3.11), (2) implies

(3)
$$\lambda_{\sigma}(K) + (\lambda_{\sigma})^{*}(E - K) = \lambda_{\sigma}(E).$$

Because λ_{σ} is strongly additive (Lemma 3.11), (3) may be written

$$(\lambda_{\sigma})^*(E-K) = \lambda_{\sigma}(E) - \lambda_{\sigma}(K) = \lambda_{\sigma}(E-K)$$
.

3.16. THEOREM. Let $\lambda \colon \mathscr{L} \to G$ be a function on a lattice \mathscr{L} . If λ is strongly additive, σ -additive, locally monotonely convergent and λ_{σ} -outer tight, then λ extends uniquely to a σ -additive function on $\sigma(\mathscr{L})$.

Proof. Retracing the first paragraph of the proof of Theorem 3.6 (taking account of Lemma 3.11) with λ_{σ} in the approximating role of λ (therefore $(\lambda_{\sigma})^*$ in the role of λ^*), applying λ -outer tightness in the form of Lemma 3.15, we show that $(\lambda_{\sigma})^*|\mathcal{R}(\mathcal{L})$ is the Pettis extension of λ : $\mathcal{L} \to G$.

By Lemma 3.12, $(\lambda_{\sigma})^* | \mathcal{R}(\mathcal{L})$ is σ -additive. Since λ_{σ} is increasingly convergent (Lemma 3.11), it follows from Lemma 2.1 that $(\lambda_{\sigma})^*$ is increasingly convergent. Hence, by Corollary 2.5, $(\lambda_{\sigma})^* | \mathcal{R}(\mathcal{L})$ extends uniquely to a σ -additive function on $\sigma(\mathcal{L})$.

Remark. Let $\lambda: \mathcal{R} \to G$ be a σ -additive function on a ring \mathcal{R} . Then, in particular, λ is strongly additive and (σ, δ) -additive. If λ is increasingly convergent it is monotonely convergent (as shown in the proof of Corollary 2.5), so that its extensions λ_* , λ^* (λ_{σ})* and (λ_{σ})* are defined. Supposing λ to be increasingly con-

vergent, R_1 , $R_2 \in \mathcal{R}$ implies $R_1 - R_2 \in \mathcal{R}$, and therefore λ is λ -inner tight, λ -outer-tight, λ_{σ} -inner tight and λ_{σ} -outer tight. Consequently, each of Theorems 3.3, 3,6, 3.10 and 3.16 generalizes Corollary 2.5 — though the proof of each applies Corollary 2.5.

References

- L. Drewnowski, Topological rings of sets, continuous set functions integration, III, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 20 (1972), pp. 439-445.
- [2] G. Fox and P. Morales, Strongly additive functions on lattices, Fund. Math. 78 (1973), pp. 99-106.
- [3] P. Halmos, Measure Theory, D. Van Nostrand Company Inc., New York 1961.
- [4] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, I, Springer-Verlag, New York 1963.
- [5] P. Kranz, Extension of a valuation on a lattice, Fund. Math. 91 (1976), pp. 171-178.
- [6] J. Kisyński, Remark on strongly additive set functions, Fund. Math. 63 (1968), pp. 327-332.
- [7] Z. Lipecki, Extensions of tight set functions with values in a topological group, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 22 (1974), pp. 105-113.
- [8] B. J. Pettis, On extensions of measures, Ann. of Math. 54 (1951), pp. 186-197.
- [9] C. E. Rickart, Decomposition of additive set functions, Duke Math. J. (1943), pp. 653-665.
- [10] M. Sion, Outer measures with values in a topological group, Proc. London Math. Soc. 19 (1969), pp. 89-106.

UNIVERSITÉ DE MONTRÉAL MONTRÉAL, QUÉBEC and UNIVERSITÉ DE SHERBROOKE SHERBROOKE, OUÉBEC

Accepté par la Rédaction le 7, 7, 1980