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Extension of group-valued set functions defined on lattices
by

Geofirey Fox (Montréal, Qu.) and Pedro Morales (Sherbrooke, Qu.)

Abstract. The extension theorem of Sion for a group-valued function on a ring is generalized
to extension theorems for a group-valued function on a lattice.

1. Introduction. We explain the minimal terminology necessary to state, in
more general setting, the result of [2] which will be the basis for the generalization
of the Sion extension theorem, presented in section 2.

The term [attice refers to a lattice & of subsets of a fixed set T such that g e %.
Let 2 map % into an abelian group G: it is said to be strongly additive if 1(@) = 0
and LW(EU F)+ME N F) = AME)+A(F) for all E,Fe%. We will use without
explicit mention the following result of Pettis ([8, p. 189], [6, p. 327]): “Every
strongly additive set function A: & — G extends uniquely to an additive set function
on the ring (%) generated by #”. This Pettis extension will be denoted by the
same symbol A.

In the rest of the paper, G is assumed to be a complete Hausdorff abelian
topological group. It is well known that the topology of G can be generated by’
a family P of continuous invariant pseudo-metrics on G [4, p. 82]. For peP we
put |x|, = p{x,0), xeG. Then |x|,=0 <« x =0, |[—x[,= |x|, and [x-+y|,
<|x],+|¥l,. Henceforth we write |.| for an arbitrary |.|,, pe P.

The term function refers to a set function A mapping a lattice Z(4) into G.
We say that A is c-additive (§-additive) if, for every increasing (decreasing) se-
quence (L,) in 2(1) with limL, e Z(4), we have A(L,) — A(limL,). If A is o-ad-

: n

ditive and &-additive we say that A is (o, §)-additive. If for every monotone se-
quence (L,) in 2(4), (A(L,)) converges, we say that A is monotonely convergent.
Let 2 be a function of domain & = @ () andlet EST. The class {Le &£: LS E}
is non-empty and directed by 2; it defines the net (A(L))cg, Les. Similarly, if
the class {Le¥: L2E} is non-empty, it is directed by = and defines the net
(AD)L2E Lee
Let A, u be functions; we say that (a) A is u-lower regular if, for every E€ 9(4),
lim (L) A(E); (b) A is p-upper regular if, for every Ee D (J), the

LEE,LeD(y) .

class {Le2(u): LDE} is non—empty and  lim  p(L) = A(E).
L2E,Led(p) - ; ~

1 — Fundamenta Mathematicae CXVI/3
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Suppose that 4 is strongly additive, (¢, 8)-additive and monotonely convergent.
From Lemma 2.4 (Lemma 2.5) and Lemma 2.6 of [2], it follows that the function
IfE)= lim AL), Eec¥, (ME)= lim Ai(L), Ec¥;) is well defined

L2E,Le®%

LSE, Le?
and is strongly additive, monotonely convergent and o-additive (5-additive).

If a lattice & is closed under countable unions and countable intersections
we say that .2 is a (o, 6)-lattice.

Taking into account the generalization of Kranz [5], the Theorem 2.10 of
[2, p. 104] can be stated:

1.1. THEOREM. Let 4 be a function such that D(}) = £L. If A is strongly additive
and (o, 8)-additive, then A extends uniquely to a strongly additive (o, 8)-additive
function on the (o, 6)-lattice generated by % if and only if

(a) A is monotonely convergent,

(b) A, is As-lower regular or (equivalently) As is A -upper regular.

In section 3 we prove the o-additivity of the Pettis extension of a strongly
additive function 1, under hypotheses related to tightness. We also study the exist-
ence of a unique c-additive extension of A on the o-ring generated by Z(4).
This last part of the paper is motivated by the work of Lipecki [7].

If & is a lattice, a set L € & may be called an #-set; a sequence in % may
be called an £ -sequence. The symbol exp(T) denotes the set of all subsets of T.

2. Lattice extension. We will need the following generalization of Lemma 2.3
of [2, p. 100]:

2.1. LemMA. Let J be a function and let p be a strongly additive function:

(@) If A is p-lower regular, then for every decreasing 9 (A)-sequence {E,} and
every e>0, there is a decreasing 9 (p)-sequence {F,} such that F,CE, and
|u(L)—A(E,)| <& whenever L€ 9 (u) and F,<L<E,.

(b) If A is p-upper regular, then for every increasing 9 (A)-sequence {E,} and
every >0, there is an increasing 9 (u)-sequence {F,} such that F,2F, and
|u(L)—A(E,)| <e whenever L€ @ (y) and F,2L2E,.

Proof. (a) We note the 1dent1ty for any ﬁmte exp(7T)- sequence {4}1, n>1:

n—-1
@) A4,— ﬂA,, U {4, ﬂA} {4, n ﬂA}]whereﬂA,-—Tfork-—l

We note also the fo[lowmg property of u:

(ii) Let E'e exp(T), e>0: If F is a Z(u)-set contained in E such that FE F' < E,
F e imply |u(F)—u(F)|<e, then 4, B<E, A—B<E—F and A, Be D(u)
imply |u(4 — B)| <2e.

In fact,

[u(4—B)| = |p(4 v B F)=~p(B v F)|<|u(4 U B U F)—p(F)|+
+u(F)—puBu F)<e+e.

By the lower regularity there is a & (u)-sequence {B,}7 such that B,SE, and
lu(F)=A(E)], |u(F)—p(B)l<e/2"** whenever B,cFSE, and Fe @ (u). Setting
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F, = nB,,n_1 2,.

F,,EE It remains to show that F,cL<E,, Le 2() imply [u(L)—A(E)|<e.
This is clear for n = 1 so we suppose n>1. Since

-, we have the decreasing' 2 (u)-sequence -{F,} such that

(L) —AE <IA(E) —p(B, v L) +u(B, v L)— H(L)|<2,,+z + (B, ~L)|
it will suffice to show that |u(B,—L)| <3}s.
By (i) we have

B,—L=({LuUB)-LUF)=(uB)- n (LU By
k=1

w1 k-1 %
= kL=J1[{(L uB)n ~{=']1 LuBR}—-{LuB)n i=ﬂl (Lu B)}l.

The kth term of this partition is a difference, contained in Ek By, of 9 (u)-sets
contained in E, so by (ii),

k—
kL v B)n ﬂ(LuB.)} {LuB)n ﬂ {LuBYl<

2k+1
and therefore |u(B,—L)|<3e.

() We note the 1dent1ty for any finite exp(T)-sequence {4,}7, n>1:
-1

(lu)UAkA_U(UA_ 4;).
= =+1

i=k
We note also the followmg property of u:
(iv) Let Ecexp(T), e>0: If Fis a 9(y)-set containing E such that F2F' 2,
F' e 9(p) imply |p(F')—u(F)|<e, then 4, B2E, A—BSF—~E and 4,Be D (p)
imply |u(4—B)|<2e. In fact,

u(4—B)| = [u(A N F)—p(4 n B n F)|<|p(d n F)—pP)|+
+|p(F)—u(d n B n F)|<2e.

By the upper regularity there is a 9 (u)-sequence {B,} such that B,=2E, and
[(F)=A(E), |u(F)—u(B,)<e/2**? whenever B,2F2E, and Fe 9 (u). Setting
n

F,= UB,n=1,2,..
i=1

F,2E,. It remains to show that F,2L2E,, Le P(y) imply |u(L)—p(E)|<e.
We may suppose n>1. Since

, we have the increasing 2 (u)-sequence {F,} such that

kD= AENSID = (L 0 B+ (L 0 BY=AE <@l + 53 »

1%
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it will suffice to show that [u(L—B,)| <%e. By (iii),

‘L-B,=LAR)~LnB)= YLnB)—~(LnBE)

n

U’[O(LnBa— U @am.

k=1 i=k

i

The required conclusion will follow as in (a), using (iv), if we show that, for
1gk<n,
n n
xeUJ@LnB)~ U (LnB) implies xeB—E.
i=k L i=ktt

We have xeL n B,. If we suppose that xe E, then xeL N B; for k<i<n,
a contradiction. o .

We call a function v continuous if, whenever (E,), (F,) are decreasing, increasing
9 (v)-sequences, respectively, such that limE, climF,, we have

n

Lim[v(E)—v(E, n F)] =0

Specializing each sequence, in turn, to an appropriate constant sequence, we see
that a continuous function is (o, 8)-additive.

In the rest of this section, A: & — G is a strongly additive monotonely con-
vergent .continuous function whose domain is a lattice 2(4) =

2.2. LEMMA. l;, is continuous.

Proof. Let (E,), (F,) be decreasing, iﬁcreasing‘;?f =sequences, respectively,
such that hmE ChmF It must be shown that A,(E,)—A,(E, n'F,) — 0. Let £>0.

By Lemma 21 there is a decreasing %-sequence (L,). such that L,SE, and L,
cLcE,, Le¥ 1mply ML) -2 E) <e. Also, L,cH<E,, HeX%, imply
[ALH)—A(E) <2 (for we may choose Le% such that L,<LSH and
ML) —A{H)|<e). Now E, N F,, L, F, are &,-sets contained in £, suclht that
E,nF,—L,n F,=E,—L,, s0, since 4, is strongly additive, [A,(E, 0 F,)— (L, n F)|
<4g, and therefore |[A(E,)—AAE, N F)l—[A(L,)—A,(L, n F,)]|<5e. Since [.| and
£>0 are arbitrary, this reduces the proof to showing that 1(L,)— (L, 0 F,) - 0.

Let e>0. For n = 1,2, ... there is an increasing % -sequence (F, ,)m=1 con-
vergmg to F,, such that ]‘,, ySLEF,, Le ¥ imply (ML)~ A (F)l<e. Let K,

U Foms then K,<F,, K, % and K, ’fhmF Also K,,,QKCF,,,, He_% imply

1Ay (H) 2 (F )[<2£ ‘Since L, n'F,,; L, nK are %, -sets contained in F, such
that L, F,—L, n K,=F,—K,, |A{L, 0 F)—A(L, n K)l<4e. This reduces the
proof to-showing that 1(L,)~ /I(L n K,,) — 0 But this follows from thc contmuxty
of 1 because th,,Eth - C B :
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2.3. LEMMA. A; is A,-upper regular. ~

Proof. Let E€ %;. By Lemma 2.5 of [2}, u(E) = lim 1, (H) exists.

H2E,HeZ,

It must be shown that p(E) = A,(E). Let £>0. There exists K€%, such that
EcK and EcHsK, He &, imply |A(H)— u(E)]<a Let (L) be a decreasmg
3 -sequence converging to E. Then

1(E) = AL S (E) = A (KD + [A,(K)— A(L,)]

<&+ [A(K—L)| + AL, — K)|
=e+|1,(K)—A,(K 0 L) +]2,(L, U K)—4,(K)|
<42+ A (L, U K)— 1, (K)] . *

Since A, is d-additive (Lemma 2.2), |A(L,u K)—2A,(K)| =0 so I;z(E)—jl(L,,)]
<4¢ if n is great enough. Hence A(L,) — u(E). On the other hand, A(L,) — A4(E),
so u(E) = A(E).

Lemma 2.3, with Theorem 1.1, yields the following result:

2.4, THEOREM. A strongly additive monotonely convergent continuous function )
on a lattice & of subsets of a set T, taking values in G, extends uniguely to a strongly
additive (o, 6)-additive function on the (o, 8)-lattice generated by %.

Let A be an additive function on a ring # of subsets of T, taking values in G.
If, for every disjoint sequence {R,}, in %, A(R,) — 0, 1 is said to be s-bounded
[9, p. 654]. We note that if A is s-bounded then, for every increasing sequence
{R,} in &, {1(R,)} converges. In fact, if this were not so, there would exist an
increasing sequence {R,} in £, £>0, a continuous quasi-norm |.| on G and
a strictly increasing sequence of positive integers p;<gq,<p,<g,... such that
[A(Ry,— R, > e. This contradicts the s-boundedness, because {R,,— R, } is a disjoint
sequence in 4.

The following corollary is the extension theorem of Sion [10, p..92] as im-
proved by Drewnowski [1, p. 441]:

2.5. COROLLARY. An s-bounded o-additive function A on a ring & of subsets
of T, taking values in G, extends uniquely to a o-additive function on the ¢-ring o (%)
generated by A.

Proof. Since A is o-additive, it is strongly additive and continuous. Since 4 is
s-bounded, {A(L,)} converges for every increasing %-sequence. If {L,}

a decreasing #-sequence, {A(L,—L,)} converges and A(L,—L,) = A(Ly)—A(L,),
so {A(L,)} converges. Hence A is monotonely convergent. The corollary follows
from the theorem because the (o, §)-lattice generated by £ is o(%).

3. Ring extension. The Carathéodory process of measure extensions was
applied by Sion [10] to a group-valued function on a ring. The purpose of this
section is to extend the application to a group-valued function on a lattice.

If % denotes a lattice (of subsets of T), # (%)= {Heexp(T): HcL for
some L € &} is the smallest hereditary ring containing 2. If we wish to indicate
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that an at most countable union {J E, is disjoint we write it E; +E;+...
n

or Y E,
n
and refer to it as a sum. For Eeexp(T), E° denotes the complement of E in T.

In his Lemma 2.2, Sion [10, p. 91] abstracts the essential step of the Carathé-
odory process. The following lemma is the version needed here:

3.1. LeMMA. If u: & — G is a function on a ring &, such that p(&) = 0, then
M(p) = {(Me®: p(R) = u(Rn M)+p(R—M) for all Re R} is a subring of R
and the restriction p|M(u), of p to M(p), is additive.

Proof. Let M,, M, e M(u) and let Re %. Then

LR = (R A M; 0 M)+ (R 0 My M5)+p(R 0 M§ A Mp)+u(R 0 M7 0 M3).
Replacing R by Rn (M; U M),
_IR A (M, 0 M) = p(Ro My o Mp)+p(R 0 My 0 Ma)+u(Ro M 0 M),

Therefore u(R) = p[R n (M 0 M)+ pu[R— (M, U M,)], proving that M; U M,
€ M(p). Replacing R by R—(M;—M,) = RN (Miu M,) in the first equation,
we conclude similarly that M, — M, € M (), proving that M (u) is a ring. Supposing
that M; n M, = & and setting R = M, +M, in the second equation, we have
p(My+My) = p(M)+up(M,), proving the additivity of ulad (u).

Let A: & — G be a function on a lattice Z. If, for every increasing (decreasing)
Z-sequence (L,), (A(L,)) converges we say that 1 is increasingly convergent (de-
creasingly convergent). Weakening the first condition, we say that A is locally in-
creasingly convergent if, for every increasing &-sequence (L,) such that L,cL
n=1,2,..) for some Le %, (/I(L,,)) converges. Thus, A is monotonely convergent
if and only if it is increasingly convergent and decreasingly convergent. We say
that A is locally monotonely convergent if it is decreasingly convergent and locally
increasingly convergent. Weakening the §-additivity condition, we say, following
Halmos [3, p. 39], that 1 is continuous at @, if, for every decreasing £ -sequence (L,)
converging to &, A(L,) — 0.

3.2. LemMma. If A: & — G is an increasingly comvergent (locally increasingly
convergent) function on a lattice £, then  lim  A(L) exists for every E e exp (T)

LEE,Le?
(for every Ee #(L)).

Proof. Suppose that 1 is locally increasingly convergent and that  lim A(L)

LEE, Le®

does not exist for some E ¢ 5#(%). There exists a continuous guasi-norm |.| on G
and e>0 such that, for every #-set 4 contained in E, there is an #-set B such
that ASB=E and |A(4)—A(B)|>&. Hence we may construct inductively an in-
creasing % -sequence (L,) such that L,=F and [A(L)— ML+ )26 (n=1,2,..).
There is an #-set K containing E, so that L,SK (n = 1, 2,...). The hypothesis
excludes the existence of such a sequence (L,), so the second statement of the lemma
is proved. The same argument, with X suppressed, proves the first statement.

Let 2: & — G be a function on a lattice . By Lemma 3.2, if 1 is increasingly
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convergent (locally increasingly convergent), A, (E) = lim A(L) is defined
LEE,Le®

for all Eeexp(T) (for all Ee #(¥)); we note that 1.|¥ = L. Assuming 1 to be
strongly additive and locally increasingly convergent, we say that A is A-inner tight
if 2,(L—K) = A(L—K) for all L, Ke Z.

3.3. THEOREM. Let A — G be a function on a lattice &. If A is strongly additive,
continuous at B, locally increasingly convergent and A-inner tight then its Pettis
extension is c-additive. If, further, ) is increasingly convergent, it extends uniquely -
to a o-additive function on ¢(%).

Proof. It will be shown that LS M (1|2 (¥F)). Let Le &, Re Z(Z). There
exists an % -set K contained in R such that KE HS R, H e % imply [A(H)—1.(R)]
<e. There exist &-sets K, K, bearing the same relation to R—L, R n L, respec-
tively. We may suppose that K;+K,=K<R. Since A(K—L) = Ax(K—L), there
exists an #-set 4 such that K;,cAcK—Ls R—L and |A(4)— ,I(K-—L)|<s Then,
by the definition of K, |A(4)—A(R—L)|<e, therefore

(6] JA(K—L)—2(R—L)| <2s .

Since K, €K NnLcR n L and A(K n L) = A,(K n L), there exists an £ -set B such
that K,€BSKnL=RAL and [A(B)—A(Kn L)l<e. Then, by the definition
of K,, |A(B)—2A«(R n L)|<s, therefore

) [A(K A L)— AR A L)| <2¢ .

Since A is strongly additive, (1) and (2) imply

(AR = A(K))—
—(Ae(R—L)= MK =D))~(Ae(R 0 L)~ A(K n L))|<5e.

[A(R)—Au(R—L)=24(R n L)] =

Since |.| and & are arbitrary, this proves what was claimed.

It follows from this and Lemma 3.1 that M(14|%(Z)) = #(Z) and that
Ax|# (%) is additive. Therefore 1|2 (%) is the Pettis extension of A: & — G. Let
(R,) be a decreasing Z(.%)-sequence converging to @. Since 4, is A-lower regular,
Lemma 2.1 asserts the existence of a decreasing % -sequence (L,) such that L, =R,
and |A(L,)—A«(R,)| <& (n = 1,2, ...). Since 4 is continuous at &, A(L,) — 0. Hence,
[.| and & being arbitrary, A,(R,) — 0. This proves that A,|%#(Z) is o-additive.

Suppose, further, that 2 is increasingly convergent. Let (R,) be an increasing
2 (2)-sequence. There exists an & -sequence (L,) such that L,,ER and L, L= R,

Le% imply A(L)—Au(R)|<e (n=1,2,..). Seiting K, = U L n=1,2,.)

we obtain the increasing & -sequence (K,) such that [A(K,)— ,1*(R,,)]<e n=12,.)
Then (A(K,)) is Canchy. Since |.], ¢ are arbitrary, it follows that (14(R,)) is Cauchy.
Thus the s-additive function 1,|2 (%) is increasingly convergent and so extends
uniquely, by Corollary 2.5, to a o-additive function on ¢(%).
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3.4. Remark. Theorem 3.3 is contained in Lipecki’s result {7, p. 110], proved
by a different method. It is included here because it is one of four extension theorems
" coming out of the same ‘Carathéodory argument.

3.5. LEMMaA. If A: & — G is a decreasingly convergent‘ function on a lattice £,

lim A(L) exists for every Ee #(ZL).
L2E,Le¥ .
Proof. Dual of the proof of the first statement of Lemma 3.2.
Let 1: & — G be a function on a lattice %. By Lemma 3.5, if A is decreasingly
lim A(L) is defined for all Ee 3 (¥). We note that

L2E,Le¥
%% = A. Assuming A to be strongly additive and decreasingly convergent, we

‘say that A is L-outer tight if 2*(L—K) = A(L—K) for all L, Ke &.

3.6. THEOREM. Let A: % — G be a function on a lattice £. If A is strongly ad-
ditive, o-additive, decreasingly convergent and A-outer tight then its Pettis extension
is o-additive. If, further, ) is increasingly convergent, it extends uniquely to a o-ad-
ditive function on o(%).

Proof. It will be shown that ¥ < M(A*|2(L)). Let Le &, Re (&) There
exists an &-set K containing R such that K2 H2R, He & imply |A(H)—A*(R)|
<e. There exist & -sets K, K, bearing the same relation to R—L, R n L, respec-
tively. We may suppose that K2K;2R—L and KnL2K,2Rn L. Then
RAL2RAK,2RA(RNL)y=RnL, s0o RnL=RnK,. Since A(K;—K,)
= J*(K,—K,), there exists an &-set 4 such that K, 242K, ~K, = (K, U Kp)—
—K;2R—K, = R—(RnK,) = R—(RN L) = R—L and |A(A)—i(K,—K;)|<¢.
Then, by the definition of K, |1(4)— A*(R—L)| <g, therefore |1(K; — K,)— A*(R—L)]
<2 Since K2K; U K,2R,

convergent, A*(E) =

[A*(R)— J*(R—L)—*(R 0 L)| =
= (R — ARy U K)— (WF(R—L)— A(Ky — Ka))— (MR 0 L)=MKy))| <de .

Since |.| and & are arbitrary, this proves what was claimed.

It follows from this and Lemma 3.1 that A*|#(%) is the Pettis extension of
At & - G Let (R,) be a decreasing % (%)-sequence converging to &. Let L be
an % -set containing R, so that (L—R,) 1 L. Since A* is A-upper regular, Lemma 2.1
asserts the existence of an increasing .%-sequence (L,) such that L,=2L—R, and
L,2H2L—R,, He¥ imply |[MH)—A*L—R)<e (n=1,2,..). Setting K,
=L,nL{n=1,2,..) we have K, L and |A(K,)—A*L~R,)<e (n=1,2,..).
Since A is o-additive, |A(L)—A*(L—R,)|<2¢ for n large enough. Since L, R,
e A(L), ML)—2AHL—R,) = AML)— (A*(L)—I*(R,) = A*(R,), so |A*(R,)]| <2 for
n large enough. Since |.|, & are arbitrary this proves that A*(R,) — 0, from which
it follows that 1*|% (%) is o-additive.

Suppose, further, that A is increasingly convergent. Let (R,) be an increasing
Z(&L)-sequence. By Lemma 2.1, there exists an increasing % -sequence (L,) such
that [A(L,)—A*(R)|<e (n=1,2,..). Since |.|, & are arbitrary, it follows that
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(A*(R,,)) is Cauchy, proving that 1*|22(%) is increasingly convergent. By Corollary
2.5, *|Z(ZL) extends uniquely to a ¢-additive function on ¢(%).

3.7. LEMMA. Let A: &£ — G be a strongly additive locally monotonely convergent
d-additive function on a lattice &. Then l; = I*|F; is strongly. additive, locally
monotonely convergent and 6-additive. ‘

Proof. It will be shown first that if (L,) is a decreasing . -sequence converging
to a set K then A(L,) — A,(K). There exists an % -set L containing K such that
L2A4A2K, Ae ¥ imply [A(4)—A{K)|<e. We have

(L) = 2(K) S AL =MD+ ML) = 2 K)] = 1ALy — L) = A(L— L)+ A(L) — 45(K)|
<AL, U L)= MDY+ L) = AL 0 L) +AL) = 4(K)]
<AL, U L= ML) +2s+e.

Since A is g-additive, |A(L, W L)—A(D)] -0, so [A(L)—2s(K)|<4e for large
enough #. This, with [.|, & arbitrary, suffices.

To show that A, is strongly additive, let 4, Be &; and let (4,), (B,) be de-
creasing & -sequences converging to 4, B respectively. Applying the first para-
graph and the strong additivity of A,

As(A)+A5(B)—A;(A U B)—Ls(A A B)
= Um[A(4,)+A(B)—A(4, U B)—A(4, A B) = 0.

To show that A; is §~-additive (and, in particular, that A; is decreasingly con-
vergent), let (K,) be a decreasing &;-sequence converging to a set X. For each
n=1,2,.., there is a decreasing ¥ -sequence (L,,)m=1 converging to K,. Write

m
4,= L, (m=1,2,..), so that (4,,) is a decreasing .%-sequence converging
n=1

to K such that K, <4, <L, (m = 1,2, ..). By the first paragraph, 1(4,,) — 15(X).
We may suppose the (L,,)m=1 (n=1,2,...) chosen so that L,,242K,, 4 &
imply [A(4)—45(K,)|<e. Then |A(4,)—A(K)l<e (m=1,2,..). Since |.|, ¢ are
arbitrary, this shows that 14(K,,) — A;(K).

It remains to show that A; is locally increasingly convergent. Let (K,) be an
increasing %;-sequence- such that, for some Ke %;, K,=cK (n =1, 2,...). Then
K<L for some L € . Since 1; is A-upper regular, Lemma 2.1 asserts the existence
of an increasing % -sequence (L,) such that L,2K, and L,24=2K,, 4% imply
|A(4)— 245K <e (n=1,2,..). Writing 4,=L,nL (n=1,2,..), (4, is an
increasing #-sequence such that A4,=L and [A(4,)—A(K)l<e (m=1,2,..).
Since (4(4,)) converges and |.|, & are arbitrary, (,(K,)) converges.

Let A: & — G be a strongly additive locally monotonely convergent d-additive
function on a lattice .&. Since A; is locally increasingly convergent (Lemma 3.7),
Lemma 3.2 asserts that A; extends to

(Ad«(B) = lim M(K),

‘KEE,KeZs

Ec (%) = #(2).
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We say that A is A;-inner tight if
(AsL—K) = A(L-K)

3.8. LEMMA. If A1 & — G is a strongly additive locally monotonely convergent
5-additive function on a lattice &, then (Qp)x: # (%) — G is §-additive.

Proof. Let (H,) be a decreasing # (%)-sequence converging to a set H.
Let XK be an ‘Ps-set contained in H such that KcAcH, Ae%,; imply
|45(A) — (Aa)s H)] <e. Since (A5)x is A;-lower regular, Lemma 2.1 asserts the existence
of a decreasing &;-sequence (K,) such that K,cH,, [A5(K) — (As)«(H,) <&
m=1,2,..) and K=B<H, where B = limK,. We have

n

for all L, Ke & .

[ — ()i (EDI <1 (A)s(H) = oK) + | 4(Ko) = Ao(B) +145(B) — (A5)4(H )|
<e+]25(K,)—A,(B)| +e.

Since 4, is 8-additive (Lemma 3.7), |45(K,) —A;(B)|<e for large enough » and then
[(A)(H,) — (15)x(H)| <3e. Since [.|,& are arbitrary, this proves that (45)«(H,)
— (As)u(H)-

3.9. LEMMA. If A: & — G is a strongly additive locally monotonely convergent
S-additive Ag-inner tight function on a lattice &, then AgfK—L) = (A;)x(K—L)
whenever Ke &5 and Le &.

Proof. Since A, is strongly additive and §-additive (Lemma 3.7), (L,) being
a decreasing % -sequence converging to X, we have

A(B—L) = a(K)—=As(K L) = Bm[X(L,)— AL, 0 L)] = limA(L,~L).

Since 1 is As;-inner tight and (), is &-additive (Lemma 3.8), hm}L(L -L)
= hm(/l,,)*(L ~L) (As)s(K—L).

3.10. THEOREM. Let A: & — G be a function on a lattice £. If A is strongly
additive, &-additive, locally monotonely convergent and As-inner tight then its Pettis
extension is o-additive. If, further, A is increasingly convergent, it extends uniquely
to a o-additive function on o(%).

Proof. We note first that, if A is increasingly convergent, so is A; (Lemma 2.1).
Then, taking account of Lemma 3.7, it suffices to retrace the proof of Theorem 3.3
with A; in the approximating role of A (and therefore (4;), in the role of 1), ap-
plying As;-inner tightness in the form of Lemma 3.9.

3.11. LEMMA. Let A: & — G be a strongly additive locally monotonely convergent
o-additive function on a lattice &. Then A, = A, |2, is strongly additive, monotonely
convergent and c-additive.

Proof. The dual of the proof of Lemma 3.7 shows that 4, is strongly additive,
locally monotonely convergent and o-additive. Then, the locally increasingly con-
vergent function A,, whose domain %, is a o-lattice, is increasingly convergent.

icm
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Let : &% — G be a strongly additive locally monotonely convergent o-ad-
ditive function on a lattice . Since A, is decreasingly convergent (Lemma 3.11),
Lemma 3.5 asserts that A, extends to

(A™E) = lim

K2E,Ke&o

A(K), EciH(Z,).

We say that A is A,-outer tight if
(AN*¥(L—K) = AM(L—K) for all L,KeZ.
3.12. LemMA. If A: & — G is a strongly additive locally monotonely convergent
o-additive function on a lattice &, then (A)*: #(L,) — G is o-additive.

Proof. Dual of the proof of Lemma 3.8, with Lemma 3.11 in the role of
Lemma 3.7.

3.13. TueoREM. If A: & — G is a strongly additive locally monotonely convergent
o-additive ),-outer tight function on a lattice &, then A (K—L) = (A,)*(K—L)
whenever Ke %, and Le &.

Proof. Dual of the proof of Lemma 3.9, with Lemmas 3.11, 3.12 in the roles
of Lemmas 3.7, 3.8, respectively.

We will need a generalization of Theorem 3.13. As intermediate step, we prove
the following additive property of (1,)*:

3.14. LEMMA. Let A: & — G be a strongly additive locally monotonely convergent
a-additive A,-outer tight function on a lattice . If LEK<FE, where K, Ee %, and
Le %, then

U IL+(E-K)] = AD)+()*(E-K) ] A

Proof. Let H be an #,-set containing E— K such that HDA2E—K, Ae &,
imply |A,(4)— (A, (E—K)| <e. We may suppose that E—K<H<E. Let P be an
Z,-set containing L+(E—K) such that P2ADL+(E—K), 4de%, imply
[A(A) = (A)*[L+(E—~K)]| <e. Writing H, = P N H, we have

L+(E—K)sP (LU H)=Lu H,cP,
E~K<HcH.
By the definitions of H and P,
1) AL+ (E-E)]—AL) — Q)" E~EK)} —{A(L © Hy)— (L)~ L, (H)} <26

Since 4, is strongly additive (Lemma 3.11), A (L U H) —A(L)—1,(H) = —A(LNHy),
so (1) may be written

) |(A)*[L+(E-K)]

Since A (H;—L) = (A)*(H,
H,~Lc Qc_:Hl and

3 (@) — A,(H; ~L)| <& .

—AL) = A)ME-K)+2,(L n H))|<28.
—L) (Lemma 3.13), there is an #,-set Q such that
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Since E—K<H, and L n (E-K) = @, E—-KcH,—~LcQcH,€H, so, by the
definition of H,

(C)] A Q) — Ao(H)]<2¢.
By (3) and (4), :
)] A(Hy 0 D)l = [AJH,—H =Dl = |4,(H,)—~2,(H—L)|<3e.

By (2) and (5), :
[G)* L+ (B— K)] = ML) — (A (E—~K)| <5e.

This, with |.], & arbitrary, proves the lemma.

3.15. LeMMA. If A+ & — G is a strongly additive locally monotonely convergent
o-additive },-outer tight function on a lattice %, then A(E—K) = (A)*E-K)
for all E,Ke %,. ‘

Proof. We may suppose that K< E. Let (L,) be an increasing £ -sequence
converging to K, so that [L,+(E—K)] 4 E. Since (4,)* is o-additive (Lemma 3.12),

) ()M Ly+(E=K)] = (A)*(E) = Ao(E) -
Applying Lemma 3.14, we may write (1) in the form
@ ML)+ AN (E—K) — A(E) .

Because 1, is o-additive (Lemma 3.11), (2) implies

3) LK)+ (A E—K) = A (E) .

Because 1, is strongly additive (Lemma 3.11), (3) may be written
(A E—K) = 3(E)=1,(K) = 1(E~EK).

3.16. THEOREM. Let 1: & — G be a function on a lattice %. If L is strongly ad-
ditive, o-additive, locally monotonely convergent and A,-outer tight, then A extends
uniquely to a o-additive function on o(%).

Proof. Retracing the first paragraph of the proof of Theorem 3.6 (taking
account of Lemma 3.11) with A, in the approximating role of A (therefore (4,)*
in the role of 1%), applying A-outer tightness in the form of Lemma 3.15, we show
that (1,)*|2 (%) is the Pettis extension of 1: & — G.

By Lemma 3.12, (1,)*|2 (%) is o-additive. Since 4, is increasingly convergent
(Lemma 3.11), it follows from Lemma 2.1 that (1,)* is increasingly convergent.
Hence, by Corollary 2.5, (4,)*|%2(%) extends uniquely to a o-additive function
on ¢(%).

Remark. Let 1: # — G be a o-additive function on a ring %. Then, in
particular, 2 is strongly additive and (g, 6)-additive. If A is increasingly convergent
it is monotonely convergent (as shown in the proof of Corollary 2.5), so that its
extensions Ay, A* (4,) and (4,)* are defined. Supposing A to be increasingly con-
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vergent, R;, R, € % implies R; — R, € Z, and therefore 4 is A-inner tight, 1-outer-
tight, A,-inner tight and A,-outer tight. Consequently, each of Theorems 3.3, 3,6,
3.10 and 3.16 generalizes Corollary 2.5 — though the proof of each applies Corol-
lary 2.5.
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