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On the components of the principal part
of a manifold with a finite group action
‘ by

C. Bowszyc (Warszawa)

Abstract, For an effective smooth action of a finite group G on a closed connected mani-
fold M the following questions are examined,

1. When is the closure of a component of a principal part of Ma topological manifold with
boundary ?

2. When does there exist a closed set containing exactly one point from every orbit?

Let M be a closed connected smooth m-dimensional manifold with a smooth
effective action of a finite group G. For every point x € M there is a slice ¥ at x
diffeomorphic to R" with an orthogong] action of the isotropy group G,. In the
sequel ¥ will be identified with R™. It is known. ([1] or [2]) that there is 2 smallest
conjugacy class of isotropy groups called principal groups. In the case of an effective
action of a finite group G on a connected manifold M the unique isotropy group is
the trivial subgroup {e} of G because for every x & M the points of a slice ¥ at x
with principal isotropy groups have the same isotropy group since the action of G,
on V is linear, The open and dense subset of M consisting of points with the trivial
isotropy group is called. the principal part of M and will be denoted by M,. Its com-

‘plement M’ = M\M, will be called the singular part of M.

Let M? be the set of fixed points of the diffeomorphism of M corresponding
to the element g € G. The components of M? are closed submanifolds of M and

M= ) M" If dimM’'<m-1 orequivalently, for every g € G\{e}; the dimen-
gaG\[(e}
sion of each component of M7 is less than m—1, then M, is connected because M’

does not separate any slice. If dimM? = m—1, then g is of order 2 because in a slice
at a point of a component of M of dimension m—1 g acts as symmetry with respect
to a hyperplane. T{ M is orientable, then such a g reverses the orientation of M.
Therefore if M is orientable and G preserves orientation, then dimM ‘' <m~1 and M,
is connected.

It may happen that M, is connected and dimM' = m—1.

1. ExampLE. Let M be the real projective plane P, with the action of Z,

- induced by the action of Z, in R? for which the generator g of Z, acts by symmetry

‘with respect to a plane or equivalently by symmetry with respect to the orthogonal

s
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line. M’ is the union of the circle P, and an isolated point, and so dimM’ = 1 = m—1,
M, is homeomorphic to an open punctured disc, and therefore is connected. M¥ has.
components of different dimensions. If we take M = P, instead of P,, we get an
example of an orientable manifold with the same properties.
Let C be any component of M,. The space M, /G of orbits of M, is connected
([1] or [2]), and so M, = (J gC. More precisely, we have
g9eG

2. PrOPOSITION. If G is the subgroup of G generated’by the elements (of o der 2)
Sor which &imM? = m—1, then G acts transitively on the fumily of components of M,
For any compenent C of M,, M, = U@gC.

ge

Proof. We shall say that two components, C and C’, of M, are adjacent iff
dimC n €' = m—1 or equivalently iff there exists a point xe T n T’ such that
G, = {e, g} and g acts in the slice ¥ at x by symmetry with respect to the hyper-
plane V79, one open half-space is contained in C-and the other in C’. For a given
component C of M, let € be the family of all components C’ of M, such that there
exists a sequence of components C; of M,, i = 0,1, ..., k with C,_; adjacent to C,
fori=1,..,k, Co,= C and C, = C’. We shall prove that ¥ contains all com-
ponents of M,. Suppose that this is not true. Let P, = (J C', P, = U C,

crew i

and let N be the union of components of M? of dimensions less than m—1 for all
g € G. Then P, n P,= N and the connected set NN is the disjoint union of nonvoid

sets P\ and P,\N closed in M\, which is impossible. Therefore for every com- -

., k from the definition of ¥
, ke such that C; = giCl 4. Consequently C’ = gC
. g, € G, which completes the proof.

The closure of a component of M, is not always a topological manifold with
- boundary.

ponent C’ of M, there exists a sequence C;, 7= 0,1,
and a sequence of g; € G, i =
for g = gy ..

3. ExampLE. Let G be the symmetry group of a regular n-polygon on the
plane R? with n odd. G acts orthogonally also on R?x R, the action on R being
trivial, and on the projective plane P, = M. M, has n components. Any compo-
nent C is homeomorphic to an open punctured disc, but C is homeomorphic to
a closed disc with two points from the boundary identified. The same G acts on the
orientable manifold P; with similar conclusions.

Next proposition gives conditions under which the closures of components
of M, are topological manifolds.

4. ProrosITION. For a component C of M, the following conditions are equi-
valent:
a) C is a topological manifold with the boundary 8C = FrC,
b) For every xe¥tC the local graded singular homology group with integer
_ coefficients H(C L {x}, C) is trivial.
¢) For every xe FrC if V is a slice at x, then V' = VNV, is a union of hyper-
planes (of dimension m—1) and V  C is a component of Ve.
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d) M" = M~\M, is a union of (m—1)-dimensional manifolds and for every
xe M’ and every neighbourhood U of x there is a neighbourhood of x V< U such
that different components of V, are contained in different components of M,.

&) IntC = C and no point x € FrC separates any connected neighbourhood U
of x in Cu {x}.

Proof. ay="b). Every x€dC = FrC has a neighbourhood U in Cu {x}
homeomorphic to an open half-space with one point on the boundary added. By
excision H(C U {x}, C) & H(U, U\{x}) is trivial in all dimensions.

b) = c). Suppose that ¥’ is not a union of hyperplanes. Then there exist some
y € V' and aslice Uat y such that U’ = U\U, is a linear subspace of U of dimension
k<m—2. We can assume that the connected set U, is contained in C because all
componen‘ts of M, are diffeomorphic by Proposition 2. Then by excision

H,lC 0 {1}, C) & Hy- (U, v {3}, U) » Z because the pair (U, U {y}, U,) has
the homotopy type of (R™~¥, R"™{0}). This is a contradiction.

By excision, the exact homology sequence of the pair (¥ o C) u {x}, ¥ n C)
and the contractibility of the cone (V' C) U {x}, it follows that

0~ H(Cu{x},O)m H((Vn C)uix}, ¥ C)m Hy(V A C),
and so V' n C is a component of V. '
¢) = a). For xe FrC and a slice ¥ at x, C n ¥ is a polyhedral cone homeo-
morphic to a closed half-space.

¢) <> d) is obvious because every neighbourhood of x contains a slice at x.

c) <> e) results from the following facts:

IntC = C iff for any slice ¥ the singular part ¥’ is a union of hyperplanes.

For xe FrC and a slice ¥ at x the point x does not separate VnC)uix}
iff V'~ C is a component of V,.

Every neighbourhood U of xeFrC in Cu {x} contains a neighbourhood
(V' n Q) u {x} for some slice V at x.

Thus the proof is completed.

5. DERINITION. A subset F of M is called a fundamental set iff each orbit has
in F exactly one point. Y

(This definition is not generally accepted).

It is evident that in the above sense fundamental sets always exist. A funda-
mental set cannot be an open set, by the existence of slices if M’ is not void and by
the connectedness of M if the action is free (unless G is trivial).

The question arises when there exists a closed (or equivalently compact) funda-
mental set. In. the case of a free action such a fundamental set does not exist because M
is connected,

6. PrOPOSITION. Let C be a component of M, and let Gg be the subgroup of G
preserving C. On M there is a closed fundamental set [ff G¢ is trivial. In this case the
sets gC for g e G are all possible closed fundamental sets and G = G (comp. Propo-
sition 2), i.e, G is generated by the elements g € G (of order 2 and reversing orienta-
tion if M is orientable) such that dimM? = m—1.
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Proof. Suppose that Fis a closed (compact) fundamental set. It is homeomorphic
by the canonical map to the space of orbits M/G. Because M, /G is connected, the
set C = M, n F is connected and closed in M,, and M, is the disjoint union of gC

for g € G. The set () gC is closed in M, because G is finite and its complement C
g#e
in M, is an open component of M,. The set F is closed and M,/G is dense in M/G,

and so C = F. This proves that G = {¢} and gC are all possible closed fundamental
sets.

Suppose that G is trivial. Let x be any point of C. If xe C, then for
g € G\{e} gx belongs to another component of M, and gx ¢ C. Let x & Fr C. Suppose
that there exists a go € G such that gox # x and goxe C. Let ¥ be a slice at x.
By Proposition 2 applied to the vnit sphere in ¥ with the action of G, it follows that
for any two components of ¥, some element of G, maps one of them onto the other.
Therefore for C n ¥ and go '(C n go¥) (which are unions of components of V)
there is a g, € G, such that g,(Cn V) ngo(CngeV) # @. It follows that
90g1(CA V)N (CngeV)# D and gog; = e because G¢ = {e}. On the other
hand, x = go9,Xx = gox # x, which is a contradiction. We have proved that C
does not contain two points of one orbit. Because M, is dense and G is finite, we

have M = M, = |) gC and hence C contains exactly one point from every orbit.
geG

Therefore C is a closed fundamental set. Because gC are different for g € G, from
Proposition 2 it follows that G = G. Thus the proof is completed.

In the case of a free action or, more generally, when M, is connected (e.g. if
dimM’<m-~=1 or if M is orientable and G preserves orientation) there are no closed
fundamental sets (unless G is trivial). :

7. COROLLARY. If there exists a closed fundamental set F, then it is a topological
manifold with boundary 8F = FrF. (F = C and FrC = FrF for some component C
of M), ‘ '

This follows from Propositions 6 and 4 because conditions 4c) are satisfied.

The converse of Corollary 7 may be false e. g. for free actions. But there is a case
where the converse is true.

8. PROPOSITION. If a component C' of M, has the closure C homeomorphic to
a disk and 8C = FrC, then C is a closed fundamental set (the word disk can be replaced
also by any topological manifold with boundary which has the fixed point property witle
respect to homeomorphisms).

Proof. By Proposition 6 it is sufficient to prove that G is trivial. We shall
proceed by induction with respect to dimension m of M.

Assume that the theorem is true for manifolds of dimensions less than m.
Suppose that G¢ is not trivial. Let g € Go\{e}. By the Brouwer fixed point theorem
there is an xe C, such that gx = x. We have x ¢ C because Cc M,, and so
xeFrC = 0C. Let ¥ be a slice at x and §' the unit sphere in V. By Proposition 4,
condition ¢) it follows that C'n S is a component of the principal part S, of the
(m—1)-dimensional sphere S with the action of G,: C r | S'is homeomorphic to

icm

On the components of the principal part of a manifold 233

adiskand 8C n S = Fr (Cn S)in S. Since g(C n S) = C n S, by inductive hypo-
thesis ¢ = e and this is a contradiction.

9. COROLLARY. Let V be an orthogonal effective representation of a finite group G
and S the unit sphere in V. For the action of G on S there is a closed findamental set
iff the singular part V' = VNV, of V is a union of hyperplanes. In that case any fun-
damental set is homeomorphic to a disk and the action of G on the family of |G| funda-
mental sets is transitive and free.

The assumption dC = FrC in Proposition 8 is essential.

10. ExaMPLE. Let G = Z, xZ, with the standard generators gy, g, act on the
2-dimensional unit sphere M = S?><R® in such a way that g, is the antipodism
and g, the symmetry with respect to a plane. Then there are two components of the
principal part of M and their closures are hemi-spheres. But there are no closed
fundamental sets because |Gg| = 2. (G¢ contains e and symmetry with respect to
a line g49,).

In general, closed fundamental sets are not necessarily homeomorphic to disks,
as is seen on the torus in R® with the action of Z,, the generator acting by symmetry
with respect to a plane. In this case the closed fundamental set is homeomorphic
to a ring.

If there exists a closed fundamental set, then it is homeomorphic to the space
of orbits, In Examples 1 or 10 the space of orbits is homeomorphic to a disk, but there
are no closed fundamental sets.

11. Remark. In fact if a component C of M, is homeomorphic to R” then C is
a fundamental set. ‘

This follows from the kmown result that a nontrivial finite group cannot act
freely on R™ (which is a consequence of the Smith theorem [1]). Indeed, G¢ acts
freely on C, and so G is trivial and C is fundamental set by Proposition 6.
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