On the components of the principal part of a manifold with a finite group action

by

C. Bowszyc (Warszawa)

Abstract. For an effective smooth action of a finite group \(G \) on a closed connected manifold \(M \) the following questions are examined.
1. When is the closure of a component of a principal part of \(M \) a topological manifold with boundary?
2. When does there exist a closed set containing exactly one point from every orbit?

Let \(M \) be a closed connected smooth \(m \)-dimensional manifold with a smooth effective action of a finite group \(G \). For every point \(x \in M \) there is a slice \(V \) at \(x \) diffeomorphic to \(\mathbb{R}^n \) with an orthogonal action of the isotropy group \(G_x \). In the sequel \(V \) will be identified with \(\mathbb{R}^n \). It is known ([1]) or [2]) that there is a smallest conjugacy class of isotropy groups called principal groups. In the case of an effective action of a finite group \(G \) on a connected manifold \(M \) the unique isotropy group is the trivial subgroup \(\{ e \} \) of \(G \) because for every \(x \in M \) the points of a slice \(V \) at \(x \) with principal isotropy groups have the same isotropy group since the action of \(G_x \) on \(V \) is linear. The open and dense subset of \(M \) consisting of points with the trivial isotropy group is called the principal part of \(M \) and will be denoted by \(M' \). Its complement \(M'' = M \setminus M' \) will be called the singular part of \(M \).

Let \(M^g \) be the set of fixed points of the diffeomorphism of \(M \) corresponding to the element \(g \in G \). The components of \(M^g \) are closed submanifolds of \(M \) and \(M' = \bigcup_{g \in \mathbb{G} \setminus \{ e \}} M^g \). If \(\dim M' < m - 1 \) or equivalently, for every \(g \in G \setminus \{ e \} \), the dimension of each component of \(M^g \) is less than \(m - 1 \), then \(M' \) is connected because \(M' \) does not separate any slice. If \(\dim M^g = m - 1 \), then \(g \) is of order 2 because in a slice at a point of a component of \(M^g \) of dimension \(m - 1 \) \(g \) acts as symmetry with respect to a hyperplane. If \(M \) is orientable, then such a \(g \) reverses the orientation of \(M \). Therefore if \(M \) is orientable and \(G \) preserves orientation, then \(\dim M' < m - 1 \) and \(M' \) is connected.

It may happen that \(M' \) is connected and \(\dim M'' = m - 1 \).

Example. Let \(M \) be the real projective plane \(\mathbb{P} \) with the action of \(\mathbb{Z}_3 \) induced by the action of \(\mathbb{Z}_2 \) in \(\mathbb{R}^3 \) for which the generator \(g \) of \(\mathbb{Z}_3 \) acts by symmetry with respect to a plane or equivalently by symmetry with respect to the orthogonal
line. M' is the union of the circle P_1 and an isolated point, and so $\dim M' = m - 1$. M'_n is homeomorphic to an open punctured disc, and therefore is connected. M° has components of different dimensions. If we take $M = P_2$ instead of P_3, we get an example of an orientable manifold with the same properties.

Let C be any component of M'_n. The space $M'_n \setminus C$ of orbits of M'_n is connected ([1] or [2]), and so $M'_n = \bigcup g C$. More precisely, we have $M'_n = \bigcup g C$.

2. Proposition. If G is the subgroup of G generated by the elements of C (of order 2) for which $\dim M' = m - 1$, then G acts transitively on the family of components of M'_n. For any component C of M'_n, $M'_n = \bigcup g C$.

Proof. We shall say that two components, C and C', of M'_n are adjacent iff $\dim C \cap C' = m - 1$ or equivalently there exists a point $x \in C \cap C'$ such that $G = \{ e, g \}$ and g acts in the slice V at x by symmetry with respect to the hyperplane V', one open half-space is contained in C and the other in C'. For a given component C of M'_n let G be the family of all components C' of M'_n such that there exists a sequence of components C_i of M'_n, $i = 0, 1, \ldots, k$ with C_{i-1} adjacent to C_i for $i = 1, \ldots, k$, $C_0 = C$ and $G_i = C_i$. We shall prove that G contains all components of M'_n. Suppose that this is not true. Let $P_1 = \bigcup G_i$, $P_2 = \bigcup G_i$, and let N be the union of components of M'_n of dimensions less than $m - 1$ for all $g \in G$. Then $P_1 \cap P_2 \in N$ and the connected set $M \setminus N$, the disjoint union of nonvoid sets $P_1 \setminus N$ and $P_2 \setminus N$ closed in $M \setminus N$, is impossible. Therefore for every component C' of M'_n there exists a sequence C_i of C_i, $i = 0, 1, \ldots, k$ from the definition of G and a sequence of $g_i \in G$, $g_1 = g_2, \ldots, g_1 \in G$, $C_i = g_i C_{i-1}$. Consequently $C_i = g C$ for $g = g_1 \ldots g_k$. Complete the proof.

3. Example. Let G be the symmetry group of a regular n-polygon on the plane \mathbb{R}^2, n odd. G acts orthogonally also on $\mathbb{R}^2 \times \mathbb{R}$, the action on \mathbb{R} being trivial, and on the projective plane $P_2 = M'_n$. M'_n has n components. Any component C is homeomorphic to an open punctured disc, but C is homeomorphic to a closed disc with two points from the boundary identified. The same G acts on the orientable manifold P_2 with similar conclusions.

Next proposition gives conditions under which the cycles of components of M'_n are topological manifolds.

4. Proposition. For a component C of M'_n the following conditions are equivalent:

a) C is a topological manifold with the boundary $\partial C = \text{Fr} C$.

b) For every $x \in \text{Fr} C$ the local graded singular homology group with integer coefficients $H^i(C) \cup \{ x \}$ is trivial.

c) For every $x \in \text{Fr} C$ if V is a slice at x, then $V' = V \setminus V$ is a union of hyperplanes of dimension $m - 1$ and $V \cap C$ is a component of V.

d) $M' = M'_nM'_n$ is a union of $(m-1)$-dimensional manifolds and for every $x \in M'$ and every neighbourhood U of x there is a neighbourhood of $x \subset U$ such that different components of V_x are contained in different components of M'_n.

e) $\text{Int} C = C$ and no point $x \in \text{Fr} C$ separates any connected neighbourhood U of x in $C \cup \{ x \}$.

Proof. a) \Rightarrow b). Every $x \in \text{Fr} C = \text{Fr} C$ has a neighbourhood U in $C \cup \{ x \}$ homeomorphic to an open half-space with one point on the boundary added. By excision $H(C \cup \{ x \}) \approx H(U \setminus \{ x \})$ is trivial in all dimensions.

b) \Rightarrow c). Suppose that V' is not a union of hyperplanes. Then there exist some $x \in V'$ and a slice U at x such that $U \setminus U = U'$ is a linear subspace of U of dimension $k \leq m - 2$. We can assume that the connected set U_2 is contained in C because all components of M'_n are diffeomorphic by Proposition 2. Then by excision $H(U_2 \cup \{ x \}, C) \approx H(U_2 \cup \{ x \}, U_2) \approx Z$ because the pair $(U_2 \cup \{ x \}, U_2)$ has the homotopy type of $(\mathbb{R}^{m-k}, \mathbb{R}^{m-k} \setminus \{ 0 \})$. This is a contradiction.

By excision, the exact homology sequence of the pair $(V' \setminus C \cup \{ x \}, V \cap C)$ and the contractibility of the cone $(V \cap C) \cup \{ x \}$, it follows that $0 \approx H_2(C \cup \{ x \}, C) \approx H_2((V \cap C) \cup \{ x \}, V \cap C) \approx B_2(V \cap C)$, and so $V \cap C$ is a component of V_x.

c) \Rightarrow d). For $x \in \text{Fr} C$ and a slice V at x, $C \cap V$ is a polyhedral cone homeomorphic to a closed half-space.

d) \Rightarrow e). Obvious because every neighbourhood of x contains a slice at x.

e) \Rightarrow a) results from the following facts:

\begin{itemize}
 \item $\text{Int} C = C$ iff for any slice V' the singular part V' is a union of hyperplanes.
 \item For $x \in \text{Fr} C$ and a slice V at x the point x does not separate $(V \cap C) \cup \{ x \}$ iff $V' \cap C$ is a component of V_x.
\end{itemize}

Every neighbourhood U of $x \in \text{Fr} C$ in $C \cup \{ x \}$ contains a neighbourhood $(V \cap C) \cup \{ x \}$ for some slice V at x.

Thus the proof is completed.

5. Definition. A subset F of M is called a fundamental set iff each orbit has in F exactly one point.

(Thus, this definition is not generally accepted.)

It is evident that in the above sense fundamental sets always exist. A fundamental set cannot be an open set, by the existence of slices if M is not void and by the connectedness of M if the action is free (unless G is trivial).

The question arises when there exists a closed (or equivalently compact) fundamental set. In the case of a free action such a fundamental set does not exist because M is connected.

6. Proposition. Let C be a component of M'_n and let G be the subgroup of G preserving C. On M there is a closed fundamental set iff G is trivial. In this case the sets $G \setminus g G$ for $g \in G$ are all possible closed fundamental sets and $G = G$ (comp. Proposition 2), i.e. G is generated by the elements $g \in G$ (of order 2 and reversing orientation if M is orientable) such that $\dim M' = m - 1$.

Proof. Suppose that F is a closed (compact) fundamental set. It is homeomorphic by the canonical map to the space of orbits M/G. Because M/G is connected, the set $C = M_e \cap F$ is connected and closed in M_e, and M_e is the disjoint union of gC for $g \in G$. The set $\cup gC$ is closed in M_e because G is finite and its complement C^* is open in M_e. The set F is closed and M_e/G is dense in M/G, and so $C = F$. This proves that $C^* = \{e\}$ and gC are all possible closed fundamental sets.

Suppose that G_e is trivial. Let x be any point of C. If $x \in C$, then for $g \in G \setminus \{e\}$, $g x$ belongs to another component of M_e and $g x \notin C$. Let $x \in Fr C$. Suppose that there exists a $g_0 \in G$ such that $g_0 x \neq x$ and $g_0 x \in C$. Let V be a slice at x. By Proposition 2 applied to the unit sphere in V with the action of G_e, it follows that for any two components of V, some element of G_e maps one of them onto the other. Therefore for $C \cap V$ and $g_0^{-1}(C \cap V)$ (which are unions of components of V) there is a $g_1 \in G_e$ such that $g_1 (C \cap V) \cap g_0^{-1}(C \cap V) \neq \emptyset$. It follows that $g_1 g_0 (C \cap V) \cap (C \cap g_0 V) \neq \emptyset$ and $g_0 g_1 = e$ because $G_e = \{e\}$. On the other hand, $x = g_0 g_1 x = g_0 x \neq x$, which is a contradiction. We have proved that C does not contain two points of one orbit. Because M_e is dense and G is finite, we have $M = M_e = \cup gC$ and hence C contains exactly one point from each orbit.

Therefore C is a closed fundamental set. Because gC are different for $g \in G$, from Proposition 2 it follows that $G = G_e$. Thus the proof is completed.

In the case of a free action or, more generally, when M_e is connected (e.g. if $dim M_e < m-1$ or if M is orientable and G preserves orientation) there are no closed fundamental sets (unless G is trivial).

7. Corollary. If there exists a closed fundamental set F, then it is a topological manifold with boundary $\partial F = Fr F$. ($F = C$ and $Fr C = Fr F$ for some component C of M_e).

This follows from Propositions 6 and 4 because conditions 4e) are satisfied.

The converse of Corollary 7 may be false e.g. for free actions. But there is a case where the converse is true.

8. Proposition. If a component C of M_e has the closure C homeomorphic to a disk and $\partial C = Fr C$, then C is a closed fundamental set (the word disk can be replaced also by any topological manifold with boundary which has the fixed point property with respect to homeomorphisms).

Proof. By Proposition 6 it is sufficient to prove that G_e is trivial. We shall proceed by induction with respect to dimension m of M.

Assume that the theorem is true for manifolds of dimensions less than m. Suppose that G_e is not trivial. Let $y \in G_e \setminus \{e\}$. By the Brouwer fixed point theorem there is an $x \in C$, such that $y x = x$. We have $x \notin C$ because $C \subseteq M_e$, and so $x \notin Fr C$. Let V be a slice at x and S the unit sphere in V. By Proposition 4, condition e) it follows that $C \cap S$ is a component of the principal part S_0 of the $(m-1)$-dimensional sphere S with the action of G_e: $C \cap S$ is homeomorphic to a disk and $\partial C \cap S = Fr (C \cap S)$ in S. Since $g (C \cap S) = C \cap S$, by inductive hypothesis $g = e$ and this is a contradiction.

9. Corollary. Let V be an orthogonal effective representation of a finite group G and S the unit sphere in V. For the action of G on S there is a closed fundamental set iff the singular part $V' = \emptyset$ of V is a union of hyperplanes. In that case any fundamental set is homeomorphic to a disk and the action of G on the family of $|G|$ fundamental sets is transitive and free.

The assumption $\partial C = Fr C$ in Proposition 8 is essential.

10. Example. Let $G = Z_2 \times Z_2$ with the standard generators g_1, g_2 act on the 2-dimensional unit sphere $M = S^2 \subset \mathbb{R}^3$ such a way that g_1 is the antipodism and g_2 the symmetry with respect to a plane. Then there are two components of the principal part of M and their closures are hemi-spheres. But there are no closed fundamental sets because $|G| = 4$. (G_e contains e and symmetry with respect to a line $g_1 g_2$).

In general, closed fundamental sets are not necessarily homeomorphic to disks, as is seen on the torus in \mathbb{R}^2 with the action of Z_2, the generator acting by symmetry with respect to a plane. In this case the closed fundamental set is homeomorphic to a ring.

If there exists a closed fundamental set, then it is homeomorphic to the space of orbits. In Examples 1 or 10 the space of orbits is homeomorphic to a disk, but there are no closed fundamental sets.

11. Remark. In fact if a component C of M_e is homeomorphic to \mathbb{R}^m then C is a fundamental set.

This follows from the known result that a nontrivial finite group cannot act freely on \mathbb{R}^m (which is a consequence of the Smith theorem [1]). Indeed, G_e acts freely on C, and so $G_e C$ is trivial and C is fundamental set by Proposition 6.

References

Accepé par la Réduction le 12. 5. 1980