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There is a positive integer ny such that n>=n, implies (2¢,)~close maps into P
are homotopic. Let n>max{n;,n,, ny} be fixed. Let r: P — 4, be the retraction
defined by

r(x, Im+1s T2 ) = rn(x) > for xelU.

Since g, o f;: A, > A,<P is a (2¢,)-map, our choice of n; implies there is a homo-
topy F: A,xI— P with '

F(x,0) = gyofy(x) and Flx,1)=x forall xed,.

Thus re F: A,xI— 4, is a homotopy with

roF(x,0) = g,of(x) and reF(x,1)=x.

This completes the proof.
The converse of (5.5) is not true: Let {4} be the sequence of [Bx, (4.9)],
in which it was shown that 4, # lim 4, in the topology of d,. However, 4, = lim A4,

n=+w -+
in the topology of dc, hence in the topology of dp, hence (by (5.2)) in the topology
of deg.
Thus d, induces a stronger topology on ANRY than does deg.
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On non compact FANR’s and MANR’s
by
Yukihiro Kodama (Ibaraki)

Abstract, Tt is proved that a finite dimensional metrizable space X is a FANR if and only
if X is a MANR and the set of points at which X'is not locally contractible has the compact closure,
As an application, for finite dimensional metrizable spaces X and ¥, a necessary and sufficient
condition under which X'x ¥ be a FANR is obtained in terms of X and Y.

1. Introduction. The notion of FANR is introduced by K. Borsuk [2]. According
to [2, p. 94] a metrizable space X is a FANR if for every metrizable space X" con-
taining X as a closed subset, X is a fundamental neighborhood retract of X”. S. God-
lewski [4] has introduced the concept of MANR. From the definition it is obvious
that every FANR is a MANR. By [4] and [6] the properties “to be a FANR” are not
generally shape invariants in the sense of Fox [3]. In this paper we shall show that
a finite dimensional metrizable space X is a FANR if and only if X is a MANR and
the set of points at which X are not locally contractible has the compact closure.
Obviously the second condition is not a shape invariant.

All spaces under considerations are matrizable and maps are continuous. AR and
ANR mean those for metrizable spaces.

2. Theorems. Let X be a space and let xe X. If for every neighborhood U
of x in X there exists a neighborhood ¥ of x such that ¥ is contractible in U, then X
is said to be locally contractible at x. Put L'(X) = {x: xe X and X is locally con-
tractible at x} and L(X) = CI(X—L'(X)), where Cl means the closure in X.

Tueorem 1. A finite dimensional space X is a FANR if and only if X is a MANR
and L(X) is compuct.

Proof. “If part”. Let M be an AR containing X as a closed set, It is assumed
by [7] that M is finite dimensional and X is unstable in M in the sense of Sher
[9, p. 346]. Since X is a MANR, there is a closed neighborhood W of X in M and
a mutational retraction r: U(W, M) = U(X, M). Here U(A, M) means the family
of all open neighborhoods of A4 in M. (See [3] and [5] for notations and definitions.)
Let d be a metric in M. Chodse an open cover 4 of the set M —L(X) such that if
dx;, L(X)) - 0 (I = o0) for x;& M~L(X) then diameter St(x;, %) — 0 (i — c0),
where St(x, %) = |) {U: xe U and Ue%}. Since X is locally contractible at each
point of the set X—L(X) and M is finite dimensional, by [1, Theorem (9.1), p. 80]
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there exist a subset H of W~—L(X) and a map /'t H — X—L(X) satisfying the

following conditions.

(I) His a closed neighborhood of X—L(X) in W—L(X),

(2) ' is a retraction, that is, r'(x) = x for x e X¥—L(X),

(3) there is a deformation retraction f" : HxI-— W—L(X) such that &'(x, 0) = x
and &'(x, 1) = r'(x) for xe H, and &'(x,t) = x for x e X—L(X), and & ig
% -limited on some neighborhood H' of X¥—L(X) in M—L(X), that is, if
xe ' n H E(xxcU for some Ue%.

Consider the subset T = (X U H)xJu Wx {0} of MxUI. Let us define a map
ET—»M by &, t)=(x,1) for (x,0)eXxIu Wx{0} and &EHxI=¢,
From (3) ¢-is continuous. By Borsuk’s homotopy extension theorem ¢ has an exten-
sion over Wx I which we denote by ¢ again. Define r: W — M by r(x) = £(x, )]
for x& W: Then we have '

@ rix)y=x  for xeX and r(H)cX.

Let {U;: i= 1,2,...) be a decreasing countable neighborhood basis of L(X) in M.
Such a basis exists by the compactness of L(X). Each set U; v H is a neighborhood
of X'in M. From (4) and the continuity of  there exist a néighborhood W; of L(X)
in M such that i '

) Wi cWeW ad r(W)aU, for i=1,2,..

Now consider a mutational retraction ¥: U(W, M) - U(X, M). For cach i, W, v i
is'a neighborhood of X in M. Choose r; e r such that ) ‘

()] ] ‘ r(WyeWw, v H.
Let us define
(7) ; St WM by f(x)= r.ri(x) for. xeW.

Since M is an AR,}",- is-extendable over M. We denote by fyits extension again. Put
f={firi=1,2,..}. We shall prove that f forms a fundamental retraction from W
into X. To do it we have to show.that ) '

(8) filx) =x for xeX,i=1,2,..,

(9)  for every neighborhood ¥ of X in M there exists iy such that if 72/, then
f{W)cV and SlWfil W in V.

Since ry(x) = x for x e X, (8) is obvious by (4) and (7). Let ¥ be a ncighborhood of X
in M. Since {U;} is a neighborhood basis of L(X) in M, there is i such that U,V
for iy, By (4), (5), (6) and (7) we have f(W)=U, u X< V for each i Z1,. Since
(W) U ry(WYyc W, U H by (6) and Wi, u H is a neighborhood of X, by the
definition of a mutation (cf. [5, p. 497) there exists a homotopy n: WxI - W0 H
such that

(10) 2o, 0) =r(x) and  g(x,1) ="r(x) for xeW.
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Here r; and ry, are the members of » used to define Ji and f;, respectively cf. (7).
Define p: WL — M by gt = . Then by (10), (7) and (4) we have 1, 0) = fi(x)
and p(x, 1) = fi(x) for xe W, and u(Wx D=mWxhar(w, u EI)': U.l O
U Xc V. Thus /il Wafi | W in V, B N

“Only if part”. Let X be . MANR such that L(X) is not’compact. We shall
show that X is not a FANR. For the proof the same argument as in [6, (11)] is used.
Let M b‘c a finite dimcnsion:ml ANR containing X as a closed set. Since L(X)is not
compact, there is a discrete sequence {x;: 7 = 1,2,...} such that X is not locallvy
contractible at each x;, Suppose that X is o FANR. Then there exist a closed neighbox:-
hood W of X in M and a fundamental retraction p = {rpi=1,2, ..} from W
into X, For cach i, choose a ncighborhood U] of x,in W such that {U}: i = 1,2, e}
forms a discrete family in W, Since X is not locally contractible at x;, there exists
neighborhoods U, and ¥; of x;, and a map f; from an ng-sphere S™ to VinX
satisfying the following conditions. :

(11) Ui Ui and ¥ is contractible in r7 (U,

(12)  fihas-not any extension from E™*! to U, n X, where E™*!is an (n;+1)-cell
whose boundary is S™.

By (1) there is an extension g;: E"*" o/ 7YU) of f,. Thc;n, by (12),
O s rg(E"P YN XeU, for each i Choose a point x;erg(E"MINX for
i=1,2,.. and put F== {5 i=1,2,..}. Noie that

(13) W) F @ for i=1,2,..

Since {U} is a discrete family in W, Fis closed in W and F 1 X = @. Hence W—F
is a neighborhood of X in M. Since r is a fundamental retraction, WW)cW—F
for some r, e r. This contradicts (13). The proof is completed. . .

Let ¥ be a metrizable space. For a closed set 4 of ¥, denote by y(4, Y) the
character of A in Y, that is, the smallest cardinal number of neighborhood bases
of 4 in Y. For a metrizable space X, put x(X) = x(Xx {0}, Xx1I). If X is ‘empty,
we put y(X) = 1. The following is proved. ‘

(14)  For a metrizable space X, x(X) = sup{y(X, ¥): ¥ is a metrizable space
containing X as a closed set}, Co

The inequality x(X)<sup{x(X, ¥): ¥ is a metrizable space containing X as

a closed set} is obvious, To prove the converse incquality, let ¥ be a metrizable

space containing X as o closed set. Given a neighborhood U of X in Y, there is

a continuous function /3 X -+ (0, 1] such that Ux S(x,f(x))cU, where S(x, ) is
xe '

a spherical neighborhood of x in ¥ with radius r. Since y(X) = y(X* {0}, XxI),
there is a family M = {f,: we A} of continuous functions f,: X ~ (0, 1], where 4
Is the set of indices with cardinality y(X), having the following property: If
So X~ (0, 1] is continuous, then there is f, & M such that f,<f. For sach e 4,
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let U, = U S(x,7(x)). Then {U,: o e A} forms a neighborhood basis of X'in ¥.
xeX

Thus (X, ¥Y)<x(X).

For metrizable spaces X and Y, let r: U(X, M)~ U(Y, N) be a mutation,
where M and Nare ANR’s containing X and Y as closed sets respectively. A sub-
family »' of r is said to generate r if for any Ve U(Y, N) there is r’ € ' whose range
is contained in V. By the character u(r) of 2 mutation r we mean the smallest cardinal
mumber of subfamilies generating r. For example, if r is a mutation into an ANR,
that is, the range of r is an ANR, then u(r) = 1, because r is generated by one con-
tinuous map. We have the following theorem.

TuroreM 2. Let Y be a finite dimensional metrizable space. Then, for every metriz-
able space X and for every mutation r: U(X, M)~ U(Y, N) the relation

(15) GI1(109);
holds. There is a mutation r for which the equality holds in (15).

The proof is given under consideration of (14) by the same way as in Theorem 1.
We omit it.

For a given infinite cardinal number 7, let X be a topological sum of 7 copies
of the continuum constructed by Borsuk [1, p. 125]. Since X is locally contractible,
L(X) = @ and hence y(L(X)) = 1. However there exists a mutation r such that
the range of r is X and u(r) = V. Thus the finite dimensionality of X in Theorem 2
cannot be omitted.

Finally, we have the following corollarics.

COROLLARY 1. 4 finite dimensional metrizable space X is a FAR if and only if X
is @ MAR and L(X) is compact.

COROLLARY 2. A finite dimensional contractible metrizable space X is a FAR if
and only if L(X) is compact.

COROLLARY 3. Let Y be a finite dimensional meirizable .vpacé. The following
are equivalent. '

(1) L(Y) is compact.

(ii) For a metrizable space X, every mutation r: U(X, M) - U(Y, N) is
generated by a fundamental sequence.

CoRroLLARY 4. Let X and Y be finite dimensional metrizable spaces. Then Xx ¥
is a FANR (resp. FAR) if and only if either

() X is a FANR (resp. FAR) and Y is a compact ANR (resp. AR), or
(i) X is a compact ANR (resp. AR) and Y is a FANR (resp. FAR), or

(iii) X and Y are both compact FANR’s (resp. FAR’s), or

(iv) X and Y are both ANR’s (resp. AR’s).

Corollaries 1, 2 and 3 are immediate consequences of Theorems [ and 2, We shall
prove Corollary 4 in the case for FANR.

Suppose that X'x Y is a FANR. Obviously X and Y are both FANR'’s. Let
L(X) # & and L(Y) # ©. Then X and Y are both compact by Theorem 1, that is,
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X and ¥ are compact FANR’s. Let L(X) = @ and L(Y) # @. Theorem 1 implies
that X is compact. Since X is locally contractible at each point, it is an ANR. Thus (ii)
holds. Similarly, il L(X) # & and L(Y) = @ then (i) holds. If LX) and L(¥)
are both empty, then X and Y are ANR’s. .

Conversely, assume that (i) holds. Tt follows from [8, Theorem 3.8] that Xx Y
is a finite dimensional MANR. Since L(X) is compact by Theorem 1 and ¥ is a com-
pact ANR, L(X x Y} is compact. By applying Theorem | again, it is seen that X'x ¥
is & FANR. The cases (iii) and (iv) are obvious. This completes the proof,
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