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‘those homeomorphisms which also send P, to P,,, then it is possible to construct
all isotopies used in the proof of Theorem 6 of [9] so that P, is sent to P,, by these
isotopies. Thus by a slight modification of the proof of Theorem 6 of [9] we have
that 7 is an isomorphism from H(Y,,P,) to H(X,,).

Remark. If m and n are such that m-+n = 3, then the presentation obtained
for H(X,,) yields the group S, xS,xZ,. This follows since when F consists of
three elements, the twist homeomorphisms a5 and a,3 are isotopic (rel F) to the
identity and each dial homeomorphism is its own inverse.
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Hyperspaces where convergence to a calm limit implies eventual
shape equivalence

by

Laurence Boxer (Niagara University, N. Y.)

Abstract. Wo introduce the calm fundamental metric as a means of topologizing the collec~
tion 2% of nonemply subcompacta of a compactum X. The calm fundamental metric der induces
a topology stronger than that of Borsuk’s fundamental metric and has the following property:
if Ay is calm and lim dep(dy, A) = 0, then Sh(dp) = Sh(4y) for almost all #. The relation be-

nerod
tween dep and other hyperspace metrics is explored for certain subsets of 2%,

§ 1. Introduetion. For a metric space X, let 2% denote the collection of nonempty
compact subscts of X. There have been several methods developed for imposing
a metric topology on 2%, The best-known is by use of the Hausdorf metric dy. The
Hausdorff metric has interesting properties, but is displeasing from the following
standpoint: for {ixed A & 2%, we may have limdy(4,, A) = 0 and yet for all n, A,

n—o

and 4 may be very different topologically. For example, every member of 2% is a limit
of finite sets in the topology of dy.

Metrics for 2% that induce stronger topologies than that induced by dy were
introduced by Borsuk in [B1] and [B2]. The fundamental metric dg defined in the
latter paper was showit in [Ce-So] to have the following property: if limdg(4,, 4) = 0

n=roo .

and A is a calm compactum (see § 3 for the definition of calm) then Sh(4,)>Sh(4)
for almost all n.

n this paper, we assume that X is a nonempty compactum. Our main results

include the introduction of the calm fundamental metric dep, which induces on 2%
a topology stronger {han that of dp and has the following property: if
limdgp(d,, 4) = 0 and 4 is calm, then Sh(4,) = Sh(4) for almost all n.
e After submitting the first draft of this paper, the author received a preprint
of [Ce2]. We show the netion of calmly regular convergence introduced there is
essentially equivalent to convergence in the topology of dey and we answer a question
raised in [Ce2].

We assume the reader is familiar with shape theory [B3] and the topology of
the Hilbert cube [Chl.
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The author wishes to thank B.J. Ball for suggesting the problem of finding
a nondiscrete metric related to dp in whose topology nearness would imply shape
equivalence, R. B. Sher for suggestions that improved several proofs, and the referee
for suggestions on the organization of this paper.

~ § 2. Preliminaries. We let Q denote the Hilbert cube. For 4 € 22 530, we let
NJ(4) = {xe Q] d(x, A)<e}.

By map we will always mean a continuous function. An &-map is a map f whose
domain and range lie in a metric space (Y, d) and that satisties d(y, J( y))<n for
all y in the domain of f.

If 4 and B are compact subsets of an AR-space M, we say a fundamental
sequence f = { f3, 4, Bly,y is an e-fundamental sequence if it satisfics: for some
neighborhood U of 4 in M, there is a k, such that k= k, implies /] U is an ¢-map,

The metric of continuity d¢ is defined [B1] as follows; for 4, Be2Y, dy(4, B)
= inf{e>0| there are ¢-maps f: 4 — B and g: B — A}, The space obtained by
topologizing 2¥ by dg is denoted 2%.

The fundamental metric is defined [B2] as follows: for A, Be 27, di(A, B)
= inf{e>0| there are ¢-fundamental sequences

f = {ﬁn 4, B}M,M

where M is an AR-space containing Y. Borsuk has shown that the choice of the
AR-space M is irrelevant and that if h: ¥'— ¥’ is a homeomorphism then
lim A4, = A in 2§ (in 25 if and only if lim ii(4,) = h(4) in 25 (in 2V). Further,
n-ro H-r oo
for all 4, Be2¥, dy(4, B)<di(4, B)<dc(4, B).

We denote by Z® the set {¥'e 29 Y is a Z-set in Q}. We write fazg to indicate
that f and g are homotopic maps.

and g = {91, B, Al sty s

§ 3. Calmness and dr. Calm compacta were introduced by Cerin in [Cel]. We
recall some of Cerin’s terminology.

Let % be a class of topological spaces. Let 422 Let ¥ be a neighborhood
of 41in Q. We say - Compe(V, A) if the following homotopy compression property
is satisfied:

for every neighborhood U of 4 in Q, there is a neighborhood W of 4 in Q such
that for every Y e %, if f,g: ¥ — W are maps with fovg in V, then faeg in U

If ¢ is the class of all topological spaces, we abbreviate the above by
h-Comp (V, A).

For A e Z2, we say 4 is €-calm if for every neighborhood U of A in Q there
is a neighborhood ¥ of 4 in U such that hi-Compy(V, A). We say 4 is calm if 4 is
%-calm when & is the class of all topological spaces.

In [Cel] it is shown that %-calmness is a hereditary shape property. The rela-
tion of calmmness to more familiar shape properties is illustrated. by the following
facts: Solenoids are calm [Cell. If ¥eZ2, then Y e FANR if and only if ¥ is calm
and movable [Ce-So].
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The next three results have easy proofs that are left to the reader:

(3.1) LemMA. Suppose A €22 % is a class of topological spaces, and V is
a neighborhood of A in Q such that h-Compe(V, A). Let V' be a neighborhood of A
in V. Then h-Compg(V', 4). i

(3.2) COROLLARY. Let A € Z% Then A is @-calm if and only if there is a neigh-
borhood V' of A in Q such that h-Compe(V, 4).

(3.3) Lemma. Let A e 22 and let f; Q — Q be a homeomorphism. Let B = f (4).
If'Vis a neighborhood of A in Q such that h-Compy(V, A) for a class € of topological
spaces, then h-Compe( f(V), B).

We define for cach A eZ2 an index of calmness i(4) as follows:
i(A) == sup({0} L {e>0] Ny(4) # Q and h-Comp(N,(4), 4)}).

Observe that i(4)=20, and by (3.2) we have i(4)>0 if and only if 4 is calm.

According to [Ce-Sol, if A and B are compacta lying in AR -spaces M and ¥,
respectively, then fundamental sequences f = {f;, 4, B}y and g = {g, 4, Blarn
are g-close if there is a neighborhood U of 4 in M such that for some integer m, k> m
implies d(fi(x), gu(x))<e for all xeU.

(3.4) TuroreM [Ce-So, (4.1)]. If Y& 22 is topologically calm, then there is an
€>0 such that for every compactum X lying in an AR-space M, every pair of e-close
Jundamental sequences f = {fy, X, Y}yq and g = {gy, X, Y}u,q are homotapic.

(3.5) LemMmA. Suppose {A4,}50=Z%, lim dp(dy, o) = 0, and Ay is calm. If

n-ro0

0>1(Ao) then for almost all n, §>i(d4,).

Proof. Otherwise there would be a sequence {4,}imo=Z? and a §>0 such
that lim dp(d,, o) = 0 and i(4g)<d<i(4,) forn=1,2, ...

n-rco

Let 0<i(4y) <s<d. Since convergence in the fundamental metric implies con-
vergence in the HausdorfT metric, there is an integer m; such that n>m, implies
A,,CN.,(A(,')CN‘;(/‘,,).

Let {¢,}5u0 be a sequence of positive numbers converging to 0 such that there
are g-fundamental sequences [* = {/i, 4., 4otoe and g" = {gk, 4o, 4.}
By (3.4), there is a positive integer m, such that n>m, implies (2¢,)-close funda-
mental sequences to 4, are homotopic.

There is a compact ANR neighborhood 4 of 4, in Q such that A< N(4,).
There is a positive integer my such that nz2m, implies e,-close maps into 4 are
homotopic. There is 4 positive integer m, such that nZm, implies 4,=4.

Let nzmax{m,, my, my, my} be fixed. Let U be a neighborhood of 4, in Q.
There is a neighborhood ¥ of A, in Q and a positive integer &, (n) such that k>k;, (1)
implies f(V)< U and f7|V is an g,~map.

Since §<i(d,), it follows from (3.1) that h-Comp(Ns(4,), 4,). Thus there is
a neighborhood W of A, with (by choice of m,) W< 4 such that if f and g are maps
of a topological space into W with forg in Ny(4,), then feg in V.
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There is a neighborhood 7' of 4, in Q and a positive integer Fko(n) such that
k>=k,(n) implies
ghlT is an g,-map,
(=W,
and (by choice of my,, since "o g" is (28,)-close to 1,)
feogiT=ly in U.

Let P be any topological space. Let f,g: P— T with fovg in Nydp). Fix
k?max{kl(n), Fo(m)}. Then g o f and gj o g are maps from P into Wed < Ny(4,),
. with gjef~fin 4 and g=~gjogin 4 by choice of m;. By choice of 4, f; and g,
ghofmghog in NyAo). By choice of my, gy e f=gieg in Ni4,). By choice of W,
grofoigiog in V.

Our choice of ¥ implies fif o gi o So2fs e gr e g in U. The last condition on our
choice of T' implies '

fefioghofin U and  fiegpegeg in U.

Thus f~g in U. Tt follows that A-Comp(Ny(4,), 4,). This is impossible, since
s>i(Ay). The assertion follows.

(3.6) LEMMA. Suppose {4,}20<Z%, hm dp(A,, Ado) = 0, lim i(d,) = i(4,)>0,

n=w
and V is a neighborhood of Ay in Q such ﬂmt h-Comp(V, 4¢). Then for dlmost all n,
h-Comp(V, 4,).°

Proof. Let ¢ = i{dy)/2. Let P be a compact ANR neighborhood of 4, in Q
such that PV n N(dy). There is an integer n, such that n>ny implies 4,<P.
There is a sequence of positive numbers {g,} %, whose limit is 0 and there are g,~fun-
damental sequences f* = {fi', 4,, do}g,0 and ¢g" = {g}, Ay, 4,}0,0- Since P € ANR,
there is a positive integer n, such that nzn, implies maps into P that are (2g,)-
close are homotopic.

Let d satisfy i(dg)/2<d<i(dy). Since convergence in dp implies convergence
in dy, our choice of P implies P<Ny(4,) for almost all n. Since lim i(4,) = i(4,).

o0
our choice of § and (3.1) imply #-Comp (N (4. 4,) for almost all n. Thus there is,
by (3.1), a positive integer ny such that nizwm, implies A-Comp(P, A4,).

Let nzmax{ny, n,, n3} be fixed. Let U be a ncighborhood of 4, in Q. There
is a neighborhood W of 4y in Q such that for some positive integer ky(n),
kzk(n) implies

gGiW)cP  and  giW is an g-map .

There is a neighborhood S of 4, in Q such that ScP n W and maps into S that
are homotopic in ¥ are homotopic in W. There is a neighborhood T of A4, in P and
a positive integer k,(n) such that k>k,(n) implies

KTy,

filT is an &,-map,
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and (by choice of ny)
maps into T that are homotopic in P are homotopic in U.

Let kzfmax{k,(n), ky(n)} be fixed. Let ¥ be a topological space and let:
f>g: Y= T be maps such that forg in V.

Then fif o f, fi 0 g: ¥ = ScPcV, with fis ofef mP and g~fieg in P by
choice of 5. Hence /i o f~ fi o g in V. By choice of S, © o f=fi o g in W. By choice
of W, ghofiof=giofioy in P. Our choice of n, 1mphes Setgiofd of in P and
ghofi o gy in P, Hence Sfe2g in P.

By choice of " we have fotg in U. Therefore -Comp(V, 4,).

(3.7) LemmA. Lot {A,,,,,H_OC.I/Q let f: Q— Q be a homeomorphism, and let
B, = [(A,) for u]/ n. Suppose lim dp(A,, Ay) = 0. Then hmr (4,) = z(A(,) if and

ner
only if lim i(B,) = i(B,).

n=to
Proof, By [B2, (6.1)], it suffices to show that limi(d4,) = i(4,) implies.
nroo

lim i(B,) = i(By).
neco

Let e>0. By (3.5) we have i(B,)<i(Bg)-+e¢ for almost all 7. Since ¢ is arbitrary,
we are done if we can show 7(By)~¢<i(B,) for almost all n. Clearly we may assume
0<i(By)—s.

Let 6 satisly /(By)— &< <i( ]:‘L,)-e/2 Let V= Nygyy—yj2(Bo). Since (3.1) implies
h-Comp (¥, By), we have hi-Comp(f~1(V), 4y) by (3.3). It follows from (3.6),
since we assume llm (A, = i(Ay), that there is an integer n, such that n>n, implies

hi-Comp (/™! V) A,,) Hence, by (3.3), h-Comp(V, B,) for nzn,.

Our choice of & implies there is an integer 1, such that n>n, implies Ny(B,) < V.
It follows from (3.1) that for nzmax{n,,n,}, k- Comp(N,;(B,,) B,). Hence for
nzmax{n;, n,}, i(B,)=8>i(By)—e¢, and the proof is done.

§ 4. The calm fundamental metric. Let X be a compactum. The index of calmness
allows us to compare quantitatively members of 2% as follows: let bt X — Q be an
embedding such that 2(X) is a Z-set in Q. Since closed subsets of Z-sets in. @ are
also Z-sets in @, wo define for all 4, Be 2%, 44, B) = li(h(4)—i(h(B)).

We define the calm fundamental metric on 2% (for the embedding /) by dix(4, B)
= dy(A, B)-+Xd, B) for all 4, Be2®, Tt is easily seen that this formula defines
a metrie, since A, is symmmic in A4 and B, nonnegative, and satisfies the triangle
inequality. Let us denote by 2 -«u . the space obtained by topologizing 2% by dbs.

An embedding of a compactum as a Z-set of @ will be called a Z-embedding.
The followihg shows that 28s ) is a topological invariant of X and is topologically
independent of the Z-embedding & chosen:

(4.1) Turorem. Let g: X = X' be a homeomorphism. Let h: X — Q and
B X'~ Q be Z-embeddings. Let G: 285, ~ 28p. be the function . defined by
G(A) = g(A) for all Ae?2*. Then G is a homeomorphism.
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Proof. By [Ch, 11.1, p. 14] there is a homeomorphism H of @ extending
Hogoh™: h(X)~ K(X"). (We remark that this is the reason we have insisted
on working with Z-sets.)
It is clear that G is a bijection. It follows from [B2] that lim dp(4,, 4,) = 0
B0

in 2% if and only if

lim di(g (4,), g(4o)) = lim dp(G(4,), G(4y) =0 in 2¥.

Further, it follows from (3.7) that 11'111 Ay, Ag) = 0 if and only if
n-
0 = lim A,{G(4,), G(4y)), since for n = 0,1, 2 .» we have B(G(4,) = h'(g(4)

n—rw
= H(h(4,)). Thus G and G™* are continuous, and the proof is complete.

Tn view of (4.1), we will drop “A” from the notation, writing 2%5 for the hyper-
space of X metrized by the calm fundamental metric deg, for any (Gixed) Z-embedding
of X into Q. Alternately, when it suits our purpose, we may simply consider X as
a Z-set of Q, using the inclusion map for the Z-embedding.

Let us say that if 4,Be2* and there are e-fundamental sequences
f= {fi» 4, Blop and ¢ = {9y, B, Alg o (Where Xe Z% such that fogexly,
the identity fundamental sequence on B, then A e-dominates B. If we also have
gofly, we say A and B are e-shape equivalent.

The metric of calmly regular convergence d,, for the collection ca(X) of members
of 2% (X not necessarily compact) satisfies, for M an ANR containing X:

(4.2) TueoreM [Ce2 (2.2) and (4.6)]. Let {4, }reo=ca(X). Then
lim dog(A,, dg) = 0

n=ro
if and only if
a) lim dg(4,, 4o) = 0 and

h—>oQ
b) there is a neighborhood V of Ay in M such that h-Comp(V, A,) for almost
all n.
In the following theorem, the requirement that X be compact in using dep is
avoided by observing that lun de(A,, Ag) = 0 implies that 4 = U A, is compact;
n=0
“then we consider deg on thc hypexspace of 4. We remark that the equivalence of a)
and ¢) below motivated this paper, while the equivalence of b) and c¢) improves
[Ce2, (4.9)].
(4.3) TeEOREM. Let {A,}%oc<2%, Ay eca(X). The following are equivalent
a) lim dep(A4,, 4o) = 0.
n—+o
b) lim d.,(4,, 4o) = 0.
n=o

c) Given e>0, there is an integer m such that nzm implies A, and Ay are g-shape
equivalent.

icm
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Proof. That a) implies b) follows from (3.6) and (4.2).

To show b) implies c): Assume b). Then there is a compact ANR neighbor-
hood P of A, in Q such that 1-Comp(P, 4,) for n = 0 and nzng, where n; is some
positive integer. Let ¢>0 be such that any two 2e-close maps into P are homotopic.
There is a positive integer n, such that if n2n,, 4,=P and de(A,, Ag)<s. Fix
nzmax{ng, n,}.

'By choice of n,, there are g-fundamental sequences f = {f, 4,, AO}QQ and
g = {9 Ao, Ai}g.0- By the proof of [Ce-So, (4.2)] we have fog=1y.

Let W be a neighborhood of 4, in Q. By choice of P, there is a neighborhood T°
of A,in Q, TP, such that maps into T'that are homotopic in P are homotopic in W.
There is a neighborhood ¥ of 4, in O, YaT, and a positive integer m such that
ke>m implies d(gy o fi(x), x)<2¢ for all xe T, and g, o fi{Y)=T.

Our choice of ¢ implies g, o fi| Y221y in P, hence in W by choice of T Therefore
gof=1,,, and the assertion follows.

To show c) implies a): suppose there is a sequence of positive numbers {&,}7-
whose limit is 0 such that A, and 4, are ¢,-shape equivalent. Clearly we have
lim dy(A,, 4y) = 0. Thus we must show lim i(4,) = i(4,). By (3.5), it suffices to

n-roo n=ro
show that given © such that 0 <z<i(4,), we have 1<i(4,) for almost all n.

Suppose J satisfies <8 <i(A4). By (3.1), h-Comp(Ns(A), Ao). Let P Ny(4o)
be a compact ANR neighborhood of A4, in Q. There is a positive integer n, such
that nzn, implies A, P (since convergence in dy implies convergence in ‘dy) and
g,-close maps into P are homotopic.

For cach n there are &,-fundamental sequences [" = {f, d,, 4o}g, and
g" = {gh» Ao, A,}g,g such that f"og"~1,, and g"o M1, .

Let nzn, be fixed and let U be a neighborhood of 4, in Q. There is a neigh-
borhood V of A, in Q and a positive integer k,(n) such that k>k,(n) implies
giV)=U. Let W be a neighborhood of 4, in Q such that

WeP and

maps into W that are homotopic in Ny(4,) are homotopic in V. Our first con-
dition on the choice of n; implies there is a neighborhood T of A, with TP and
there is a positive integer k,(n) such that k>k,(n) implies

SayeWw, ST s an grmap,  and  gpofi|T=lrpin U.

Let Y be a topological space and let f, g1 ¥ — T' be maps that are homotopic
in Ny(dy). Let kzmax{k,(n), ky(n)} be fixed. Then fiof, freg: ¥ — WeP,
and our choxcu\s of ny and ky(n) imply fi o fe2f in P and g=f; o g in P. By choice
of P, i r»fw og in Nyf(Ay). By choice of W, fiof~fiog in ¥. Our choice of ¥
implies g aj,‘n_/'fvg,, ofiag in U. By choice of ky(n),

Tk wfin U and  giefiog=g in U,
Hence fozg in U. It follows that h-Comp(Ny(4o), 4,)-

3 — Fundamenta Mathematicae CXV
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Since convergence in dy implies convergente in. dy and 7 < J, we have, for some
positive integer n,; +N,(4,) < Ny(doy for nzn,. It follows. from . (3.1) that for
nzmax{n,, nz} we have /i~ Comp(N (A,,) A,), and -thug I(A,,)/'E' This completes
-the proof. - r L

" For Aeca(X), let X[A = {Bele Sh(B) = Sh(A)}. An" 1mmc~dmle conse-
quence of (4.3) is:

(4.4) COROLLARY.-a) For'X compact, X[A] is open in E(r

b) X[A4] is open and closed in (cu(X) c/eu)
~ The following que‘;tmn is raised in [Ce2]; If X I sepamblc, is (ca(X),dm)
separable? A negative answer is given in: ;

(4.5) ExampLE, Let E® denote euclidean 3-space. Then (calE®), dy) is not
separable. N '
~ Proof. By [G], there is an uncountable family {S,| «e 4} of solenoids in £3
such that o # B implies Sh(S,) # Sh(S,). Since solenoids are calm [Cl, 4.11], it
follows from (4.4) that {E3 Wl aed} is an uncountable family of nonempty
pairwise disjoint open sets in ca(Es) Hence (ca(E3) (lcu) is not separable,

We remark that in (4.3), ¢) implies a) even if 4, is not calm: For ¢) clearly implies
lim dp(d,, 4g) = 0, and di and dcp coincide on pauf; of non-calm compacta, How-

n—oo

ever, if 4y is not calm, then a) does not imply ¢), as the following shows:
Suppose A,-is the usual “middle-third” Cantor set of real numbers. For

n=1,2,..,let 4, be the set of endpoints of the 2" intervals remaining after the nth

step in the construction of Ay, i.e., 4, = {x € 4¢| x = my(3") for some integer m}
(4.6) ExampL. If {d,}5no is as described above, then Hm deg( A,,,Ao) =0

n-ron
in 282

Proof. In [Bx-Sh] it was shown that lim dy(d,, 4,) = 0. Since Ay has infinitely

n-rod
many components, it is not calm [Cel, (4.6)]. Thus i(4,) = 0 (we are assuming 4,
is Z-embedded in Q). Therefore we must show limi(4,) = 0. But since n>1

nao

implies A, is discrete, the fact that

lim min {d(x, »)| x and » are distinct points of 4,} = 0
N oo . :

and the easily-shown fact that h-Comp (V, 4,) implies no component of ¥ contains
distinct points of A, imply limi(4,) = 0,
: : neo

§5. On restnctmg clc‘f to certain subsets of 2%, We have seen that for non-calm
members of 2%, dog = dp. In this section, we examine der for the following sub-
sets of 2%:

- FAR* = {¥e2%| YeFAR};
ANRY = {¥e 2 Ye ANR} (the latter only in the case where dim X< ).
(5.1) Lemva. Let 4€Z% 4 eFAR. Then h-Comp(Q, A).
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1 Proof. This follows easily from the: contractlblhty of Q and the.fact.that 4 is
a-fundamental retract of Q. g : .

(5.2) COROLLARY. The metrics dp and dcr induce ﬂze same topology on FARX.

Proof. This follows from (5.1) and the equivalence of a) and b) in (4.3).

.- In the remainder of this section we assume X is a finite-dimensional compactum
z-embeddcd in Q. Bmsuk [B1} defined the homotopy metric d, on ANRY (the
resulting space is denoted 2 f.,, in the literature) and showed that it has the property
that if dy(4, B) i§ sulliciently smull, then 4 and' B have the same homotopy type.
Since the latter is'an analogue of (4.3), and since there is a certain similarity in the
forms of the definitions of dey and d,,, it seems reasonable to 111vest1gate the relation
between these metrics,

The following theorem characterizes the topology of 25

1 (5.3) Treorem [B1], Let fA,,},,mo(::ZX Then Iml cl,,(A,,,AO) =0 if and only if
a) limy dy(4,, 4,) = 0, and
oo g P

b) given £30, there is a 530 such that Jor all n, every subset of A, with diameter
less than & contracts to a point within a subset of A, of diameter less ‘than e.

The following is a weak version of [B1, Lemma on p. 188 and Theorem on
p. 196].

(5.4) Tororem. Suppose lim dy(d,, Ag) = 0 in 25" (I™ is the m-cube). Then

Netoo

t(mc is a neighborhood U of Ay in I™ and a positive integer p such that nzp implies 4,
is a retract of U.

We have:
. (5.5) Temorem. Let {4, }i.o < ANRY, If 1m1 d,.(A,,, 4g) =0, then

i

*“ R lim dep(A,, Ag) = 0.
n-reo .

Proof. Sinée X is ‘a finite-dimensional 'compactum,, it embeds in I™ for some
positive integer m. We may regard 25 as a subspace of 2" [B1, Corollary 5, p. 198].
We may regard 1™ as a Z-set in Q by identifying it with 1™ x {(0, 0, ...)}cl”‘x
X Qury, = Qi By (5.4) there is a neighborhood U of X in I™ and a positive integer n;
stich that #zny implies there is a retraction r,: U - 4,. There is a compact ANR

o) n
neighborhood P of Ay w ) A4, in Q such that PcUX Qpiye

neEy

Since lxm d( Ay, Ao) = O implies lim de(A,, Ao) = 0-[B1, (79), p. 190], there

H=+0
is a scquonw ot positive numbers {g,}5%, whose limit is 0, and for n>>1 there are
&rmaps fir A, - A, and g,: Ay - A,. Since g-maps induce e,-fundamental

sequences, it follows from (4.2) that it suffices to show f, and g, are homotopy in-
verses, for almost all #. By [Bx--Sh, (3.14), p. 852, there is a positive integer n, such

that nzn, implies f, o g, o1,

3k
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There is a positive integer ny such that n>=n, implies (2¢,)~close maps into P
are homotopic. Let n>max{n;,n,, ny} be fixed. Let r: P — 4, be the retraction
defined by

r(x, Im+1s T2 ) = rn(x) > for xelU.

Since g, o f;: A, > A,<P is a (2¢,)-map, our choice of n; implies there is a homo-
topy F: A,xI— P with '

F(x,0) = gyofy(x) and Flx,1)=x forall xed,.

Thus re F: A,xI— 4, is a homotopy with

roF(x,0) = g,of(x) and reF(x,1)=x.

This completes the proof.
The converse of (5.5) is not true: Let {4} be the sequence of [Bx, (4.9)],
in which it was shown that 4, # lim 4, in the topology of d,. However, 4, = lim A4,

n=+w -+
in the topology of dc, hence in the topology of dp, hence (by (5.2)) in the topology
of deg.
Thus d, induces a stronger topology on ANRY than does deg.
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On non compact FANR’s and MANR’s
by
Yukihiro Kodama (Ibaraki)

Abstract, Tt is proved that a finite dimensional metrizable space X is a FANR if and only
if X is a MANR and the set of points at which X'is not locally contractible has the compact closure,
As an application, for finite dimensional metrizable spaces X and ¥, a necessary and sufficient
condition under which X'x ¥ be a FANR is obtained in terms of X and Y.

1. Introduction. The notion of FANR is introduced by K. Borsuk [2]. According
to [2, p. 94] a metrizable space X is a FANR if for every metrizable space X" con-
taining X as a closed subset, X is a fundamental neighborhood retract of X”. S. God-
lewski [4] has introduced the concept of MANR. From the definition it is obvious
that every FANR is a MANR. By [4] and [6] the properties “to be a FANR” are not
generally shape invariants in the sense of Fox [3]. In this paper we shall show that
a finite dimensional metrizable space X is a FANR if and only if X is a MANR and
the set of points at which X are not locally contractible has the compact closure.
Obviously the second condition is not a shape invariant.

All spaces under considerations are matrizable and maps are continuous. AR and
ANR mean those for metrizable spaces.

2. Theorems. Let X be a space and let xe X. If for every neighborhood U
of x in X there exists a neighborhood ¥ of x such that ¥ is contractible in U, then X
is said to be locally contractible at x. Put L'(X) = {x: xe X and X is locally con-
tractible at x} and L(X) = CI(X—L'(X)), where Cl means the closure in X.

Tueorem 1. A finite dimensional space X is a FANR if and only if X is a MANR
and L(X) is compuct.

Proof. “If part”. Let M be an AR containing X as a closed set, It is assumed
by [7] that M is finite dimensional and X is unstable in M in the sense of Sher
[9, p. 346]. Since X is a MANR, there is a closed neighborhood W of X in M and
a mutational retraction r: U(W, M) = U(X, M). Here U(A, M) means the family
of all open neighborhoods of A4 in M. (See [3] and [5] for notations and definitions.)
Let d be a metric in M. Chodse an open cover 4 of the set M —L(X) such that if
dx;, L(X)) - 0 (I = o0) for x;& M~L(X) then diameter St(x;, %) — 0 (i — c0),
where St(x, %) = |) {U: xe U and Ue%}. Since X is locally contractible at each
point of the set X—L(X) and M is finite dimensional, by [1, Theorem (9.1), p. 80]
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