212

those homeomorphisms which also send P_m to P_m , then it is possible to construct all isotopies used in the proof of Theorem 6 of [9] so that P_m is sent to P_m by these isotopies. Thus by a slight modification of the proof of Theorem 6 of [9] we have that π is an isomorphism from $H(Y_n, P_m)$ to $H(X_{m,n})$.

Remark. If m and n are such that m+n=3, then the presentation obtained for $H(X_{m,n})$ yields the group $S_m \times S_n \times Z_2$. This follows since when F consists of three elements, the twist homeomorphisms a_{13} and a_{23} are isotopic (relF) to the identity and each dial homeomorphism is its own inverse.

References

- J. S. Birman, Mapping class groups and their relationship to braid groups, Comm. Pure and Appl. Math. 22 (1969), pp. 213–238.
- [2] Braids, links, and mapping class groups, Ann. Math. Studies 82, Princeton University Press 1975.
- [3] H. M. S. Coxeter and W. O. J. Moser, Generators and relations for discrete groups, Springer-Verlag, New York 1965.
- [4] D. B. A. Epstein, Curves on 2-manifolds and isotopies, Acta Math. 115 (1966), pp. 83-107).
- [5] J. P. Lee, Homeotopy groups of orientable 2-manifolds, Fund. Math. 78 (1972), pp. 115-124.
- [6] Homeotopy groups of the isotopy groups of annulus, Proc. Amer. Math. Soc. 44 (1974), pp. 213-217.
- [7] W. Magnus, Über Automorphismen von Fundamentalgruppen berandeter Flüchen, Math. Annalen 109 (1934), pp. 617-646.
- [8] G. S. McCarty, Homeotopy groups, Trans. Amer. Math. Soc. 106 (1963), pp. 293-304.
- [9] D. J. Sprows, Homeotopy groups of compact 2-manifolds, Fund. Math. 90 (1975), pp. 99-103.
- [10] Subhomeotopy groups of the 2-sphere with n-holes, Fund, Math. 108 (1980), pp. 1-5.

VILLANOVA UNIVERSITY

Accepté par la Rédaction le 21, 4, 1980

Hyperspaces where convergence to a calm limit implies eventual shape equivalence

bv

Laurence Boxer (Niagara University, N. Y.)

Abstract. We introduce the calm fundamental metric as a means of topologizing the collection 2^X of nonempty subcompacta of a compactum X. The calm fundamental metric d_{CF} induces a topology stronger than that of Borsuk's fundamental metric and has the following property: if A_0 is calm and $\lim_{n\to\infty} d_{CF}(A_n, A_0) = 0$, then $\mathrm{Sh}(A_n) = \mathrm{Sh}(A_0)$ for almost all n. The relation between d_{CF} and other hyperspace metrics is explored for certain subsets of 2^X .

§ 1. Introduction. For a metric space X, let 2^X denote the collection of nonempty compact subsets of X. There have been several methods developed for imposing a metric topology on 2^X . The best-known is by use of the *Hausdorff metric* d_H . The Hausdorff metric has interesting properties, but is displeasing from the following standpoint: for fixed $A \in 2^X$, we may have $\lim_{n \to \infty} d_H(A_n, A) = 0$ and yet for all n, A_n and A may be very different topologically. For example, every member of 2^X is a limit of finite sets in the topology of d_H .

Metrics for 2^X that induce stronger topologies than that induced by d_H were introduced by Borsuk in [B1] and [B2]. The fundamental metric d_F defined in the latter paper was shown in [Ce-So] to have the following property: if $\lim_{n\to\infty} d_F(A_n,A)=0$ and A is a calm compactum (see § 3 for the definition of calm) then $\mathrm{Sh}(A_n) \geqslant \mathrm{Sh}(A)$ for almost all n.

In this paper, we assume that X is a nonempty compactum. Our main results include the introduction of the calm fundamental metric $d_{\mathbb{CF}}$, which induces on 2^X a topology stronger than that of d_F and has the following property: if $\lim_{n\to\infty} d_{\mathbb{CF}}(A_n,A)=0$ and A is calm, then $\mathrm{Sh}(A_n)=\mathrm{Sh}(A)$ for almost all n.

After submitting the first draft of this paper, the author received a preprint of [Ce2]. We show the notion of calmly regular convergence introduced there is essentially equivalent to convergence in the topology of $d_{\rm CF}$ and we answer a question raised in [Ce2].

We assume the reader is familiar with shape theory [B3] and the topology of the Hilbert cube [Ch].

The author wishes to thank B. J. Ball for suggesting the problem of finding a nondiscrete metric related to d_F in whose topology nearness would imply shape equivalence, R. B. Sher for suggestions that improved several proofs, and the referee for suggestions on the organization of this paper.

§ 2. Preliminaries. We let Q denote the Hilbert cube. For $A \in 2^Q$, $\varepsilon > 0$, we let $N_{\varepsilon}(A) = \{x \in Q \mid d(x, A) < \varepsilon\}$.

By map we will always mean a continuous function. An ε -map is a map f whose domain and range lie in a metric space (Y, d) and that satisfies $d(y, f(y)) < \varepsilon$ for all y in the domain of f.

If A and B are compact subsets of an AR-space M, we say a fundamental sequence $f = \{f_k, A, B\}_{M,M}$ is an ε -fundamental sequence if it satisfies: for some neighborhood U of A in M, there is a k_0 such that $k \geqslant k_0$ implies $f_k|U$ is an ε -map.

The metric of continuity d_C is defined [B1] as follows: for $A, B \in 2^Y$, $d_C(A, B) = \inf\{\varepsilon > 0 | \text{ there are } \varepsilon\text{-maps } f \colon A \to B \text{ and } g \colon B \to A\}$. The space obtained by topologizing 2^Y by d_C is denoted 2_C^Y .

The fundamental metric is defined [B2] as follows: for $A, B \in 2^{\gamma}$, $d_F(A, B) = \inf\{\varepsilon > 0 \mid \text{there are } \varepsilon\text{-fundamental sequences}$

$$f = \{f_k, A, B\}_{M,M}$$
 and $g = \{g_k, B, A\}_{M,M}\}$,

where M is an AR-space containing Y. Borsuk has shown that the choice of the AR-space M is irrelevant and that if $h: Y \to Y'$ is a homeomorphism then $\lim_{n \to \infty} A_n = A$ in 2_C^Y (in 2_F^Y) if and only if $\lim_{n \to \infty} h(A_n) = h(A)$ in $2_C^{Y'}$ (in $2_F^{Y'}$). Further, for all $A, B \in 2^Y$, $d_H(A, B) \leq d_F(A, B) \leq d_C(A, B)$.

We denote by Z^2 the set $\{Y \in 2^2 | Y \text{ is a } Z\text{-set in } Q\}$. We write $f \simeq g$ to indicate that f and g are homotopic maps.

§ 3. Calmness and d_F . Calm compacta were introduced by Čerin in [Cel]. We recall some of Čerin's terminology.

Let $\mathscr C$ be a class of topological spaces. Let $A \in 2^Q$. Let V be a neighborhood of A in Q. We say h-Comp $_{\mathscr C}(V,A)$ if the following homotopy compression property is satisfied:

for every neighborhood U of A in Q, there is a neighborhood W of A in Q such that for every $Y \in \mathscr{C}$, if $f, g \colon Y \to W$ are maps with $f \simeq g$ in V, then $f \simeq g$ in U.

If $\mathscr C$ is the class of all topological spaces, we abbreviate the above by $h\text{-}\mathrm{Comp}(V,A)$.

For $A \in \mathbb{Z}^2$, we say A is \mathscr{C} -calm if for every neighborhood U of A in Q there is a neighborhood V of A in U such that h-Comp $_{\mathscr{C}}(V,A)$. We say A is calm if A is \mathscr{C} -calm when \mathscr{C} is the class of all topological spaces.

In [Cel] it is shown that \mathscr{C} -calmness is a hereditary shape property. The relation of calmness to more familiar shape properties is illustrated by the following facts: Solenoids are calm [Cel]. If $Y \in \mathbb{Z}^2$, then $Y \in \text{FANR}$ if and only if Y is calm and movable [Ce-So].

The next three results have easy proofs that are left to the reader:

- (3.1) LEMMA. Suppose $A \in 2^{\mathbb{Q}}$, \mathscr{C} is a class of topological spaces, and V is a neighborhood of A in Q such that $h\text{-}\mathsf{Comp}_{\mathscr{C}}(V,A)$. Let V' be a neighborhood of A in V. Then $h\text{-}\mathsf{Comp}_{\mathscr{C}}(V',A)$.
- (3.2) COROLLARY. Let $A \in \mathbb{Z}^2$. Then A is \mathscr{C} -calm if and only if there is a neighborhood V of A in Q such that h-Comp $_{\mathscr{C}}(V,A)$.
- (3.3) Lemma. Let $A \in 2^Q$ and let $f \colon Q \to Q$ be a homeomorphism. Let B = f(A). If V is a neighborhood of A in Q such that h-Comp_{\mathscr{C}}(V, A) for a class \mathscr{C} of topological spaces, then h-Comp_{\mathscr{C}}(f(V), B).

We define for each $A \in \mathbb{Z}^{Q}$ an index of calmness i(A) as follows:

$$i(A) = \sup(\{0\} \cup \{\varepsilon > 0 | N_{\varepsilon}(A) \neq Q \text{ and } h\text{-}\mathrm{Comp}(N_{\varepsilon}(A), A)\}).$$

Observe that $i(A) \ge 0$, and by (3.2) we have i(A) > 0 if and only if A is calm.

According to [Ce-So], if A and B are compacta lying in AR-spaces M and N, respectively, then fundamental sequences $f = \{f_k, A, B\}_{M,N}$ and $g = \{g_k, A, B\}_{M,N}$ are ε -close if there is a neighborhood U of A in M such that for some integer $m, k \geqslant m$ implies $d(f_k(x), g_k(x)) < \varepsilon$ for all $x \in U$.

- (3.4) THEOREM [Co-So, (4.1)]. If $Y \in 2^{Q}$ is topologically calm, then there is an $\varepsilon > 0$ such that for every compactum X lying in an AR-space M, every pair of ε -close fundamental sequences $f = \{f_k, X, Y\}_{M,Q}$ and $g = \{g_k, X, Y\}_{M,Q}$ are homotopic.
- (3.5) Lemma. Suppose $\{A_n\}_{n=0}^{\infty} \subset \mathbb{Z}^2$, $\lim_{n\to\infty} d_F(A_n, A_0) = 0$, and A_0 is calm. If $\delta > i(A_0)$ then for almost all n, $\delta > i(A_n)$.

Proof. Otherwise there would be a sequence $\{A_n\}_{n=0}^{\infty} \subset \mathbb{Z}^2$ and a $\delta > 0$ such that $\lim_{n \to \infty} d_F(A_n, A_0) = 0$ and $i(A_0) < \delta < i(A_n)$ for n = 1, 2, ...

Let $0 < i(A_0) < s < \delta$. Since convergence in the fundamental metric implies convergence in the Hausdorff metric, there is an integer m_1 such that $n \ge m_1$ implies $A_n = N_s(A_0) = N_\delta(A_n)$.

Let $\{e_n\}_{n=0}^{\infty}$ be a sequence of positive numbers converging to 0 such that there are e_n -fundamental sequences $f^n = \{f_n^n, A_n, A_0\}_{Q,Q}$ and $g^n = \{g_n^n, A_0, A_n\}_{Q,Q}$. By (3.4), there is a positive integer m_2 such that $n \ge m_2$ implies $(2e_n)$ -close fundamental sequences to A_0 are homotopic.

There is a compact ANR neighborhood A of A_0 in Q such that $A \subset N_s(A_0)$. There is a positive integer m_3 such that $n \geqslant m_3$ implies ε_n -close maps into A are homotopic. There is a positive integer m_4 such that $n \geqslant m_4$ implies $A_n \subset A$.

Let $n \ge \max\{m_1, m_2, m_3, m_4\}$ be fixed. Let U be a neighborhood of A_0 in Q. There is a neighborhood V of A_n in Q and a positive integer $k_1(n)$ such that $k \ge k_1(n)$ implies $f_k^n(V) \subset U$ and $f_k^n(V)$ is an ϵ_n -map.

Since $\delta < i(A_n)$, it follows from (3.1) that h-Comp $(N_\delta(A_n), A_n)$. Thus there is a neighborhood W of A_n with (by choice of m_4) $W \subset A$ such that if f and g are maps of a topological space into W with $f \simeq g$ in $N_\delta(A_n)$, then $f \simeq g$ in V.

There is a neighborhood T of A_0 in Q and a positive integer $k_2(n)$ such that $k \ge k_2(n)$ implies

$$g_k^n|T$$
 is an ε_n -map, $g_k^n(T) \subset W$,

and (by choice of m_2 , since $f^n \circ g^n$ is $(2\varepsilon_n)$ -close to 1_{A_0})

$$f_k^n \circ g_k^n | T \simeq 1_T \text{ in } U$$
.

Let P be any topological space. Let $f,g\colon P\to T$ with $f\simeq g$ in $N_s(A_0)$. Fix $k\geqslant \max\{k_1(n),k_2(n)\}$. Then $g_k^n\circ f$ and $g_k^n\circ g$ are maps from P into $W\subset A\subset N_s(A_0)$, with $g_k^n\circ f\simeq f$ in A and $g\simeq g_k^n\circ g$ in A by choice of m_3 . By choice of A, f, and g, $g_k^n\circ f\simeq g_k^n\circ g$ in $N_s(A_0)$. By choice of m_1 , $g_k^n\circ f\simeq g_k^n\circ g$ in $N_\delta(A_n)$. By choice of M, $g_k^n\circ f\simeq g_k^n\circ g$ in M.

Our choice of V implies $f_k^n \circ g_k^n \circ f \simeq f_k^n \circ g_k^n \circ g$ in U. The last condition on our choice of T implies

$$f \simeq f_k^n \circ g_k^n \circ f$$
 in U and $f_k^n \circ g_k^n \circ g \simeq g$ in U .

Thus $f \simeq g$ in U. It follows that h-Comp $(N_s(A_0), A_0)$. This is impossible, since $s > i(A_0)$. The assertion follows.

(3.6) Lemma. Suppose $\{A_n\}_{n=0}^{\infty} \subset \mathbb{Z}^2$, $\lim_{n\to\infty} d_F(A_n, A_0) = 0$, $\lim_{n\to\infty} i(A_n) = i(A_0) > 0$, and V is a neighborhood of A_0 in Q such that h-Comp (V, A_0) . Then for almost all n, h-Comp (V, A_n) .

Proof. Let $\varepsilon=i(A_0)/2$. Let P be a compact ANR neighborhood of A_0 in Q such that $P\subset V\cap N_{\varepsilon}(A_0)$. There is an integer n_1 such that $n\geqslant n_1$ implies $A_n\subset P$. There is a sequence of positive numbers $\{\varepsilon_n\}_{n=1}^\infty$ whose limit is 0 and there are ε_n -fundamental sequences $f^n=\{f_k^n,A_n,A_0\}_{Q,Q}$ and $g^n=\{g_k^n,A_0,A_n\}_{Q,Q}$. Since $P\in ANR$, there is a positive integer n_2 such that $n\geqslant n_2$ implies maps into P that are $(2\varepsilon_n)$ -close are homotopic.

Let δ satisfy $i(A_0)/2 < \delta < i(A_0)$. Since convergence in d_F implies convergence in d_H , our choice of P implies $P \subset N_\delta(A_n)$ for almost all n. Since $\lim_{n \to \infty} i(A_n) = i(A_0)$, our choice of δ and (3.1) imply h-Comp $(N_\delta(A_n), A_n)$ for almost all n. Thus there is, by (3.1), a positive integer n_3 such that $n \ge n_3$ implies h-Comp (P, A_n) .

Let $n \ge \max\{n_1, n_2, n_3\}$ be fixed. Let U be a neighborhood of A_n in Q. There is a neighborhood W of A_0 in Q such that for some positive integer $k_1(n)$, $k \ge k_1(n)$ implies

$$g_k^n(W) \subset P$$
 and $g_k^n|W$ is an ε_n -map.

There is a neighborhood S of A_0 in Q such that $S \subset P \cap W$ and maps into S that are homotopic in V are homotopic in W. There is a neighborhood T of A_n in P and a positive integer $k_2(n)$ such that $k \geqslant k_2(n)$ implies

$$f_k^n(T) \subset S$$
,
 $f_k^n|T$ is an ε_n -map,

and (by choice of n_3)

maps into T that are homotopic in P are homotopic in U.

Let $k \geqslant \max\{k_1(n), k_2(n)\}$ be fixed. Let Y be a topological space and let $f, g \colon Y \to T$ be maps such that $f \simeq g$ in V.

Then $f_k^n \circ f, f_k^n \circ g \colon Y \to S \subset P \subset V$, with $f_k^n \circ f \simeq f$ in P and $g \simeq f_k^n \circ g$ in P by choice of n_2 . Hence $f_k^n \circ f \simeq f_k^n \circ g$ in V. By choice of $S, f_k^n \circ f \simeq f_k^n \circ g$ in W. By choice of $W, g_k^n \circ f_k^n \circ f \simeq g_k^n \circ f_k^n \circ g$ in P. Our choice of n_2 implies $f \simeq g_k^n \circ f_k^n \circ f$ in P and $g_k^n \circ f_k^n \circ g \simeq g$ in P. Hence $f \simeq g$ in P.

By choice of T we have $f \simeq g$ in U. Therefore h-Comp (V, A_n) .

(3.7) Lemma. Let $\{A_n\}_{n=0}^{\infty} = Z^Q$, let $f \colon Q \to Q$ be a homeomorphism, and let $B_n = f(A_n)$ for all n. Suppose $\lim_{n \to \infty} d_F(A_n, A_0) = 0$. Then $\lim_{n \to \infty} i(A_n) = i(A_0)$ if and only if $\lim_{n \to \infty} i(B_n) = i(B_0)$.

Proof. By [B2, (6.1)], it suffices to show that $\lim_{n\to\infty}i(A_n)=i(A_0)$ implies $\lim_{n\to\infty}i(B_n)=i(B_0)$.

Let $\varepsilon > 0$. By (3.5) we have $i(B_n) < i(B_0) + \varepsilon$ for almost all n. Since ε is arbitrary, we are done if we can show $i(B_0) - \varepsilon < i(B_n)$ for almost all n. Clearly we may assume $0 < i(B_0) - \varepsilon$.

Let δ satisfy $i(B_0) - \varepsilon < \delta < i(B_0) - \varepsilon/2$. Let $V = N_{i(B_0) - \varepsilon/2}(B_0)$. Since (3.1) implies h-Comp (V, B_0) , we have h-Comp $(f^{-1}(V), A_0)$ by (3.3). It follows from (3.6), since we assume $\lim_{n \to \infty} i(A_n) = i(A_0)$, that there is an integer n_1 such that $n \ge n_1$ implies h-Comp $(f^{-1}(V), A_n)$. Hence, by (3.3), h-Comp (V, B_n) for $n \ge n_1$.

Our choice of δ implies there is an integer n_2 such that $n \ge n_2$ implies $N_\delta(B_n) \subset V$. It follows from (3.1) that for $n \ge \max\{n_1, n_2\}$, h-Comp $(N_\delta(B_n), B_n)$. Hence for $n \ge \max\{n_1, n_2\}$, $i(B_n) \ge \delta > i(B_0) - \varepsilon$, and the proof is done.

§ 4. The calm fundamental metric. Let X be a compactum. The index of calmness allows us to compare quantitatively members of 2^X as follows: let $h: X \to Q$ be an embedding such that h(X) is a Z-set in Q. Since closed subsets of Z-sets in Q are also Z-sets in Q, we define for all $A, B \in 2^X$, $\lambda_h(A, B) = |i(h(A)) - i(h(B))|$.

We define the calm fundamental metric on 2^X (for the embedding h) by $d_{\text{CF}}^h(A, B) = d_F(A, B) + \lambda_h(A, B)$ for all $A, B \in 2^X$. It is easily seen that this formula defines a metric, since λ_h is symmetric in A and B, nonnegative, and satisfies the triangle inequality. Let us denote by $2_{\text{CF},h}^X$ the space obtained by topologizing 2^X by d_{CF}^h .

An embedding of a compactum as a Z-set of Q will be called a Z-embedding. The following shows that $2_{\mathbf{CF},h}^{\mathbf{x}}$ is a topological invariant of X and is topologically independent of the Z-embedding h chosen:

(4.1) Theorem. Let $g\colon X\to X'$ be a homeomorphism. Let $h\colon X\to Q$ and $h'\colon X'\to Q$ be Z-embeddings. Let $G\colon 2^{\mathsf{x}}_{\mathsf{CF},h'}\to 2^{\mathsf{x}'}_{\mathsf{CF},h'}$ be the function defined by G(A)=g(A) for all $A\in 2^{\mathsf{x}}$. Then G is a homeomorphism.

Proof. By [Ch, 11.1, p. 14] there is a homeomorphism H of Q extending $h' \circ g \circ h^{-1}$: $h(X) \to h'(X')$. (We remark that this is the reason we have insisted on working with Z-sets.)

It is clear that G is a bijection. It follows from [B2] that $\lim_{n\to\infty} d_F(A_n, A_0) = 0$ in 2^X if and only if

$$\lim_{n\to\infty} d_{\mathbb{F}}(g(A_n), g(A_0)) = \lim_{n\to\infty} d_{\mathbb{F}}(G(A_n), G(A_0)) = 0 \quad \text{in } 2^{\mathcal{X}}.$$

Further, it follows from (3.7) that $\lim_{n\to\infty} \lambda_h(A_n, A_0) = 0$ if and only if $0 = \lim_{n\to\infty} \lambda_h(G(A_n), G(A_0))$, since for n = 0, 1, 2, ..., we have $h'(G(A_n)) = h'(g(A_n)) = H(h(A_n))$. Thus G and G^{-1} are continuous, and the proof is complete.

In view of (4.1), we will drop "h" from the notation, writing 2_{CF}^{X} for the hyperspace of X metrized by the calm fundamental metric d_{CF} , for any (fixed) Z-embedding of X into Q. Alternately, when it suits our purpose, we may simply consider X as a Z-set of Q, using the inclusion map for the Z-embedding.

Let us say that if $A, B \in 2^X$ and there are ε -fundamental sequences $f = \{f_k, A, B\}_{Q,Q}$ and $g = \{g_k, B, A\}_{Q,Q}$ (where $X \in Z^Q$) such that $f \circ g \simeq \underline{1}_B$, the identity fundamental sequence on B, then $A \varepsilon$ -dominates B. If we also have $g \circ f \simeq 1_A$, we say A and B are ε -shape equivalent.

The metric of calmly regular convergence d_{ca} for the collection ca(X) of members of 2^X (X not necessarily compact) satisfies, for M an ANR containing X:

(4.2) THEOREM [Ce2 (2.2) and (4.6)]. Let $\{A_n\}_{n=0}^{\infty} \subset \operatorname{ca}(X)$. Then

$$\lim_{n\to\infty} d_{\rm ca}(A_n, A_0) = 0$$

if and only if

a) $\lim d_F(A_n, A_0) = 0$ and

b) there is a neighborhood V of A_0 in M such that h-Comp(V, A_n) for almost all n.

In the following theorem, the requirement that X be compact in using d_{CF} is avoided by observing that $\lim_{n\to\infty} d_F(A_n,A_0)=0$ implies that $A=\bigcup_{n=0}^{\infty} A_n$ is compact; then we consider d_{CF} on the hyperspace of A. We remark that the equivalence of a) and c) below motivated this paper, while the equivalence of b) and c) improves [Ce 2, (4.9)].

- (4.3) THEOREM. Let $\{A_n\}_{n=0}^{\infty} \subset 2^X$, $A_0 \in \operatorname{ca}(X)$. The following are equivalent
- a) $\lim_{n\to\infty} d_{\mathbf{CF}}(A_n, A_0) = 0.$
- b) $\lim_{n\to\infty} d_{\rm ca}(A_n, A_0) = 0.$
- c) Given $\varepsilon > 0$, there is an integer m such that $n \geqslant m$ implies A_n and A_0 are ε -shape equivalent.

Proof. That a) implies b) follows from (3.6) and (4.2).

To show b) implies c): Assume b). Then there is a compact ANR neighborhood P of A_0 in Q such that h-Comp (P, A_n) for n = 0 and $n \ge n_1$, where n_1 is some positive integer. Let $\varepsilon > 0$ be such that any two 2ε -close maps into P are homotopic. There is a positive integer n_2 such that if $n \ge n_2$, $A_n \subset P$ and $d_F(A_n, A_0) < \varepsilon$. Fix $n \ge \max\{n_1, n_2\}$.

By choice of n_2 , there are ε -fundamental sequences $f = \{f_k, A_n, A_0\}_{Q,Q}$ and $g = \{g_k, A_0, A_n\}_{Q,Q}$. By the proof of [Ce-So, (4.2)] we have $f \circ g \simeq 1_{A_0}$.

Let W be a neighborhood of A_n in Q. By choice of P, there is a neighborhood T of A_n in Q, $T \subset P$, such that maps into T that are homotopic in P are homotopic in W. There is a neighborhood Y of A_n in Q, $Y \subset T$, and a positive integer m such that k > m implies $d(y_k \circ f_k(X), X) < 2\varepsilon$ for all $x \in T$, and $g_k \circ f_k(Y) \subset T$.

Our choice of e implies $g_k \circ f_k | Y \simeq 1_Y$ in P, hence in W by choice of T. Therefore $g \circ f \simeq 1_{A_R}$, and the assertion follows.

To show c) implies a): suppose there is a sequence of positive numbers $\{\varepsilon_n\}_{n=1}^\infty$ whose limit is 0 such that A_n and A_0 are ε_n -shape equivalent. Clearly we have $\lim_{n\to\infty} d_F(A_n, A_0) = 0$. Thus we must show $\lim_{n\to\infty} i(A_n) = i(A_0)$. By (3.5), it suffices to show that given τ such that $0 < \tau < i(A_0)$, we have $\tau \le i(A_n)$ for almost all n.

Suppose δ satisfies $\tau < \delta < i(A_0)$. By (3.1), $h\text{-}\mathrm{Comp}\left(N_\delta(A_0),\,A_0\right)$. Let $P \subset N_\delta(A_0)$ be a compact ANR neighborhood of A_0 in Q. There is a positive integer n_1 such that $n \ge n_1$ implies $A_n \subset P$ (since convergence in d_F implies convergence in d_H) and ε_n -close maps into P are homotopic.

For each n there are ε_n -fundamental sequences $f^n = \{f_k^n, A_n, A_0\}_{Q,Q}$ and $g^n = \{g_k^n, A_0, A_n\}_{Q,Q}$ such that $f^n \circ g^n \simeq 1_{A_0}$ and $g^n \circ f^n \simeq 1_{A_0}$.

Let $n \ge n_1$ be fixed and let U be a neighborhood of A_n in Q. There is a neighborhood V of A_0 in Q and a positive integer $k_1(n)$ such that $k \ge k_1(n)$ implies $g_k^n(V) \subset U$. Let W be a neighborhood of A_0 in Q such that

 $W \subset P$ and

maps into W that are homotopic in $N_3(A_0)$ are homotopic in V. Our first condition on the choice of n_1 implies there is a neighborhood T of A_n with $T \subset P$ and there is a positive integer $k_2(n)$ such that $k \ge k_2(n)$ implies

$$f_k^n(T) \subset W$$
, $f_k^n|T$ is an ε_n -map, and $g_k^n \circ f_k^n|T \simeq 1_T$ in U .

Let Y be a topological space and let $f,g\colon Y\to T$ be maps that are homotopic in $N_\delta(A_0)$. Let $k\!\geqslant\!\max\{k_1(n),k_2(n)\}$ be fixed. Then $f_k^n\circ f$, $f_k^n\circ g\colon Y\to W\subset P$, and our choices of n_1 and $k_2(n)$ imply $f_k^n\circ f\simeq f$ in P and $g\simeq f_k^n\circ g$ in P. By choice of P, $f_k^n\circ f\simeq f_k^n\circ g$ in $N_\delta(A_0)$. By choice of W, $f_k^n\circ f\simeq f_k^n\circ g$ in V. Our choice of V implies $g_k^n\circ f_k^n\circ f\simeq g_k^n\circ f_k^n\circ g$ in V. By choice of $k_2(n)$,

$$f \simeq g_k^n \circ f_k^n \circ f$$
 in U and $g_k^n \circ f_k^n \circ g \simeq g$ in U .

Hence $f \simeq g$ in U. It follows that h-Comp $(N_{\delta}(A_0), A_n)$.

5 - Fundamenta Mathematicae CXV

Since convergence in d_F implies convergence in d_H and $\tau < \delta$, we have, for some positive integer n_2 , $N_\tau(A_n) = N_\delta(A_0)$ for $n \geqslant n_2$. It follows from (3:1) that for $n \geqslant \max\{n_1, n_2\}$ we have $h\text{-}\mathrm{Comp}\big(N_\tau(A_n), A_n\big)$, and thus $i(A_n) \geqslant \tau$. This completes the proof.

For $A \in ca(X)$, let $X[A] = \{B \in 2^X | Sh(B) = Sh(A)\}$. An immediate consequence of (4.3) is:

(4.4) COROLLARY. a) For X compact, X[A] is open in 2_{CF}^{X} .

b) X[A] is open and closed in $(ca(X), d_{ca})$.

The following question is raised in [Ce2]: If X is separable, is $(ca(X), d_{ca})$ separable? A negative answer is given in:

(4.5) Example. Let E^3 denote euclidean 3-space. Then $(ca(E^3), d_{ca})$ is not separable.

Proof. By [G], there is an uncountable family $\{S_{\alpha} | \alpha \in A\}$ of solenoids in E^3 such that $\alpha \neq \beta$ implies $\mathrm{Sh}(S_{\alpha}) \neq \mathrm{Sh}(S_{\beta})$. Since solenoids are calm [Cl, 4.11], it follows from (4.4) that $\{E^3[S_{\alpha}] | \alpha \in A\}$ is an uncountable family of nonempty, pairwise disjoint open sets in $\mathrm{ca}(E^3)$. Hence $(\mathrm{ca}(E^3), d_{\mathrm{ca}})$ is not separable.

We remark that in (4.3), c) implies a) even if A_0 is not calm: For c) clearly implies $\lim_{n\to\infty} d_F(A_n, A_0) = 0$, and d_F and d_{CF} coincide on pairs of non-calm compacta. However, if A_0 is not calm, then a) does not imply c), as the following shows:

Suppose A_0 is the usual "middle-third" Cantor set of real numbers. For n = 1, 2, ..., let A_n be the set of endpoints of the 2^n intervals remaining after the nth step in the construction of A_0 , i.e., $A_n = \{x \in A_0 | x = m/(3^n) \text{ for some integer } m\}$.

(4.6) Example. If $\{A_n\}_{n=0}^{\infty}$ is as described above, then $\lim_{n\to\infty} d_{\mathrm{CF}}(A_n,A_0)=0$ in $2_{\mathrm{CF}}^{A_0}$.

Proof. In [Bx-Sh] it was shown that $\lim_{n\to\infty} d_F(A_n, A_0) = 0$. Since A_0 has infinitely many components, it is not calm [Ce1, (4.6)]. Thus $i(A_0) = 0$ (we are assuming A_0 is Z-embedded in Q). Therefore we must show $\lim_{n\to\infty} i(A_n) = 0$. But since $n\geqslant 1$ implies A_n is discrete, the fact that

$$\lim_{n\to\infty} \min \{d(x,y) | x \text{ and } y \text{ are distinct points of } A_n\} = 0$$

and the easily-shown fact that h-Comp (V, A_n) implies no component of V contains distinct points of A_n imply $\lim_{n\to\infty} i(A_n) = 0$.

§ 5. On restricting d_{CF} to certain subsets of 2^{X} . We have seen that for non-calm members of 2^{X} , $d_{CF} = d_{F}$. In this section, we examine d_{CF} for the following subsets of 2^{X} :

$$FAR^{x} = \{Y \in 2^{x} | Y \in FAR\};$$

 $ANR^{X} = \{Y \in 2^{X} | Y \in ANR\}$ (the latter only in the case where $\dim X < \infty$).

(5.1) Lemma. Let $A \in \mathbb{Z}^{Q}$, $A \in \text{FAR}$. Then h-Comp(Q, A).

Proof. This follows easily from the contractibility of Q and the fact that A is a fundamental retract of Q.

(5.2) COROLLARY. The metrics d_r and d_{CF} induce the same topology on FAR^x. Proof. This follows from (5.1) and the equivalence of a) and b) in (4.3).

In the remainder of this section we assume X is a finite-dimensional compactum Z-embedded in Q. Borsuk [B1] defined the homotopy metric d_h on ANR X (the resulting space is denoted 2_h^X in the literature) and showed that it has the property that if $d_h(A, B)$ is sufficiently small, then A and B have the same homotopy type. Since the latter is an analogue of (4.3), and since there is a certain similarity in the forms of the definitions of d_{CF} and d_h , it seems reasonable to investigate the relation between these metrics.

The following theorem characterizes the topology of 2_h^x :

- 19 (5.3) THEOREM [B1]. Let $\{A_n\}_{n=0}^{\infty} \subset 2_h^X$. Then $\lim_{n\to\infty} d_h(A_n, A_0) = 0$ if and only if
 - a) $\lim_{n \to \infty} d_{II}(A_n, A_0) = 0$, and
- b) given $\varepsilon > 0$, there is a $\delta > 0$ such that for all n, every subset of A_n with diameter less than δ contracts to a point within a subset of A_n of diameter less than ε .

The following is a weak version of [B1, Lemma on p. 188 and Theorem on p. 196].

(5.4) THEOREM. Suppose $\lim_{n\to\infty} d_h(A_n, A_0) = 0$ in 2_h^{Im} (I^m is the m-cube). Then there is a neighborhood U of A_0 in I^m and a positive integer p such that $n \geqslant p$ implies A_n is a retract of U.

We have:

(5.5) THEOREM. Let
$$\{A_n\}_{n=0}^{\infty} \subset ANR^X$$
. If $\lim_{n\to\infty} d_n(A_n, A_0) = 0$, then

$$\lim_{n\to\infty} d_{\mathrm{CF}}(A_n, A_0) = 0.$$

Proof. Since X is a finite-dimensional compactum, it embeds in I^m for some positive integer m. We may regard 2_h^X as a subspace of 2_h^{Im} [B1, Corollary 5, p. 198]. We may regard I^m as a Z-set in Q by identifying it with $I^m \times \{(0,0,\ldots)\} \subset I^m \times Q_{m+1} = Q$. By (5.4) there is a neighborhood U of X in I^m and a positive integer n_1 such that $n \ge n_1$ implies there is a retraction r_n : $U \to A_n$. There is a compact ANR neighborhood P of $A_0 \cup \bigcup_{n=n_1}^{\infty} A_n$ in Q such that $P \subset U \times Q_{m+1}$.

Since $\lim_{n\to\infty} d_n(A_n, A_0) = 0$ implies $\lim_{n\to\infty} d_C(A_n, A_0) = 0$ [B1, (79), p. 190], there is a sequence of positive numbers $\{\varepsilon_n\}_{n=1}^{\infty}$ whose limit is 0, and for $n\geqslant 1$ there are ε_n -maps $f_n\colon A_n\to A_0$ and $g_n\colon A_0\to A_n$. Since ε_n -maps induce ε_n -fundamental sequences, it follows from (4.2) that it suffices to show f_n and g_n are homotopy inverses, for almost all n. By [Bx-Sh, (3.14), p. 852], there is a positive integer n_2 such that $n\geqslant n_2$ implies $f_n\circ g_n\simeq 1_{A_0}$.

222

There is a positive integer n_3 such that $n \ge n_3$ implies $(2e_n)$ -close maps into P are homotopic. Let $n \ge \max\{n_1, n_2, n_3\}$ be fixed. Let $r: P \to A_n$ be the retraction defined by

$$r(x, q_{m+1}, q_{m+2}, ...) = r_n(x)$$
, for $x \in U$.

Since $g_n \circ f_n \colon A_n \to A_n \subset P$ is a $(2\varepsilon_n)$ -map, our choice of n_3 implies there is a homotopy $F \colon A_n \times I \to P$ with

$$F(x, 0) = g_n \circ f_n(x)$$
 and $F(x, 1) = x$ for all $x \in A_n$.

Thus $r \circ F: A_n \times I \to A_n$ is a homotopy with

$$r \circ F(x, 0) = g_n \circ f_n(x)$$
 and $r \circ F(x, 1) = x$.

This completes the proof.

The converse of (5.5) is not true: Let $\{A_n\}_{n=0}^{\infty}$ be the sequence of [Bx, (4.9)], in which it was shown that $A_0 \neq \lim_{n\to\infty} A_n$ in the topology of d_h . However, $A_0 = \lim_{n\to\infty} A_n$ in the topology of d_C , hence in the topology of d_F , hence (by (5.2)) in the topology of d_{CF} .

Thus d_h induces a stronger topology on ANR^X than does d_{CF} .

References

- [B 1] K. Borsuk, On some metrizations of the hyperspace of compact sets, Fund. Math. 41 (1954), pp. 168-202.
- [B 2] On a metrization of the hyperspace of a metric space, Fund. Math. 94 (1977), pp. 191-207.
- [B 3] Theory of Shape, Warszawa 1975.
- [Bx] L. Boxer, Retraction spaces and the homotopy metric, Top. and its Appl. 11 (1980), pp. 17-29.
- [Bx-Sh] and R. B. Sher, Borsuk's fundamental metric and shape domination, Bull. Acad. Polon. Sci. 26 (1978), pp. 849-853.
- [Ch] T. A. Chapman, Lectures on Hilbert Cube Manifolds, Regional Conference Series in Mathematics 28, Providence, 1976.
- [Cel] Z. Čerin, Homotopy properties of locally compact spaces at infinity-calmness and smoothness, Pacific J. Math. 79 (1978), pp. 69-91.
- [Ce 2] + C-calmly regular convergence, Topology Proceedings 4 (1979), pp. 29-49.
- [Ce-So] and A. P. Šostak, Some remarks on Borsuk's fundamental metric, Proceedings Colloq. on Topology, Budapest, 1978.
- [G] S. Godlewski, On shapes of solenoids, Bull. Acad. Polon. Sci. 17 (1969), pp. 623-627.

DEPARTMENT OF MATHEMATICS NIAGARA UNIVERSITY Niagara University, New York 14109

Accepté par la Rédaction le 28. 4. 1980

On non compact FANR's and MANR's

by

Yukihiro Kodama (Ibaraki)

Abstract. It is proved that a finite dimensional metrizable space X is a FANR if and only if X is a MANR and the set of points at which X is not locally contractible has the compact closure. As an application, for finite dimensional metrizable spaces X and Y, a necessary and sufficient condition under which $X \times Y$ be a FANR is obtained in terms of X and Y.

1. Introduction. The notion of FANR is introduced by K. Borsuk [2]. According to [2, p. 94] a metrizable space X is a FANR if for every metrizable space X' containing X as a closed subset, X is a fundamental neighborhood retract of X'. S. Godlewski [4] has introduced the concept of MANR. From the definition it is obvious that every FANR is a MANR. By [4] and [6] the properties "to be a FANR" are not generally shape invariants in the sense of Fox [3]. In this paper we shall show that a finite dimensional metrizable space X is a FANR if and only if X is a MANR and the set of points at which X are not locally contractible has the compact closure. Obviously the second condition is not a shape invariant.

All spaces under considerations are metrizable and maps are continuous. AR and ANR mean those for metrizable spaces.

2. Theorems. Let X be a space and let $x \in X$. If for every neighborhood U of x in X there exists a neighborhood V of x such that V is contractible in U, then X is said to be *locally contractible at* x. Put $L'(X) = \{x : x \in X \text{ and } X \text{ is locally contractible at } x\}$ and L(X) = Cl(X - L'(X)), where Cl means the closure in X.

THEOREM 1. A finite dimensional space X is a FANR if and only if X is a MANR and L(X) is compact.

Proof. "If part". Let M be an AR containing X as a closed set. It is assumed by [7] that M is finite dimensional and X is unstable in M in the sense of Sher [9, p. 346]. Since X is a MANR, there is a closed neighborhood W of X in M and a mutational retraction $r\colon U(W,M)\to U(X,M)$. Here U(A,M) means the family of all open neighborhoods of A in M. (See [3] and [5] for notations and definitions.) Let d be a metric in M. Choose an open cover $\mathscr U$ of the set M-L(X) such that if $d(x_i, L(X)) \to 0$ ($i \to \infty$) for $x_i \in M-L(X)$ then diameter $\mathrm{St}(x_i, \mathscr U) \to 0$ ($i \to \infty$), where $\mathrm{St}(x, \mathscr U) = \bigcup \{U: x \in U \text{ and } U \in \mathscr U\}$. Since X is locally contractible at each point of the set X-L(X) and M is finite dimensional, by [1, Theorem (9.1), p. 80]