Defining cardinal addition by \preceq-formulas

by

Alexander F. Häussler * (Zürich)

Abstract. It is well-known that in Zermelo–Fraenkel set theory strengthened by the axiom of choice, cardinal addition of infinite sets can be expressed by the supremum which is defined by a first-order formula in the cardinal ordering \preceq. The same holds in presence of the weaker axiom stating that every infinite set is immeasurable, i.e. $\forall x(x < \omega \lor x = \omega \cdot 2)$. On the other hand, in Zermelo–Fraenkel set theory a definition of cardinal addition of infinite sets by a \preceq-formula is not possible. We show that this is also impossible for the following two kinds of extensions:

First, those extensions which are consistent with the existence of a Dedekind set ε, i.e. ε infinite and $\varepsilon \neq \varepsilon + 1$,其次, extensions which are consistent with the existence of an infinite set \mathcal{A}, i.e. \mathcal{A} infinite, $\mathcal{A} \not\subset \mathcal{A} + \mathcal{A}$, $\forall x, y (x + y = \mathcal{A} + x = \mathcal{A} \cup y = \mathcal{A})$.

§ 1. In Zermelo–Fraenkel set theory ZF with the axiom of choice cardinal addition $x + y = z$ of infinite sets can be expressed by the supremum $\sup(x, y, z)$ which is defined by the \preceq-formula $\forall x, y \leq z \land \forall u (x, y \leq u \rightarrow z \leq u)$. In [2], p. 55 A. Tarski showed that the weaker axiom $\forall x (x < \omega \lor x = \omega + x)$ — meaning that every infinite set is immeasurable — still implies within ZF the following equivalence for cardinal addition of infinite sets

$$\forall x, y, z \left[\inf(x) \land \inf(y) \land \inf(z) \rightarrow (x + y = z \leftrightarrow \sup(x, y, z)) \right] ,$$

where $\inf(x)$ abbreviates $\forall z < \omega x$.

In ZF itself — provided it is consistent — a definition by a (first-order) \preceq-formula cannot be given. To show this, we assume that for some \preceq-formula $\varphi(x, y, z)$ the following holds in ZF

$$\forall x, y, z \left[\inf(x) \land \inf(y) \land \inf(z) \rightarrow (x + y = z \leftrightarrow \varphi(x, y, z)) \right] .$$

This leads to a contradiction as follows:

Consider the consistent extension of ZF in which the existence of a Dedekind set ε ($\inf(\varepsilon) \land \varepsilon \neq \varepsilon + 1$) is postulated. Then the cardinals $\varepsilon + n$, $n \in \omega$, are definite and ordered like the integers. Let θ be the following function symbol ($= m$ is the set-theoretical equality)

$$\theta(x) = \begin{cases} x + 1, & \text{if } \exists n \in \omega (x = \varepsilon + n \lor x + n = \varepsilon) \\ x, & \text{otherwise} \end{cases}$$

* It is my sad duty to inform the reader that Alexander Häussler died of cancer on August 8, 1982. — H. Läuchli.
and note that $\theta(s) = s + 1$, but $\theta(s + 1) = s + 2$, hence $\theta(s) + \theta(s) \neq \theta(s + 1)$. One can check by examining several cases that θ is an \aleph-automorphism of the universe, preserving the order \leq and infinity, thus we have

$$\forall x, \exists y (x \leq y \Leftrightarrow \theta(x) = \theta(y)),$$
$$\exists y \exists \theta(x) = y.$$

$\forall x, \exists y \exists z (x \leq y \leq z \Leftrightarrow \theta(x) \leq \theta(y) \leq \theta(z))$.

$\forall x (\theta(x) \in \text{Inf}(\omega))$.

Induction on the complexity yields

$$\forall x (\theta(x) \in \text{Inf}(\omega))$$

for every \leq-formula \mathcal{A}.

By applying this to $\mathcal{A}(x, y, z)$ in the assumed equivalence for cardinal addition of infinite sets we thus obtain in $ZF + \text{Inf}(\omega) \land \omega \neq \epsilon + 1$ the following

$$\forall x, y, z (\text{Inf}(x) \land \text{Inf}(y) \land \text{Inf}(z) \rightarrow \theta(x) + \theta(y) = \theta(x + y)),$$

hence for $x = e$, $y = e$ and $z = e + 1$ we deduce $\theta(e) + \theta(e) = \theta(e + 1)$ — a contradiction to the consistency of $ZF + \text{Inf}(\omega) \land \omega \neq \epsilon + 1$.

The same proof is valid for a slightly more general situation:

Theorem 1. In a theory which is compatible with $ZF + \exists(x \in \text{Inf}(\omega) \land \omega \neq x + 1)$ no \leq-formula defines cardinal addition of infinite sets.

Corollary 2. Let theory T be an extension of ZF in which a \leq-formula defines cardinal addition of infinite sets. Then $\forall x (x \in \text{Inf}(\omega) \land \omega \neq x + 1)$ can be deduced from T.

Proof of Corollary 2. Assume that $\forall x (x \in \text{Inf}(\omega) \land \omega \neq x + 1)$ is not provable in T. Then $T + \exists(x \in \text{Inf}(\omega) \land \omega \neq x + 1)$ is consistent and hence compatible with $ZF + \exists(x \in \text{Inf}(\omega) \land \omega \neq x + 1)$. Thus by Theorem 1 no \leq-formula defines cardinal addition of infinite sets.

The question arises whether the axiom $\forall x (x \in \text{Inf}(\omega) \land \omega \neq x + 1)$ — meaning that every infinite set is transfinite — is sufficient for defining cardinal addition of infinite sets by a (first-order) \leq-formula. The answer for even much stronger axioms like DC_{ω}, $\text{DC}_{\omega}^{\text{AC}}$ or even $\text{DC}_{\omega}^{\text{AC}}$ is negative (see Corollary 4).

Thereby DC_{ω} and $\text{DC}_{\omega}^{\text{AC}}$ are axioms of dependent choices and $\text{DC}_{\omega}^{\text{AC}}$ means that any wellorderable set of nonempty elements has a choice function (see [1], p. 119).

In all these cases we cannot refer to a Dedekind set as we did in Theorem 1. However, it is compatible with these axioms that there exists a set A such that the sets $A \times \omega$, $1 \leq k \in \omega$, have in a sense the same behaviour as the natural numbers (see Lemma 3 and Theorem 4).

Definition. A is an **Unit**, if $A \times A = A$ and $\forall x, y (x \leq y \rightarrow x = y \lor x = A \lor y = A)$.

Lemma 3. If $\mathcal{A}(x, z)$ is a \leq-formula, then there exists a numeral s with $1 \leq s \in \omega$ such that in $ZF + \text{Unit}(A)$ the following holds:

$$\mathcal{A}(x, A, (s + 1) \times A) \\ \mathcal{A}(x, A, A \times A).$$

The proof of this lemma is given in §§ 2–5. We sketch the proof in § 2, in §§ 3 and 4 we work out the theory $ZF + \text{Unit}(A)$ and finally in § 5 we prove the lemma. Let us nevertheless give the conclusions:

Theorem 4. In a theory T which is compatible with $ZF + \exists(x \in \text{Inf}(\omega) \land \omega \neq x + 1)$ no \leq-formula defines cardinal addition of infinite sets.

Proof of Theorem 4. Let us assume that the \leq-formula $\mathcal{A}(x, y, z)$ defines in T cardinal addition of infinite sets. Since T has the consistency property, we can assume the existence of a set A such that $T + \exists(x \in \text{Inf}(\omega) \land \omega \neq x + 1)$ is consistent; clearly in this extension of T also the following holds:

$$\forall x, y, z (\text{Inf}(x) \land \text{Inf}(y) \land \text{Inf}(z) \rightarrow x + y = z \land \mathcal{A}(x, y, z)).$$

By applying Lemma 3 on the \leq-formula $\mathcal{A}(x, y, z)$ we obtain a numeral s with $1 \leq s \in \omega$ such that

$$\mathcal{A}(x, A, s \times A, (s + 1) \times A) \land \mathcal{A}(x, A, s \times A, (s + s + 1) \times A)$$

holds in $ZF + \text{Unit}(A)$.

As A is assumed to be infinite, $s + A = s \times A = (s + s + 1) \times A$ are infinite too; furthermore $s \times A \times A = (s + s + 1) \times A$ holds. Hence by the assumed equivalence for addition and the result from Lemma 3 we obtain $s \times A + s \times A = (s + s + 1) \times A$. Thus $A = A + A$ (see § 3) which contradicts the assumed consistency.

Remark. The same argument holds if we replace "infinite" by "finite". As 1 is a Unit, in any theory compatible with ZF (for instance every consistent extension of ZF), no \leq-formula defines cardinal addition of finite sets.

Corollary 5. If ZF is consistent, no \leq-formula defines cardinal addition of infinite sets in the theory $ZF + DC_{\omega} + \text{AC}_{\omega}$.

Proof. By Theorem 4 it suffices to show that this theory is compatible with $ZF + \exists(x \in \text{Inf}(\omega) \land \text{Unit}(\omega))$. In [1] Theorem 8.9 (p. 127) let $\alpha = 1$: Then DC_{ω} and AC_{ω} hold in the Fraenkel–Mostowski permutation model given there. Furthermore it is easy to see that the set of atoms is a Unit in the permutation model.

Using a refinement of the embedding theorem, this relative consistency result by means of a permutation model is transferred into ZF; hence

$$ZF + DC_{\omega} + \text{AC}_{\omega} + \exists(x \in \text{Inf}(\omega) \land \text{Unit}(\omega))$$

is relative consistent to ZF.

The author is indebted to Prof. Dr. H. Läuchli for many helpful discussions on this subject.

§ 2. Sketch of proof of Lemma 3. We work in ZF and furthermore assume $\text{Unit}(A)$ for a set A. $A \times A = A$ implies $k \times A = (k + 1) \times A$ for $k \in \omega$; thus the class \mathcal{A} of all $k \times A$ with $1 \leq k \in \omega$ (including the cardinal equivalent sets) obviously has the same ordering as $\mathcal{A} = \{ \{ k \mid 1 \leq k \in \omega \}$.

This isomorphism of the ordering \leq can be transferred to \leq-formulas, provided that the quantifiers refer only to the classes \mathcal{A}
and \mathcal{J} respectively. Hence, by the well-known theorem on natural numbers, Lemma 3 holds for \mathcal{X}-relativized \leq-formulas.

In order to treat quantifiers which refer to the whole universe, we investigate the ordering between elements of \mathcal{X} and those of the universe. To do this, we introduce the notion of multiplicity $a(x)$ which intuitively counts the number of pairwise disjoint copies of A which can be embedded in a set x (§3). Then a set x has multiplicity k ($1 \leq k \leq \omega$) if x is a sum $k \times A + y$ with $A \not\subseteq y$. In this decomposition the second summand y is not unique, however, $A + y$ is defined up to cardinal equivalence. Let \mathcal{B} be the class of all sums $A + y$ with $A \subseteq y$. On the class \mathcal{B} of all $k \times A + y$ ($1 \leq k \leq \omega$, $A \not\subseteq y$) we introduce the two projections π onto \mathcal{X} satisfying $\pi(k \times A + y) = k \times A$ and π onto \mathcal{B} satisfying $\pi(k \times A + y) = A + y$.

It can be shown that $x \leq y \leftrightarrow \exists x_1 \leq x_2 \leq x \pi(x_1) \leq \pi(x_2)$ holds for x_1, x_2 in \mathcal{B}. In order to compare x' in \mathcal{Y} to x'' in \mathcal{Y}, it suffices to compare $\pi(x')$ to $\pi(x'')$.

Introducing \mathcal{Y} by $\mathcal{Y} \cup \mathcal{Y}$ we see (§4), that a predicate given by a \leq-formula $\phi(x', y')$ is equivalent to a propositional combination of \mathcal{X}-relativized \leq-formulas in $\pi(x')$ and $\pi(y')$ and \mathcal{Y}-relativized \leq-formulas in $\pi(x')$ and $\pi(y')$ provided that all $x_1', ..., x_2'$ are in \mathcal{Y} and $x_1'', ..., x_2''$ are in \mathcal{Y}. Assuming all $x_1, x_2, ..., x_n$ to be in \mathcal{B} (hence none in \mathcal{Y}), then $x_1, x_2, ..., x_n$ in \mathcal{B} and thus $\phi(x')$ is equivalent to a propositional combination of \mathcal{X}-relativized \leq-formulas in x and some \leq-sentences in A. This is what we need for the proof of Lemma 3 in §5, as mentioned at the beginning.

§ 3. Unit and multiplicity. Working in ZF $+$ Unit(A) we may assume that there exists a set A with the following two properties:

$$A \leq A + A,$$

$$\forall x, y \left[x + y = A \rightarrow x = A \lor y = A \right].$$

Then the following holds for A:

$$\forall x \left[x + x = A \rightarrow x < A \right],$$

$$\forall x \left[x < A \rightarrow x + x = A \right].$$

Furthermore (3.3) is equivalent to (3.1) and assuming (3.1) or (3.3) respectively, then (3.2) and (3.4) are equivalent too.

Proofs. (3.1) \Rightarrow (3.3). Let $\pi + x = A$ for some x. Then $x \leq A$, hence $x < A$ because x is $\leq A$ is excluded by (3.1). (3.3) \Rightarrow (3.1). With $x = A$ in (3.3) the assumption $A = A + A$ yields the contradiction $A < A$, hence $A < A + A$. (3.2) \Rightarrow (3.4): Let $x < A$ for some x; then there exists $x + y = A$ and $y = A$ by (3.2), thus $x + A = A$. (3.4) \land (3.1) \Rightarrow (3.2): Let $x = y = A$, but $x, y < A$. By (3.4) $A + (x + y) = A$, hence $A + A = A$ in contradiction to (3.1).

Before continuing, let us note a theorem on cardinal algebra provable in ZF:

$$k \in \omega \land k \times x + y \leq k \times x + w \rightarrow u + v \leq u + w.$$

For a proof refer to Corollary 4 in [3], p. 81.

From Unit(A) we deduce

$$0 < A,$$

$$k \in \omega \rightarrow k \times A \leq (k + 1) \times A,$$

$$k \in \omega \cap (k + 1) \times A \leq k \times A + y \rightarrow A \leq y,$$

$$k \in \omega \times k \times A \rightarrow A \leq k \times A + x = A,$$

$$k \in \omega \times k \times A \leq A \leq x \times y \rightarrow A \leq x \times y + k \times A \leq x \times y.$$

Proofs. (3.6) and (3.7) follow by (3.1) and (3.5).

(3.8): Let $(k + 1) \times A \leq A + x + y$, then by applying (3.5) we obtain $A + A \leq x + y$. Hence there exist a', a'', y', y'' with $A = a' + y' = a'' + y''$, $a' \leq a''$ and $y' \leq y''$. By (3.2) $a = a' \lor y' = A$ and $a'' = a' \lor y'' = A$. In the case $A = a''$, we obtain $A + A = a'' + a'' \leq A$ — a contradiction to (3.1). In all other cases $y' \leq y''$.

(3.9): By induction on $k \in \omega$: For $k = 0$ it holds trivially. Let $x \leq (k + 1) \times A$, then there exist x', x'' with $x = x' + x''$, $x' \leq A$, $x'' \leq k \times A$ thus $x' < A$ or $x' = A$ and by induction hypothesis $A \leq x''$ or $A + x'' = A$. In the case of $x' < A$ and $A + x'' = A$, 3.4 yields $A + x = A + x' + x'' = A$, in all other cases $A \leq x' < A$.

(3.10): Let $x \leq k \times A + y$, then there exist x', x'' with $x = x' + x''$, $x' \leq k \times A$, $x'' \leq y$. By 3.9 it is $A \leq x'$ or $A + x' = A$. In the first case $A \leq x'$, in the latter $A + x' = A + x' + x'' = A + x'' \leq A + y$.

We introduce a function symbol assigning to a set x the maximal number $\omega(x)$ of pairwise disjoint copies of A which can be embedded in x. This notion of multiplicity is helpful for investigating the ordering \leq.

Let a be defined formally by the following:

(3.11) $\omega(x) = \{ \varphi \mid \varphi \in \omega \land (\omega + 1) \times A \leq \varphi \}$

$\omega(x)$ is an initial segment of ω, hence $\omega(x) \in \omega$ or $\omega(x) = \omega$. Furthermore multiplicity is monotone, thus the following three propositions hold and are trivial:

(3.12) $a(x) \in \omega^{+}$, where $\omega^{+} = \omega \cup \{ \omega \}$

(3.13) $x_1 \leq x_2 \rightarrow a(x_1) \leq a(x_2)$

(3.14) $x_1 = x_2 \rightarrow a(x_1) = a(x_2)$

If $a(x)$ is finite then, as indicated, the following holds:

(3.15) $k \in \omega \rightarrow (a(x) = k \leftrightarrow A \leq k \times x \times (k + 1) \times A \leq x)$

Proof. Let $k \in \omega$. The case $k = 0$ is obvious, because $A \not\subseteq x$ if $a(x)$ is empty ($a(x) = 0$). Let $1 \leq k \in \omega$: If $a(x) = k$, then $k = 1 + a(x)$, hence by (3.11) $x \times A \leq x$. The assumption $k < k \times x \times A$ however leads to the contradiction $k < k$. For the other implication assume that $A \leq k \times x \times A$; (3.11) yields $k - 1 \in a(x)$, but $k \not\in a(x)$, hence $a(x) = k$ follows.

Remark. In the case $k = \omega$ we have only the equivalence between $a(x) = \omega$ and $\forall x (A \times x \leq A)$ in general this does not imply $A \times \omega \subseteq A$.

The function $a(x)$ decomposes the universe in a* many classes. In the following we give, in some sense, a more explicit characterization of sets with finite multiplicity and the ordering \leq between such sets. For this purpose we introduce the monadic predicate \mathcal{F} in (3.16). By (3.15) the proposition (3.17) is then obvious.

(3.16) \[\mathcal{F}(x) \iff a(x) = 0, \]
(3.17) \[\mathcal{F}(x) \iff A \not\subseteq x. \]

Now the following statements hold:

(3.18) \[k \in o \iff a(k) \equiv k \iff 3 \{\mathcal{F}(y) \land x = k \times A + y\}, \]
(3.19) \[k \in o \iff a(k \times A) = k, \]
(3.20) \[1 \leq k_1, k_2 \in \omega \wedge \mathcal{F}(y_1) \wedge k_2 \times A + y_2 \iff k_1 \leq k_2 \times A + y_1 \iff k_2 \times A + y_2 \]

Remark. It cannot be expected that (3.20) holds with $k_1 \leq k_2 \times A$. For (3.18) there exists y_1 such that $x = k \times A + y$ holds. (3.6) follows. If, on the other hand, $x = k \times A + y$ for some y_1 with $A \not\subseteq y_1$, we have $k \times A \subseteq x$. The assumption $(k + 1) \times A \subseteq y$, however, yields the contradiction $A \not\subseteq x$ by (3.8). Hence $a(k) = k$ by (3.15).

(3.19): Let $y = 0$ in (3.18), then $A \not\subseteq y$ by (3.6), hence $A \not\subseteq x$ holds.

(3.20): Assume $1 \leq k_1, k_2 \in \omega \wedge \mathcal{F}(y_1) \wedge \mathcal{F}(y_2)$. If $k_1 \leq k_2$ and $A \not\subseteq k_2 \times A + y_2$, then obviously $k_1 \times A + y_1 \leq A \not\subseteq k_2 \times A + y_2$. If, on the other hand, $k_1 \times A + y_1 \leq k_2 \times A + y_2$, then $k_1 \leq k_2$ by (3.15) and (3.18). Furthermore we have $y_1 \leq k_2 \times A + y_2$, hence $A \not\subseteq y_1$ or $A \not\subseteq y_2$ by (3.10). Because of $\mathcal{F}(y_2)$ the second case holds.

Let us introduce the monadic predicates \mathcal{X}, \mathcal{G} and \mathcal{R} in (3.21) to (3.23). In (3.24) and (3.25) equivalent forms, obviously by (3.18), are added:

(3.21) \[\mathcal{X}(x) \iff \exists k (1 \leq k \in o \wedge x = k \times A), \]
(3.22) \[\mathcal{G}(x) \iff 1 \leq a(x) \in o, \]
(3.23) \[\mathcal{R}(x) \iff a(x) = 1, \]
(3.24) \[\mathcal{G}(x) \iff 3 \exists \{1 \leq k \in o \wedge \mathcal{F}(y) \land x = k \times A + y\}, \]
(3.25) \[\mathcal{R}(x) \iff 3 \exists \{\mathcal{F}(y) \land x = A + y\}. \]

The elements of \mathcal{G} are sums. By (3.20) not the summands $k \times A$ and y but $k \times A + y$ are unique up to cardinal equivalence. This allows us to introduce the following two cardinal function symbols x and q on the class \mathcal{G}, i.e. function symbols with respect to cardinal equality only:

(3.26) If $\mathcal{G}(x)$—thus $x = k \times A + y$ for some k, y with $1 \leq k \in o$ and $\mathcal{F}(y)$—then let $x(a) = k \times A$ and $q(a) = A + y$.

The following list of propositions formally expresses that the class \mathcal{G} with the ordering \leq is the "product" of the subclasses \mathcal{X} and \mathcal{R} with projections x and q.

The proofs are easy applications of previously shown propositions which we leave to the reader:

(3.27) \[\mathcal{X}(x) \Rightarrow \mathcal{G}(x), \]
(3.28) \[\mathcal{R}(x) \Rightarrow \mathcal{G}(x), \]
(3.29) \[\mathcal{G}(x) \Rightarrow \mathcal{X}(a(x)) \wedge \mathcal{R}(a(x)), \]
(3.30) \[\mathcal{G}(x) \Rightarrow \exists \exists z (\mathcal{R}(z) \land \mathcal{G}(z) \land x = z \times A + y), \]
(3.31) \[\mathcal{X}(a) \land \mathcal{R}(a) \Rightarrow \mathcal{G}(a) \land \mathcal{X}(a) \land \mathcal{R}(a) = 0, \]
(3.32) \[\mathcal{G}(x) \wedge \mathcal{X}(z) \rightarrow (x_1 \leq x_2 \Rightarrow x_1 \times A + y_1 \leq x_2 \times A + y_2), \]
(3.33) \[\mathcal{G}(x) \rightarrow x(a) \iff x \times A + y = A. \]

Having established this "product" property of \mathcal{G}, we consider now the ordering between elements of \mathcal{G} and its complementary class \mathcal{S}. Of an element in \mathcal{G} only its o-projection is involved in this. By (3.12) and (3.22) the following holds for \mathcal{G}:

(3.34) \[\neg \mathcal{G}(x) \iff a(x) = 0 \wedge a(x) = 0, \]
(3.35) \[\mathcal{G}(x_1) \wedge \neg \mathcal{G}(x_2) \rightarrow (x_1 \leq x_2 \Rightarrow q(x_1) \leq q(x_2)), \]
(3.36) \[\mathcal{G}(x_2) \wedge \neg \mathcal{G}(x_1) \rightarrow (x_1 \leq x_2 \Rightarrow q(x_1) \leq q(x_2)). \]

Proofs. (3.35): Let $\mathcal{G}(x_1)$, $\neg \mathcal{G}(x_2)$, hence $x_1 \leq k_1 \times A + y_1$ for some k_1, y_1 with $1 \leq k_1 \in o$ and $\mathcal{F}(y_1)$. Furthermore $q(x_1) = A + y_1$ by (3.28). Assuming $x_1 \leq x_2$, we get $q(x_1) = A + y_1 \leq k_1 \times A + y_1 = x_2 \times A + y_2$ because $1 \leq k_1$. On the other hand, let $q(x_1) \leq y_2$, hence $A \not\subseteq y_2$, thus $a(x_1) = 0$ by $\neg \mathcal{G}(x_1)$ (and 3.34). By (3.11) $k_1 \times A + y_2$, thus there exists a set u with $k_1 \times A + u = x_2$. Furthermore we have $y_1 \leq A + y_2$ and $y_2 = k_1 \times A + u$ and by applying (3.10) we obtain $A \not\subseteq y_1$ or $A + y_2 \leq A + u$. The first case contradicts $\mathcal{G}(y_1)$, hence by the latter $x_1 \leq k_1 \times A + y_1 \leq k_1 \times A + u = u_2$, because $1 \leq k_1$ holds.

(3.36): Let $\mathcal{G}(x_2)$, $\neg \mathcal{G}(x_1)$, hence $x_1 = k_1 \times A + y_1$ for some k_1, y_1 with $1 \leq k_1 \in o$ and $\mathcal{F}(y_1)$. Furthermore $q(x_2) = A + y_2$. Assuming $x_1 \leq x_2$, we obtain $a(x_1) \leq k_1 \in o$ by (3.13) and (3.18). Hence $a(x_1) = 0$ by $\neg \mathcal{G}(x_1)$ and (3.34). By (3.10) $x_1 \leq x_2 \iff x_1 \leq k_1 \times A + y_2 \Rightarrow A \not\subseteq y_1$ or $A + y_2 \leq A + u$, but $A \not\subseteq y_1$ is excluded by $a(x_1) = 0$, thus the latter holds and we obtain $x_1 \leq q(x_2)$. On the other hand, if $x_1 \leq q(x_2)$, we have $x_1 \leq q(x_1) = A + y_1 \leq k_1 \times A + y_1 = x_2 \times A + y_2$ by $1 \leq k_1$.

Finally we introduce in (3.37) the class \mathcal{R}, previously mentioned in § 2, and note two properties obvious by (3.12) and the definitions (3.22) of \mathcal{G} and \mathcal{R}.

(3.37) \[0 \in \mathcal{R}(x) \iff 0 \leq a(x) \iff 1 \leq a(x) = 0, \]
(3.38) \[\mathcal{G}(x) \vee \mathcal{R}(x), \]
(3.39) \[\mathcal{G}(x) \wedge \mathcal{R}(x) \iff \mathcal{R}(x). \]

§ 4. Analyzing λ-formulas. In (3.32), (3.35) and (3.36) we gave, for the atomic formula $x_1 \leq x_2$, equivalent formulas depending on whether x_1, x_2 are in \mathcal{G} or \mathcal{S}. In the following we generalize this to λ-formulas.
L(≤, ϕ₁, ..., ϕₖ) denotes the first order language built by means of the logical connectives ∧, ∨, ¬, ∈, ⊂ starting with the symbols ≤ and the predicates ϕ₁, ..., ϕₖ. If \(\mathfrak{a}(g) \) is a formula of \(L(≤, ϕ₁, ..., ϕₖ) \) and \(ϕ \) any monadic predicate, we write \(\mathfrak{a}(g)^{m} \) for the relativization of the formula \(\mathfrak{a}(g) \) to the class \(ϕ \). \(\mathfrak{a}(g)^{m} \) is recursively defined on the complexity of \(\mathfrak{a}(g) \) as follows:

\[
\begin{align*}
[x ≤ y]^m & \equiv x ≤ y, \\
[ϕ(0), y]^m & \equiv ϕ(0)^m, \\
[ϕ(1), y]^m & \equiv [ϕ(0), y]^m \land [ϕ(1), y]^m, \\
[ϕ(2), y]^m & \equiv [ϕ(0), y]^m \lor [ϕ(2), y]^m, \\
[¬ϕ(1), y]^m & \equiv [¬ϕ(1), y]^m, \\
[ϕ(1), ϕ(2), y]^m & \equiv [ϕ(1), y]^m \land [ϕ(2), y]^m, \\
[ϕ(2), ϕ(1), y]^m & \equiv [ϕ(2), y]^m \lor [ϕ(1), y]^m.
\end{align*}
\]

Thereby we write \(ϕ(x₁, x₂, ..., xₖ) \) — shorter \(ϕ(g) \), to indicate that the free variables in the formula \(ϕ \) are among \(x₁, x₂, ..., xₖ \) — shorter \(g \). Furthermore we abbreviate \(ϕ(1), ϕ(2), ..., ϕ(ₖ) \) by \(ϕ(g) \) and \(¬ϕ(1), ¬ϕ(2), ..., ¬ϕ(ₖ) \) by \(¬ϕ(g) \).

Proposition 4.1. Let \(\mathfrak{a}(g) \) be a formula of \(L(≤) \) with all its free variables among \(x₁, x₂, ..., xₖ \). For every decomposition \((g', g'') \) of the set \(g \) of variables, there exist formulas \(\mathfrak{a}(g') \) of \(L(≤, ϕ, ψ) \) such that

\[
\mathfrak{a}(g') \land ¬\mathfrak{a}(g'') \Rightarrow \mathfrak{a}(g) \iff \bigwedge_{i=1}^{m} \left(ϕ(0)^{i}(x₁, x₂, ..., xₖ)^{i} \land \left[ϕ(1)^{i}(x₁, x₂, ..., xₖ)^{i} \lor ϕ(2)^{i}(x₁, x₂, ..., xₖ)^{i} \right] \right).
\]

In the following discussion this type of disjunction will be referred to as the "normal form" of \(\mathfrak{a}(g) \).

The proof is by induction on the complexity of \(\mathfrak{a}(g) \). It is sufficient to consider the logical connectives ∨, ¬, ∈, ⊂. Let \(\mathfrak{a}(g) \) be an atomic formula, hence \(x₁ ≤ x₂ \). There are four possible decompositions of the variables, namely \((x₁, x₂) \), \((x₂, x₁) \), \((x₁, x₂, x₃) \) and \((x₁, x₂, x₃, x₄) \). By (3.32), (3.35) and (3.36) and the definition of relativation, the following holds:

\[
\begin{align*}
ϕ(x₁, x₂) & \iff [ϕ(x₁, x₂)]^{m} \land [ϕ(x₂, x₁)]^{m}, \\
¬ϕ(x₁, x₂) & \iff ¬ϕ(x₁, x₂)^{m} \land [ϕ(x₂, x₁)]^{m}, \\
[ϕ(x₁, x₂)]^{m} & \iff [ϕ(x₁, x₂)]^{m} \land [ϕ(x₂, x₁)]^{m}, \\
[¬ϕ(x₁, x₂)]^{m} & \iff ¬ϕ(x₁, x₂)^{m} \land [ϕ(x₂, x₁)]^{m}.
\end{align*}
\]

Let \(\mathfrak{a}(g) \) be the disjunction \(ϕ(g) \lor ψ(g) \) and \((g', g'') \) a decomposition of \(g \). Then by induction hypothesis there exists a normal form for \(ϕ(g) \) (resp. \(ψ(g) \)). It follows that \(ϕ(g)^{m} \) is equivalent to \(ϕ(g)^{m} \lor ψ(g)^{m} \) (resp. \(ϕ(g)^{m} \lor ψ(g)^{m} \)). The disjunction of these two normal forms is a normal form for \(ϕ(g)^{m} \).

Let \(\mathfrak{a}(g) \) be \(¬ϕ(g) \) and \((g', g'') \) a decomposition of \(g \). By induction hypothesis there is a normal form for \(ϕ(g) \), therefore — provided \(ϕ(g') \land ¬ϕ(g'') \) — the negation of this normal form is equivalent to \(ϕ(g)^{m} \), thus

\[
\mathfrak{a}(g) \iff \bigwedge_{i=1}^{m} \left([ϕ(g')]^{i} \land [¬ϕ(g'')]^{i} \right).
\]

By referring to propositional calculus and the definition of relativation we obtain the following normal form for \(\mathfrak{a}(g) \):

\[
\bigwedge_{i=1}^{m} \left([¬ϕ(g')]^{i} \land [ϕ(g'')]^{i} \right).
\]

Let \(\mathfrak{a}(g) \) be \(ϕ(g) \lor ψ(g) \) and \((g', g'') \) a decomposition of \(g \). \(\mathfrak{a}(g) \) is then equivalent to \(ϕ(g) \lor ψ(g) \lor (¬ϕ(g') \land ψ(g'')) \). It is sufficient to find a normal form for each of these two disjuncts:

By induction hypothesis there exists for the decomposition \((g', g'') \lor (g'', g'') \) a normal form for \(ϕ(g') \) (resp. \(ϕ(g'') \)). Let \(\mathfrak{a}(g) \) be \(ϕ(g) \lor ψ(g) \) and \((g', g'') \) a decomposition of \(g \). \(\mathfrak{a}(g) \) is then equivalent to \(ϕ(g') \lor ψ(g') \lor (¬ϕ(g'') \land ψ(g'')) \). It is sufficient to find a normal form for each of these two disjuncts:

By induction hypothesis there exists for the decomposition \((g', g'') \lor (g'', g') \) a normal form for \(ϕ(g') \) (resp. \(ϕ(g'') \)).
Provided $\mathcal{G}(x') \land \neg \mathcal{G}(y')$, it can be shown by predicate calculus that
\[\exists z (\neg \mathcal{G}(x') \land \mathcal{G}(y, z)) \] is equivalent to
\[\neg \mathcal{G}(x') \land \exists z (\neg \mathcal{G}(y', z') \land \mathcal{G}(y, z')) \].

With $\neg \mathcal{G}(x') \equiv \neg \mathcal{G}(x') \land \mathcal{G}(z)$, the definition of relativation, the normal form
\[\neg \exists z (\neg \mathcal{G}(x') \land \mathcal{G}(z')) \] can finally be obtained.

Corollary 4.2 is obtained by specifying all free variables to be in \mathcal{G}:

Corollary 4.2. Let $\alpha(x)$ be a formula of $L(\mathcal{G})$ with all its free variables among $\{x\}$. Then there exist formulas $\beta(x)$ of $L(\mathcal{G})$ and $\gamma(x)$ of $L(\mathcal{G}, \mathcal{A})$ ($i = 1, 2, \ldots, m$) such that
\[\mathcal{G}(x) \equiv \{\beta(x) \equiv (\mathcal{G}(x) | \mathcal{G}(x')) \} \land \mathcal{G}(x') \].

Again by specifying all free variables to be in \mathcal{G} and \mathcal{A} (3.27), (3.33) the following holds:

Corollary 4.3. Let $\alpha(x)$ be a formula of $L(\mathcal{G})$ with all its free variables among $\{x\}$. Then there exist formulas $\beta(x)$ of $L(\mathcal{G})$ and sentences \mathcal{S}_i of $L(\mathcal{G}, \mathcal{A}, \mathcal{M}, \mathcal{A})$ ($i = 1, 2, \ldots, m$) such that
\[\mathcal{G}(x) \equiv \{\beta(x) \equiv (\mathcal{G}(x) | \mathcal{G}(x')) \} \land \mathcal{S}_i \].

The restriction on the class \mathcal{A} of a predicate given in the universe by a \mathcal{G}-formula is thus equivalent to a predicate essentially defined within \mathcal{G}.

§ 5. Proof of Lemma 3. Let \mathcal{A} be the monadic predicate defined by $\mathcal{A}(x', z) \equiv 1 \leq x \leq a$. By (3.21), (3.19) and (3.13) the multiplicity a introduced in § 3 gives an order preserving isomorphism from $(\mathcal{A}, \sqcup, \sqsubset, \mathcal{A})$ onto $(\mathcal{A}, \sqcup, \subseteq, \mathcal{A})$ respectively. By induction this isomorphism of the ordering \sqsubset can be extended to \mathcal{G}-formulas, provided all quantifiers are restricted, hence

(5.1) If $\alpha(x)$ is a formula of $L(\mathcal{G})$ with all its free variables among $\{x\}$, then
\[\mathcal{G}(x) \equiv \{ (\alpha(x) \equiv (\mathcal{G}(x) | \mathcal{G}(x')) \} \land \mathcal{G}(x') \].

We are now in the position to prove Lemma 3 of § 1 without much difficulty. The only assumption on A we have used so far is $\mathcal{G}(A)$. Let $\mathcal{G}(x, z)$ be a \mathcal{G}-formula of $L(\mathcal{G})$ and sentences \mathcal{S}_i of $L(\mathcal{G}, \mathcal{A}, \mathcal{M}, \mathcal{A})$ ($i = 1, 2, \ldots, m$) such that
\[\mathcal{G}(x, z) \equiv \{ \mathcal{G}(x, z) \equiv (\mathcal{G}(x, z) | \mathcal{G}(x, z')) \} \land \mathcal{S}_i \],
\[\mathcal{G}(x, z) \equiv \{ (\mathcal{G}(x, z) \equiv (\mathcal{G}(x, z) | \mathcal{G}(x, z')) \} \land \mathcal{S}_i \] provided $\mathcal{G}(x) \land \mathcal{A}(z)$.

By the well-known analysis of \mathcal{G}-formulas on natural numbers using elimination of quantifiers we obtain for each \mathcal{G}-formula $\mathcal{G}(x, z)$ two numerals g_i and p_i such that for any numeral x, z with $g_i < x$ and $p_i < z$ the following holds:
\[\mathcal{G}(x, z) \equiv \{ (\mathcal{G}(x, z) \equiv (\mathcal{G}(x, z) | \mathcal{G}(x, z')) \} \land \mathcal{S}_i \].

Remark. If x and z are far away from the first element and the distance between them is large enough, then the \mathcal{G}-formula $\mathcal{G}(x, z)$ does not distinguish between the two pairs (x, z) and $(x, z + 1)$.

Let $q = \max \{g_i\}$, $p = \max \{p_i\}$, and $s = \max \{p_i, p_i + 1\}$.

Then $q < x$ and $p < x$ hold for all $i = 1, 2, \ldots, m$, hence for all $i = 1, 2, \ldots, m$ simultaneously hold
\[\mathcal{G}(x, z) \equiv \{ (\mathcal{G}(x, z) \equiv (\mathcal{G}(x, z) | \mathcal{G}(x, z')) \} \land \mathcal{S}_i \].

In (5.1) let $x = x \times A$, $z = x \times A$. Then $\mathcal{G}(x \times A)$, $\mathcal{G}(x \times A)$, $x \times A = z$, $a \times A = t$ yields
\[\mathcal{G}(x \times A, x \times A) \equiv \{ (\mathcal{G}(x \times A) \equiv (\mathcal{G}(x \times A) | \mathcal{G}(x \times A)) \} \land \mathcal{S}_i \].

Similarly by $x = x \times A$ and $z = (x \times A) \times A$ we obtain
\[\mathcal{G}(x \times A, (x \times A) \times A) \equiv \{ (\mathcal{G}(x \times A, (x \times A) \times A) \equiv (\mathcal{G}(x \times A, (x \times A) \times A)) \} \land \mathcal{S}_i \].

Hence by (5.1) and $t = z + x$:
\[\mathcal{G}(x \times A, (x \times A) \times A) \equiv \{ (\mathcal{G}(x \times A, (x \times A) \times A) \equiv (\mathcal{G}(x \times A, (x \times A) \times A)) \} \land \mathcal{S}_i \]