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On the continuity and monotonicity of restrictions
of connected functions

by

Ryszard Jerzy Pawlak (L6dz)

Abstract, The paper deals with connected real functions defined on a topological space.
Some results are given concerning the restrictions of such functions to supersets of the union of
their connected levels. In § 1 the above-mentioned problems are considered in connection with
continuity, quasi-continuity and the Blumberg sets of those restrictions, In § 2 there is an analysis
of different kinds of monotonicity and related properties of restrictions of connected functions.
The last part of the paper refers to the same kind of problems as the previous ones but with the
additional assumption that the functions considered are open.

§ 0. Introduction and basic definitions and notation. The paper contains results
concerning restrictions of real connected functions defined on some topological
spaces. The results here presented are extensions of the researche of K. M. Garg [2],
Z. Grande [4] and J. S. Lipinski [8]. In particular, the paper contains Theorem 1.1,
the corollary of which was Garg’s theorem in [3]. Theorem 1.1 is essentially stronger
than Garg’s theorem, which is shown by Example 1.1. This result is a starting point
for proving new theorems such as Theorem 1.4 and Corollary 3.1.

In § 1 the above mentioned problems are comsidered in connection with con-
tinuity, quasi-continuity and Blumberg sets of restrictions to some supersets of the
union of connected levels of connected functions. In the second section we consider
different kinds of monotonicity and the corresponding properties of restrictions of
connected functions. The last part of the paper relates to problems similar to the
previous onés with the additional assumption that the functions considered are open.

‘We use the standard notions and notation, which were used in the monograph
of R. Engelking [1] and in the article of K. M. Garg [3]. The notions which were not
defined in [1] or [3] and those we define differently from R. Engelking and K. M. Garg
(for example an open function) are defined immediately before we use them.

By R we shall denote the set of real numbers with its natural topology.

The symbol E¢ denotes the derived set of a set E. This set depends on the space
in which it is considered. Since every point x of a subspace 4 of a space X is an
accumulation point of E (Ec4) in A iff x is accumulation point of E in X, then
the use of this symbol will not lead to a misunderstanding.
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The symbol 4-limx, will denote the limit of the M-S sequence {x,},.; in

gel
the subspace 4 of X.

By the bilaterally closed set we mean the set contained in R and containing all
of its bilateral accumulation points.

The symbols (e, B), (, fl, [, f) and [x, f] for a<p denote (respectively)
open, left-sided open, right-sided open and closed intervals in R. We denote by
F e, B, f7 e, B), £ Me, Bl 4, B] the inverse images of those intervals
to avoid superfluous brackets.

The closure and interior of a set 4 we denote by 4 and IntA. According to the
notation in [3] we write:

Y(f) = {eef(X): f Y(«) is a connected set},
S{(f) =YL,
S =YL,
for a function f: ¥~ Y.
The symbol K(x, r) denotes an open ball at the centre in x and with radius r,
ie. K(x, r) = {y: o(x, »)<r}, where ¢ always denotes a natural metric and o(x, 4)
denotes the distance of x from a set A.
Finally, it is necessary to settle (according to the terminology of R. Engelking)

that compact space is always a Hausdorff space in which every open cover has a finite
open subcover.

§ 1. Remarks on continuity, quasi-continuity and Blumberg sets for connected
functions.

DeFINITION 1.1 ([5]). We say that a function f: X — Y, where X, ¥ are arbitrary
topological spaces, is weakly connected if f(C) is a connected set for every open
connected set CcX.

DEeFINITION 1.2 ([3]). We say that a function f: X — ¥, where X, Y are arbitrary
topological spaces, is connected if f (C) is a connected set for an arbitrary connected
set CcX.

DerNITION 1.3. 'We say that a nonvoid set X cuts a topological space X if
X\K = A4 U B, where A and B are nonvoid open and disjoint sets.

Before we prove the first theorem of this part of the work we prove 5 lemmas,
Lemmas 1.1, 1.4 and 1.5 were proved by K. M. Garg [3] in a case of real functions.
The generalization of them to arbitrary topological spaces is connected with a possi-
bility of wide application, for a series of ours theorems are true even in a case of con-
sideration arbitrary functions f: X - ¥, Indispensable (in such a case) changes
are contained in undermentioned lemmas.

Lemma 1.1; Let X be a locally connected space, ¥ — arbitrary topological space.
Iff: X - Y is a weakly connected function and K cuts Y into A and B, then f~*(4),
S ~*(B) are open disjoint sets if and only ¥ f~(K) is closed. Moreover, if f~*(4) # @
# f7X(B), then f~X(K) cuts the space X into FY(A) and f71(B).
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Proof. Necessity is obvious. We shall prove only that the above condition
is sufficient.

Let x €f~(4). Since f~1(K) is a closed set, then there is a connected neigh-
bourhood U of x such that Unf}(K) = @. Of course f(U) is a connected set.
If f(U)n B # @ then f(U) =P U Q, where P = f(U)n 4 and Q = f(U) N B.

But, in view of an obvious fact, P and Q are closed in a subspace f(U); this
contradicts the fact that the set f(U) is connected. So f(U)n (BU K) = &, and
hence f(U)c A, which implies that f~*(4) is an open set.

In a similar way one can prove that B is an open set too.

Remark that f~1(4) nf™4(B) = @, which implies, according to the relation
FHA) # D f7Y(B), that f~YK) cuts X (into £~ 1(4) and £~1(B)).

Lemma 1.2 (I3]). Let X be an arbitrary topelogical space, Y a Ty space and
Ji X — Y a connected function. If K< Y has closed components (in Y) then f~(K)
has closed components as well.

The following lemma is a similar consequence to the above ones. .

Lemma 1.3. Let X be a locally connected space andf: X — R a connected function.
If ae Y,(f), then f~1(—o0,a), f~Ya, ) are disjoint open sets.

Levma 1.4. Let f: X — Y be a connected function, where X is a connected and
locally connected space, Y a T, space. If

1° the set K cuts Y into sets A and B, and

2° f~YK) is a connected set,
then the sets (4 J K), f~Y(B v K) are connected.

Proof. The lemma is true if f7!(4) =@ or f~'(B) = @, for in this case
F Y4 v K) and f~1(B U K) are equal to X or f1(K).

Suppose now that f7(4) # & # f~1(B). According to 2° and Lemma 1.2,
STYK) is closed and, in view of Lemma 1.1 and 1°, f~1(K) cuts X into sets £ ~1(4)
and f~*(B), which means that f~1(4 U K) and f~(B U K) are closed. Moreover,
STHAUK)Uf ™ (BUK) =X is a connected set as well as the set f~1(K)
=f"Y4 UK)nf~YB U K). This implies (see [7] p. 133) that =4 U K) and
"B U K) are connected sets.

Lemma 1.5. Let f: X — Y be a connected function, where X is a connected and
locally connected space, Y a T, space. Moreover, let K cuts Y into sets A end B.
If {K,} is a sequence of sets contained in Y fulfilling the conditions

1° K, cuts Y into A, and B, for n=1,2, ...,

2° 4, UK, jcAd, UK,cd for n=2,3, ...,

3° fUK,) is a connected set for n =1,2, ...,

0
then (U (4, v B))=f (4 U K).
n=1
Proof. In virtue of Lemma 1.4 the sets f *(4, U K,) are connected for
@ 0 °
n=1,2,.;thus ({4, v K)) = US4, v K,)is a connected set, and thus
n=1 n=1

it is contained in some component S of f~(4 U K). The set 4 U K, as a closed
"
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set, has closed components; thus f ~1(4 L K) has closed components (see Lemma 1.2)
and in particular

FFHUUvE)=Scf (4 uK).
n=1
TuroreM 1.1. Let f: X — R be a connected function, where X is a connected and
locally connected space. If S <X fulfils the condition
1 f(S)= YA/
2° £~ Yo} is closed in S for every o.ef(S),
then fis is continuous.

Proof. Denote Y, = Y.(f), 4 = f(S), g = fis, and moreover let P denote

the closure of Pin S. If x €.S and y = f(x) then, accordmg to 2°,
in S.
Put

F7Y(») is closed

« = inf{re Y.(5): r>y} = inf{re Y ,(f): r>y}

and

B =sup{re Y.(f): r<y} = sup{re Y,(f): r<y}.
Let & be an arbitrary positive number. We shall show that
() there exists a set H open in S and such that x & H and

gH)c(y—e,y+e) =

Consider the following cases:

() « =0, B = —co. Then g(S) =
we have ().

(i) @ = o0, f = y. Remark that {re ¥,: r<y} # @. Then there exists in
(y—¢,y) a number ze ¥,. Let H = g~(z, 0) = f~*(z, 0) n S. This set is open
in § (Lemma 1.3), contains x and g(H)<=(z, y]=G, which means that in this case
condition () is also fulfilled.

(i) « = y, f = —oo. Then the proof is analogous to the previous one.

(V) « =y, p = . Then there exist numbers ¢, d e Y, such that

Y,=Y, ={y} and putting H=S§

y—e<c<y<d<y+te.
Now let H = g~*(c, d)
prove ().
() y<u<co. If a € ¥, then the set H; = g~ *(—o0, a) is open in S and con-
tains x.
Suppose now that a ¢ Y,. Let {«,} be a decreasing sequence contained in Y,

such that limer, = o Notice that all the assumptions of Lemma 1.5 are fulfilled;
thus

=f"Ye,0) NS f Y ~cw0,d). As in case (i) one can

T w0) =1 Q[au, )/ e, ),
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and so
m g M@, 00) = f (&, 0) N Se(fTHo, ) U TH@) A S

If e A then for Hy = g~ 1(—00,a) = f"}(—00,a) N S we have:

g v, ) =g~ (@, 0) U g~ D(Lf T, 0) UF W] N S) U g™

=g 'lt, ),

which proves that H, is open and xe H;.

Now if o ¢ 4, then according to (1) and the obvious fact f~ @) N S = &,
we infer that

g7, 0) = fH e, 00) N § = g7 a, ),

and in this case H, = g~'(—o0, ¢] is open in S and x e H,.

Suppose now that f = —oo. Then H, = g~ *(R) is open in S and x e H,.

If B =y, then let H, = g~'(z, o0), where z is such an element of ¥, that
y—e<z<y. Then xe H, and H, is open in S.

Finally, if § is a finite number such that < y then, in the same way as we proved
for >y, we can prove that the set

_ {g“‘(ﬁ,w) if ped,

9B, 0) if feA
is open in S and contains x.
Thus in each of the possible cases the set H = H; n H, is open in S and con-

tains x. Moreover, the constructions of H;, H, imply that
g(H) = g(H,; n Hy)=g(Hy) ng(H)=G ..

So we have just proved (x) in this case.

In the last two cases

Vi) & = 00, —0<f<y;

(Vi) @ =y, —0<f<y;
the proofs of () are very similar to that in case- (v).

CoRrOLLARY 1.1 ([3]). If X is a connected and locally connected space and X - R
a connected function, then f;s,u) is continuous.

Now Theorem 1.1 suggests the following problem: Is a restnctlon to S(f) of
a connected function f defined on a connected and locally connected space con-
tinuous? The answer to this problem is negative, as we can see in the following
example:

ExampLE 1.1. Let X = R and f: R — R be as follows: ~

~x+1 for xe(—0,0],

2
forxe(,ﬁ],
3n P 2
5 *® forxel o).

sin—
X

fe)=
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It is easy to see that S(f)=(—oo,0)u{m: n

=1,2, } v [—zv, oo)
) 3n
and fise(p is Dot a continuous function.

With Theorem 1.1 another question is connected: What kind of structure has
the set P consisting of those elements of }70(75 for which £ ~*(«) is not closed in S°(f)?
Theorem 1.2 describes this set.

TueOREM 1.2. If /2 X — R is a connected function, where X is a connected and
locally connected space, then

() if o is such a point of Y (f) that f~*(«) is not closed in S°(f), then « is the
unilateral limit point of Y (f);

(ii) the set P of all o from m Sor which f~(e) is not closed in S°(f) is at most
demyumerable.

Proof. Let a eP. In virtue of Lemma 1.2 ae M\ Y(f), which implies
that « is an accumulation point of Y,(f'). Suppose that « is a bilateral limit point
of Y,(f). There exist two sequerces {«,}, {8,} in Y,(f) such that «, #a, B, \e. Hence

@ = ()

and
4]

fie) = 1f'l[mm Bl

n=
which implies, according to Lemma 1.3, that f~*(c) is closed in X, and so also in
S°(f). This means that o ¢ P. The contradiction ends the proof of (i).

(if) can easily be deduced from (i).

Dermntrion 1.4 ([6], [9]). The function f: X' — Y is said to be quasi-con-
tinuous at x if for every neighbourhood W of f(x) and every neighbourhood U
of x the set Int[U n f~*(W)] is nonempty.

The function f: X — Y is said to be quasi-continuous if it is quasi-continuous at
every point x e X.

" THEOREM 1.3. Let f: X — R be a connected function defined on a connected and
locally connected space X. Assume that S<X fulfils the following conditions:

1° 8(f)=S=S(f),

2° for xe 8 if xe [S\SLNI then x e [SLN “HAE.

Then Jis is quasi-continuous.

ProofiLetg = fisand h = SEan- Let o« = f(x) for x € S, and ¢ be an arbitrary
positive number. Put W = (x—&, «+¢) and let U be an arbitrary set open in S and
containing x, and U, a set open (in X) and such that U = S n U,. There exists
set V. open (in X) and connected and such that xe V,cU,. If V' =SnV,,
then V< U. Suppose now that there is a set ¥* open in S, containing x and
such that ¥* consists only of elements of the level g~ («). Then the set ¥ n V*
is open in S, contains x and is contained in Int[U A f~L{(W)].
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Now assume to the contrary that an arbitrary set open in S and containing x
contains also a point not belonging to g~ *(x). This means that x e [S\g~*(&)]".
Then let {x,},.s be an arbitrary M-S sequence of points from S\g~*(x) such that

x €limx, independently of whether limx, denotes X-limx, or S-limx,.
oceX gel oceX oge kX

Notice that x e [S(f)\g ~1()]*. This is obvious if we can choose a subsequence
{*s}ar e ©SLf) of {X,}sez- In the opposite case x & [S\S(f)]* and in view of 2°
also x & [S.(f)Ng ()]

Let {ys}ses be an arbitrary M-S sequence such that xe X-limy; and
ded

{35} =(SLFNg ™" (c)). There exists a S, 4 such that y;e ¥, for every §=4,.
Hence, according to the inclusion S(f)<S, y;e Ve U.

Since x € S,(f), we have, in view of Corollary 1.1, a = lim/(y;) = limg (y;).
ded ded

We now infer that there exists a 8y € 4 such that g(y;) € W for 60}, and there
exists a 6* such that §,<6%, dy<d*.
Put §, = 6* and ry = |g(¥s,)—a|. Of course r;>0. Since a« = limg(y;), there
sed

exists a 6F e 4 such that g(y,) e (x—%ry, a+3ry) for every §=6%. There is an-
element §, in 4 such that §; <6, and 67 <8,. Theng (y,,) € Vandletr, = |g (¥s)—odf.
There exists a 03, 8; €4 such that g(y;) e (a—1ry, at+dr,) for §283%; 6,<5,
and 83 <&3. Of course y;, € ¥ and points g (¥5,), g (¥s,), g(¥5,) are pairwise distinct,
and so one of them is placed between the other two. Let g(¥;)<g(ys,)<g(¥s,)
for example. If 4 = f (g (y5,), 9(¥5,)), then 4 is open in X (in virtue of Lemma 1.3),
and so 4 n S is open in S and nonempty for y;, € 4 N S. It follows that A NS N V
is nonempty and open (in S), contained in ¥ and U. Since (g(ys,), g (vs,))< W,
we have 4 N S n Veg™"(W). This proves that Int(U n g~ (W) # @.

The next definition and Theorem 1.4 are basic for our comsiderations con-
cerning the strong sets of Blumberg. '

DermniTION 1.5 ([9]). Let X, Y be topological spaces and f: X — Y. We say
that Bc X is a Blumberg set for fif B is dense in X and f3 is a continuous function.

THEOREM 1.4. If f: X — R is a connected function defined on a connected and
locally connected space X, then the function g = fise(r, has a Blumberg ser.

Proof. Let P be the set of all x e Y,(f) for which g~ (a) is not a closed set
in S°(f). In virtue of Theorem 1.2(ii) P is at most denumerable: let it be {o,} (this
sequence can be finite). Let 4, be a set of those accumulation points (in S°(f))
of g7 *(a;) which do not belong to g~ *(x,).

Suppose we have defined sets A4y, ..., 4,4 for o, ..., &,_; € P. Then let 4, be
1

e
the set of all the limit points (in $°(f)) of g~ (e;,)\ U 4; which that do not belong
=1 i

to g~ (). Continuing this procedure, we can connect a set 4, with every point

o P, ’ .

Put B = S(f)\ U 4;. We shall show that B is a Blumberg set for g.
i
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Of course, f(B) mj and, moreover, from the construction of B it follows
that for every ae Y.(f) the level A~ *(«) (where h = g5 = fis) is closed in B (it
can be the empty set); so according to Theorem 1.1, % is continuous.

Let x e S°(f)\B and let U be an arbitrary neighbourhood (in S°(f ) of x,
« = f(x). Then there exists an o € P such that x is an accumulation point (in S°(f))
of g™ Ha). In virtue of Lemma 1.2 o e Y (fINY(S).

Denote by {B,} a sequence in Y,(f) converging to a,. According to Theorem 1.2 (i)
all B, are placed on one side of o, Assume, for example, that f, <o, forn = 1,2, ...
If ¢ <o, then there is an element fy such that a<fy<a, and the set g~ *(—o0, fy)
=f"1(—00, By) N SYf) contains x but no element of g~ (). At the same time
(Lemma 1.3) g~ *(—00, By) is open in S°(f"). This contradicts the assumption that x
is an accumulation point of g~ *(x). So we infer that w <a.

Now consider two cases:

1. e Y(f). In this case we shall show that no element of g ~(a;) is an accumu-
lation point of any other level of g. Suppose, on the contrary, that there is an element
yeg~ (o) being an accumulation point of g~*(,), s # k. Then none of the ine-
qualities oy <o, o >0, o <o, <o can hold, for otherwise in each of these cases there
would be an element ce Y,(f) such that a,<c<a or o <c<o, (in the first case
the required element ¢.could be found in a sequence {f8,}, in the second case ¢ could
be equal to «, in the last case the existence of such an element would follow from

the fact that o, & Y (f)NY(f)). Deducing as before, we infer in each possible case
* a contradiction of the assumption that y is an accumulation point of g~ *(a,) or x
is an accumulation point of g~ (a).

In this situation g~ (&)= B, and since every neighbourhood of x contains el-
ements of g~ (), we have Un B # @,

IL ae Y(fINY,(f). Then « is a limit point of a sequence {§,} contained
in Y,(f) and such that a<d,. As in case I, we can notice that g~ (%) contains no
accumulation point of any other levels g™ *(x;), I # k, and g~ (%) contains no
accumulation point of levels g~ (o) distinct from g~ '(a).

Now, if g~!(w) contains no accumulation point of g~'(x), then g~ (o)< B
and (in the same way as in case I) U meeting with g~ !(e,) has common points with B.

Now, if g™*(o) contains some accumulation point of g~*(x), then o &P and
a = o, for some positive integer m. If

1° k<m, then let z be an arbitrary element of U n g~ Y(x,). If z€ B then the

theorem is of course fulfilled. If z¢ B then z is an accumulation point of
m-1

m=1
g_l(‘XM)\iUIAi’ and so some element p of ¢~ *(w,)\ U 4, belongs to U. We can easily
= i=1

see that p & B because, in view of p ¢ Ay, p is not an accumulation point of g~ *(ey).
Thus p ¢ U 4;, and this implies that U n B # @.
i

2° k>m. We can remark that x e S(fINB, and so x is an accumulation point
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k-1 k=1
of g7 (@)\ U 4;. Thus U contains some element g of g~ (e )\ U 4;. In this way
i=1 i=1

q¢ A, and g¢ 4;, 50 ge B U.

In this way we have proved that in each of the possible cases U N B # @,
which means (in accordance with the arbitrariness of x and U) that B is dense

in S°(f).

ExampLE 1.2. Let X = [0, 00), {a,} = {}1} ) = { 2n+1

m} Lth:X—bR

be as follows:

1 for x =0,

1-1n forx=b,,n=1,2,..,
f()=4-1 forx=a,,n=1,2,..,

—-X for x>1,

linear in each of the intervals [a,., b,], [bs, @), n=1,2, ...

Without difficulty, we can see that f is a connected function and
Yf) =(~, -1]U {1},

which means that S(f) = {0} U {1/n}y=1,2,.. U [1, 0). Hence g = fise(py s not
quasi-continuous at 0 and B = {I/n: n = 1,2, ..} U [1, o) is 2 Blumberg set for g.
Remark that if U= [0,4%) nS(f), then U is an open set in S°(f) and
UnB={l/n: n=11,12,..}. Then g(Un B) = {—1}, and g(U B) is not
a dense in g(U) = {-1,1}.

The above-mentioned example substantiates the necessity of the next definition.

DeriviTioN 1.6 ([9]). Let X, Y be two topological spaces and a function
f: X — Y. The set B< X is said to be a strong set of Blumberg for f if B is a Blumberg
set for f and, for an arbitrary open set V< X, the set f (V¥ ~ B) is dense in f (V).

Example 1.2 suggests the following question: What additional assumptions are
sufficient for fis«(s) to have a strong set of Blumberg. Here is the answer.

THEOREM 1.5, Let X be a connected and locally comnected space and f: X -+ R
a connected function. Then the function g = Sises) has a strong set of Blumberg if and
only if it is quasi-continuous.

Proof. Necessity. Let x be a point of S°(f), B = g(x); moreover, let U be
an open set in S°(f), and ¢ any positive number.

Then g(U n B) is dense in g(U) and, since S eg(U), there exists a ye U n B
such that y =g(y)e(f—e, f+¢). Let 6= Imin(f+e—7p,y—p+¢). Then
[y—68,7+8lc(f—¢, B-+¢6). Since g\p is continuous, there exists an open set W
in B such that ye W, g(W)c(y—§, y+6). There is an open set W* in S° such
that W* n B = W. Since B is a strong set of Blumberg, we have

g(W*y=g(W* 1 B) = g(W)c[y—8,y+8l=(B—e, f+e),

which implies that g is quasi-continuous at x.


GUEST


100 R.J. Pawlak

Sufficiency. Now g is quasi-continuous. According to Theorem 1.4 g has
a Blumberg set B. Let ¥ be an arbitracy open set in S°(f), a € g(¥V), and ¢ a positive
number. Since g is quasi-continuous, there exists an open set V* in S°(f) such that

VeV ng Yoa—e,o+e).
It follows that g(V*)c(a—g, a-+&). Of course B V* £ . From the inclusions

gBNnVHc(o—e,a+e), BN V*cBnV we infer that in an arbitrary neigh-
bourhood of o there are points of g(B n V). This ends the proof.

§ 2. Monotonicity of connected functions.

DEFNITION 2.1 ([3]). We say that a function f: X — ¥, where X and Y are
two topological spaces, is weakly monotone if every level f~*(y) is a connected set.

DEFINITION 2.2. We say that a function f: X — Y, where X' and ¥ are two arbi-
trary topological spaces, cuts the space X if each component of its arbitrary level
cuts X.

PROPOSITION 2.1. 4 connected function f: R — R cuts the space R if and only
if none of its levels contains a halfline.

TrEOREM 2.2. If 1 R" = R is a connected function cutting R", then the set Y,(f)
is bilaterally closed.

Proof. Suppose, on the contrary, that there exist yeR and sequences
{C(,,}, {ﬁn}c Yc(f) such that &y >y Bn P, O(,,(OC".H_, ﬁn>ﬁn+1 fOI' n= 15 2: e
and f7(y) is not a connected set.

Consider a component 4 of f~(y). In view of our assumption the component 4
cuts R" into two open sets G; and G,. We shall first prove that

o) U=, o Uf =G,

Suppose now that there are ny; n, such that f~*(o, )Gy and f "1(05,, )=G,.
Then, according to Lemma 3.2(b) of a paper by K. M. Gar 4 [3], the set £~ at,, , oy, ]
is connected. Simultaneously

f [ann an; = (Gl ﬁf~1[05,,,, 'xnz]) v (GZ nfnl[anls ‘Xn;,]) »

where both sets on the right side of this equality are nonempty. This contradicts the
connectness of £ [a,,, &,,].
In a similar way we can prove

) Urweo, o Grgaeo,.

‘We now prove that

Gf‘ Ya)=G; - then

n=1

if ijf”l(ﬁn)CGl then

@ if Uf~'(8) =G, and
n=1

U~ @)=,
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Suppose now that G FHo)=G, and CJ S (B,)cG,. Let C be a component of G,,
ge C\C. Of course q ¢ G, UG, and q € A and C U {gq} is a connected set meeting

f~(y) but containing no element of U ] “a,) U U f 1(B,). The set f(Cu {g}) is
,...). This

o0
contradicts a, 79, f,\y. In a similar way we can prove that the relation U £~ (¢,)= G,

n=1

a nondegenerated interval contammg y and nelther o, nor B, (n=1,2

and U f~(B,) =G, is impossible. Thus we have proved relation 2.

n=1

Let Sy, S, be two components of £ ~1(y) (f~(y) is not connected). Those com-
ponents cut R" into sets G, G' and H', H", respectively.

Notice that S, is contained in one of the sets G, G’ and S, is contained in one
of the sets H’, H"'. Assume that §, =G’ and S; < H'. Then V = &' n H' is nonempty,
for if ze HN\H’, then ze S, =@, which implies that K(z, 1/k) =G’ for some k;
moreover, K(z, 1/k) n H' # @.

Two cases are possible

VALl e v U # 2,

0 o N
2 vl Ulf"(an) U Ulf‘l(ﬁ,)] =0
n= n=
Consider the first case. Then G H’ and H'<G'. If ¢ n H" # @; thus

there exists a z; € G’ nH" "\(G" ~ H"). Hence z, e H" =S, u H". According to
G" NS, =@, we infer that z; € (S, U H')\G". On the other hand, in view of

G” n H'"<G" we can deduced that z, € G =G" U §;, which contradiocts the equa-
lity [(S, WH"ING'IN[S; UG’ = @. Thus ' n H” = @,andsince G' N S, = @,
we have G'cH', and in a easy way H" ' cG".

Suppose that for some m f~Yo,) NV # @. From (1) it follows that

Uf Ya)=G A H' =V, which (according to (2)) implies that | 1(B,)& G’
n=1 . . n=1

and U f “YBY£LH" and also fTY(B)ER™. But this is impossible because
n=1
{ﬂn} = 1 ()

In this way we have to consider case 2°.
Let xe ¥ and r = min(o(x, Sy), ¢(x, S,)). Of course r>0. Now let S* = S,

ifr= o(x, 8;) or §* =8, if r = g(x, S,). Denote by x, an element of $* such

that r = g(x, x,). )
If P is a closed interval with ends at x and x,, then P, contains no element of

UF ) v Uf Y(B,), for P.c¥ U S* Without difficulty we can notice that
n=1 n=1

PN # D,
for otherwise, in view of x,eP, n S*, P.cS* which contradicts ¥ n S* = @,
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Since f(P,) is a connected set (in R) containing y, we have
reyatU v UEn+o.
This contradicts the equality
Boa [U7 G 0 U801 = 2.

This contradiction ends the proof.

The above theorem suggests the following question: Is Y.(f) closed under the
assumptions of Theorem 2.2? L

Moreover, if the answer is “no” then: Is f weakly monotone on S.(f)? These
questions are interesting (in view of Garg’s theorems [2]) in the case where the
domain of f is equal to R", n>2.

The next example solves these problems.

ExamprLg 2.1. Let

4= {x: (-0 <x< —in)v(—~in<x<—inAyztanx)v
R v(—£n<x<0Ay?tan(2x+%7r)—1)};
B={(x,): (—In<x<—jnay<tanx)v(—fn<x<inay<—1)
vAnt<x<inAy<-—tanx)},
C = {(x,7): (~ir<x<0A —1<y<tanx+im)—1)v(x =0Ay= -1V
v(0<x<ina —1< y<tan(—2x-+im)—1)},
D = {(x,y): (0O<x<inayztan(—2x+in)—1)v
vEAn<x<inaye —tanx)v(En<x <o)} .

Of course A UB U CuU D = R% Now, let f: R* —» R be defined as follows:

x for (x,»)ed,
f(x) = |arctany for (x,y)e B,
tarctan(y+1)—3n  for (x,»eC,
—-Xx for (x,y)eD.

The function f is continuous and connected as well. Remark that, for
ae(—4m,0), f~'(a) cuts R* and moreover, for ae{—co, —3n], the set o)
is an union of two disjoint straight lines, and also cuts R2. But Y.(f) = (—4=n,0)
is not closed and fiz7 is not weakly monotone, since f~*(—4mn) is not connected
in spite of f1(—im)=S.(f).

We can formulate the results of the example in the following theorems:

THEOREM: 2.3. There exists a connected function f: R®*—> R (n=1,2,..)
cutting R" for which Y, (f) is not closed.
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Proof. If n = 1 then the function from Example 1.1 fulfils all our requirements
(according to Proposition 2.1).

If n = 2 then the function described in the above example fulfils our require-
ments, and for n>2 one can easily modify this function to obtain an adequate one.

THEOREM 2.4. There exists a connected function f: "> R (n=12,3,..)
cutting R" for which fisz7y is not weakly monotone.

DEerINITION 2.3. We say that a function f: X' — Y, where. X and Y are two
topological spaces, strongly cuts the space X if

(i) f cuts the space X,

(i) if «e ¥ and Sy, S, S, are arbitrary distinct components of f~*(x) and
Cy, C;, C3=X are connected sets such that C; N S; % @if i 5 j, then C; N S; # &
for some i =1,2, 3.

PROPOSITION 2.5. For a connected function f: R — R the following conditions
are equivalent:

(1) f cuts R,

(2) f strongly cuts R,

(3) no level of f contains a half-line.

THEOREM 2.6. Let X be a regular, conmected and locally connected space, and
f: X — R a connected function strongly cutting X. If o is a unilateral accumulation
point of Y (), then the set S(f) meets only at most two components of f~*(a).

Proof. Suppose, on the contrary, that there are weR, and a sequence’
{o,} = Y(f) such that « is the (unilateral) limit point of {x,} and S,(f) has common
points with three components of f~!(a). For example, let «,>a. Notice that
o ¢ Y,(f) and an element of £ ~(«) can be a limit of those elements of S,(f) whose
images are greater than o, since fis;7y is continuous and « is an unilateral accumu-
lation point of Y. (f).

Let Sy, S,, S; be three distinct components of f~!(«) meeting ;S—':(?)—, and
let x, y, z be three points of S,(f) such that xe Sy, y € S;, z& S;. Of course they
are accumulation points of the set S,(f), and there exist M-S sequences {x,},es,
{¥s}sear {ze}zez=SLf) converging to x, p, z, respectively.

Denote by U, (U,) an open connected set containing y (2), disjoint with S
(Sy is a closed set according to Lemma 1.2) and containing no element of S.(f)
whose image is less than o. Then there are elements y;,, zy,, 8; € 4, {; € & such
that y,, € Uy, 2z, € U,. f(U,) and f(U,) are nondegenerated intervals such that

FU) n (@, 0) # B # 1 (U) 0 (@, 0).
There exists an N, such that ay, € f(U)) n f(U,). It follows that
Uy ﬂf—l(le) 7& Q #" Uz ﬂf‘l((x”‘) .

Let C; =U,uf Y oy) U U, It can be seen that C; NS, # F# C, N S,
and C; is a connected set.
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In an analogous way we can prove that there are connected sets C,, C; such that
ConSy # B #CynSs, CsnS # D # CyanSy, [T an)=Co f7How)=Cay
[CNfHew )] 0 S, = @ and [CNf™Y(ay)] N Sy = O, where N,, N, are some
positive integers.

Since f strongly cuts X, either C; NSy # For C, NS, # B or C3n S, # G.
Then for this i = 1,2,3 f~*(ay) 0 S; # @, which is impossible. In this way we
proved the theorem. )

Now we can formulate and prove two theorems giving an answer to the problem
of K. M. Garg [3] (Problem 3.11 p. 27). Partial resolutions are contained in [4]
and [11]. Our results are a litile more general with regard to the range of the functions
considered. At the same.time (Example 2.2) the assumptions of these theorems
cannot be weakened by inquirements as in Grande’s analogous theorems for real
functions. Before proving the theorems we give two definitions.

DeFINITION 2.4 [3] The function f: X — Y, where X, Y are two topological
spaces, is said to be Morrey monotone if each of its levels is a continuum.

DEFINITION 2.5. We say that a topological space X is- connectedly embedded in
a space Y if there is a connected injection f: X — Y.

Remark that every discrete space of the power of the continuum is connectedly
embedded in R as well as separable continuum containing exactly two non-cut
points (for R. L. Moore proved that such a space is homeomorphic to [0, 1]).

THEOREM 2.7. If X is a locally connected continuum, Y — connectedly embedded
in R then a connected function f: X — Y is Morrey monotone on the set S,(f).

Proof. Let g be a connected injection mapping ¥ into R and & = g o f. Then
h: X — R is a real connected function, and so Az is Morrey monotone (see [4],
[11]), and since g is one to one f|§;(f—) is Morrey monotone.

ExaMmpLE 2.2. Let ¥ = {(x,y) e R*: 0<x<3n, y = sin(l/x)} v {(0, 1)} with
a topology induced by the natural topology of R*. Then Y is of course connectedly
embedded in R. Let

A={(x,)eR: 0<x<inry =0},

B={(x,y)e R 0gx<inAy = -1},

2
=J(x, )R x = - —1<y<0p forn=1,3,..,20+1,...
I {(x VEeR: x @i < }
IfX=A4AUBu () J,isatopological space witha topology induced by the natural
n=1,3,..

topology of R?, then X is a connected and locally connected Hausdorff space.
Let f: X —» R? be defined in the following way:

_ fGe,sin(1/x)) if xe (0, §n] ,
f((x’y))"{(o,l) ifx=0.

The function f maps X onto Y and is connected and proper (it means that the
inverse image of a compact set is compact, see [3] Def. 3.1), but fiszp is not Weakly
monotone since f~Y((0, 1)) is not connected.
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Z. Grande proved that for real functions the assumption of the compactness
of X can be omitted provided fis a proper function. The above example shows that
in our case this is impossible. The work [11] contains a proof of the fact that a
function fulfilling all the assumptions of Theorem 2.7 need not be monotone (of
course its restriction to S,(f)).

However, we shall prove that J5ap is quasi-monotone.

DermaTioN 2.6. The function f: X — Y, where X, Y are two topological
spaces, is said to be guasi-monotone if f~*(C) is connected for every connected
set Cof (X).

Tueorem 2.8. If X is a locally connected contimmm, ¥ a topological space con-

nectedly embedded in R and f: X — Y a connected function, then Jisap s quasi-
monotone.

Proof. Let the notation be as in the proof of Theorem 2.7. Notice that Sc(/z)
is compact and f = hsgy is continuous (in virtue of Corollary 1.1), and so £ is
a closed function (see [1] . 167). According to Theorem 2.7 and Theorem 6.1.11 in
the monograph of R. Engelking [1] the function £ is quasi-monotone.

Let C be a connected subset of £ (S.(f)). Then g (C) is connected in R and hence
it is an interval contained in #(X). Since % is quasi-monotone, ™~ g (C)) is a con-

nected set in Sc(h) and so in S,f). Since g is injective,

k' g(C) =77%©),

where f = Ji5ap- This implies that 7 is quasi-monotone.

§ 3. Properties of open and 'quasi-open connected functions.

DerFinITION 3.1. We say that a function f: X — Y (X, ¥ are topological spaces)
is open (quasi-open) if for every open set U< X the set f(U) is open (has a non-empty
interior).

Dermtion 3.2 (see [3] Def. 1.5). The function f: X — ¥, where X and ¥
are topological spaces, is said to be nowhere constant if it assumes at least two distinct
values on each open subset of X.

PROPOSITION 3.1. The weakly connected function f: X — R, where X is a locally
connected space, is quasi-open if and only if f is nowhere constant.

THEOREM 3.2. Let f: X — R be an open connected function on a connected and
locally connected space X. Then the set f~(«) is boundary and closed for every
ae Y(f) v

Proof. With regard to Proposition 3.1 the sets f~(«) are boundary. We shall
show that for ae Y (f), f~(0) is closed.

If «e Y,(f) then f™%(a) is closed according to Lemma 1.2.

Now let ae Y,(fINY.(f) and suppose that f~1(c) is not a closed set. Then
there exists 2 y ef T ()\f (@) and let B = f (). Assume that a<f for example.
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One can easily see that [x, 8) N Y,(f) = @. It follows that there is an increasing
sequence {o,} <= ¥(f) such that lim o, = o.

n=ro0

Let U be an arbitrary connected open subset of X containing y. Then
Unf~(a) # @ and f(U) is an open connected set containing «; so f(U) contains
an element o, & Y.(f) for some n,. Thus U contains some element of f ~(—0c0, 0).

This implies that yef~'(—c0, ). On the other hand, according to Lemma 1.5

T8 =70 (~ 0, ) o0, 1.

Hence y ¢ f~Y(—o0, o). The contradiction ends the proof.

We infer hence:

COROLLARY 3.1. Let X be a connected and locally connected space. If f X' — R
is an open connected function, then fse(py Is continuous.

THEOREM 3.3. Let X be a compact space, and Y a Hausdor{f space. If f X — Y
is open and continuous on S,(f), then f is Morrey monotone on the set S”( .

Proof. We shall prove first that S°(f) = S.(f). Let x e S°(f) and A = f(x).
If Uis an arbitrary neighbourhood of x, then f(U), as an open set, contains some
element of Y,(f); this means that U contains some element of S,(f). In this way
xe ;Tf)-, and so S f)=S,(f). Since fi5;r7y is a continuous function, S.(f) =S f).
Suppose now that there exists an a e Y.(fINY.(f) such that g~ (a) (where
g = fise(ry) s not a connected subset of S°(f). This means that g™ @) =AU B,
where 4, B are disjoint nonvoid closed subsets of S°(f). X is a normal space and
then there exist two open sets G and H such that AcG, BcH and Gn H = @.
Let {0,},cx= Y(f) be any M-S sequence such that « = lim «,. Since fis an

cekX

open function, /' (G) N f(H) is a nonvoid open set. There exists a ¢* € X such that
a, € f(G) n f(H) for 6=c*. Consider M-S sequences {0,},5qe a0d {f (@)} gz 0v-
For every a>0* the level g~*(x,) meets G and H. Because of the connectedness of
g7 (o) there exists an x, € g~} )\(G U H) for every o2 c*. We form in this way
an M-S sequence {x,},5+<S.(f). Since X is compact, this sequence has an ac-
cumulation point x". Let {x,.} be such a subsequence of {x,},5. that limx, = x'.
From the construction of {x,} it follows that lim f (x,;) = «. Since g is continuous,
we have limg(x,) = lim f (x,) = g(x') = f(x'), and thus f(x) =

In this way x'eg~*(x) but x' ¢ G U H and so x' ¢ 4 U B, which contradicts .

g7 )= S(f) and g7 («) = 4 L B.
Hence the set g~*(«) is connected. By the continuity of g and the compactness
of X we infer that g~*(«) is continuum.

According to Corollary 1.1 we have:
COROLLARY 3.2. If X is a locally connected continuum and f: X — R is an open

connected. function, then f is Morrey monotone on the set S°(f).
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