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Characteristic functions freely generate
measurable functions

by

Denis Higgs (Waterloo)

Abstract. It is shown that if S is a o-ring of subsets of a set X and M(S) is the magnitude
module of [0, co]~valued functions on X which are measurable with respect to S then M(S) is
freely generated by the characteristic functions of the sets in §, subject to the obvious relations.

§ 1. Introduction. Let S be a o-ing of subsets of a set X and let M(S) be the
set of all [0, co]-valued functions on X which are measurable with respect to S.
We prove that M(S) is frecly generated as a magnitude module by the charac-
teristic functions y, of the members a of S subject to the relations

Xu=xM+x1u+-"a Xﬂ=0:
where « is the disjoint union of a;, 5, ... (Magnitude modules, introduced in [2]
and defined here in the next section, constitute an equational class of universal -
algebras of a certain type.) This answers a question asked in [2]. The proof hinges
on the observation that if A, A;, A,, ... are reciprocals of powers of 2 such that
My Agy e KA Ay Ay + ... then A equals the sum of finitely many terms of Ay +A,+ ...

An immediate consequence of the result is the following basic fact of
measure/integration theory: if p: §— [0, 0] is a measure then there is a unique
integral fir M(S) - [0, co] such that i(x,) = u(a) for all ¢ in S (note that measures
and integrals are understood to be countably additive). Moreover, this basic fact
is now seen to be true for measures and integrals taking their values not only
in 10, o] but in any magnitude module; this should be helpful in defining various
vector-valued integrals.

The paper concludes with some remarks relating to the use of real-valued func-
tions instead of [0, co]-valued functions.

§ 2. Magnitude modules and M(S). A magnitude module is a set M together
with an w-ary operation ¥, a nullary operation 0, and a unary operation f satisfying
the following identities:
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() 3.(0,...,0,x,0,..) = X,

(i) b (T Crys X2 0) = 2 (B, B2, ),

@) Y (hx), (x), ..) = x.

As shown in [2], a magnitude module may also be defined as a set M with
operations y, and 0 satisfying (i) and (ii) along with a scalar multiplication
[0, 0] x M — M such that
Ay b Xy o) = AxyHAx 4,
Ox=0.

(A4 dy+ o )x = Ayx+l x4+,
(p)x = A(ux),

(Here and elsewhere We write X, +Xy+..., or 3, (x,; n€N) where N = {1,2,.},
in place of ¥ (x;, X3, ...); We also write kx in place of /(x), etc.).

Let S be a o-ring of subsets of a sct X, so that @ is in § and S is closed under
countable unions and differences (we do not require X to be in S necessarily).
A function f from X to [0, oo] is measurable with respect to S if and only if
{xeX: f(x)>a} is in S for all « in [0, oo]. It is well-known that the set M(S)
of all such functions is closed under countable addition and scalar multiplication
by [0, o], both pointwise (see, for example, Berberian [1], Sec. 14, Theorem 3
and Sec. 13, Theorem 1); M (S) thus forms a magnitude module. The characteristic
functions. x, of the sets ¢ in S are evidently in M(S) and satisfy the relations

Ix = x,

R) 2s = XayFXazteees X = 0,

where « is the disjoint union of ¢y, a;, ... Furthermore, the y,’s gencrate M(S)
as a magnitude module, this being an immediate consequence of the fact that every
[0, co]-valued measurable function is the pointwise supremum of an increasing
sequence of [0, co]-valued simple. functions ([1], Sec. 16, Theorem 4).

§ 3. THEOREM. M(S) is freely generated as a miagnitude module by the y.’s,
a in S, subject to the relations (R). _

Proof. We have to show that if we are given two expressions, cach built up
from the s using Y and k, and these two expressions denote the same function
in M(S) then this equality can be proved using the magnitude module identities
and the relations (R) alone; in such case let us say that the two cxpressions are
equivalent. -

As already noted in [2], every magnitude module expression in variables x;, / € /,
is equivalent either to O or to an expression of the form Y ((4)"x;,: ne N). In
the latter case we may suppose further that

(A) each x; which occurs, occurs infinifely often, that is, {me N: i, = i} is
either empty or infinite for each 7 in I: this may be achieved using magnitude module
identity (iv), :

(B) a given (3)* occurs only finitely many times, that is, {ne N: k, = k} is
finite for each k in N: if the nth coefficient is not already (3)* with k=n we may
split it into a sum of (3)"s, splitting the corresponding term accordingly.

icm

Characteristic functions freely generate measurable functions 87

(Note. Such transformations are justified by the fact, remarked in [2], that
identities (i) and (i) already allow us to operate with finite and infinite sums in
a magnitude module as freely as we may with series of non-negative terms, and by
the properties of A4, which permit replacing x by ix+®?*x+..., Ix by
@ x+ @), ete)

It follows from these remarks that without loss of generality we may suppose
our given expressions to be the two series

(S) ¥ (Antty: ne N, e(m) =1) and ¥ (1,a,: neN,e(n) = 2)
where

(C) 82 N> {1, 2} is a function which enables us to use a single notation for
the two series, helpful in view of the back-and-forth nature of the inductive procedure
described below,

(D) each a, denotes the corresponding y,,, 4, being a set in § (the convention
whereby the characteristic function of a set is denoted by that set is used below
repeatedly),

(B) if the common value of the two series at some x in X is nomn-zero then
infinitely many terms of each series are non-zero at x (this is true on account of (A)).

(F) each 1, is of the form (4)* for some k in N, and 4; >1,>... (this is possible
by (B)).

(Note that the case of an expression equivalent to 0 is subsumed under the
above using the relation yu = 0 and the magnitude module identities).

The idea behind the proof that the two series (S) are equivalent isto success-
ively split the terms A,a, in such a way that the resulting two series are the same. The
procedure can best be iltustrated by describing the first stage k = 1. Suppose that
Aay occurs in the first series (e(1) =1). Then for each xea,, the sum
Y (At &(n) = 2, x € a,) of the A,’s in the second sexies for which x € @, willbe >1,;
this is because the two series have the same value at x and (E) holds for the first
series. On account of (F), it follows by the observation made in § 1 above that

" Ay =3 (A: nem), xe () (4, nemn) for some finite subset z of {ne N: &(n) = 2}.

We may enumerate these sets m as n}, te N, and successively cut off from e, the
intersections ¢} = () (a,: nen}), therebf expressing a; as a disjoint union
a; =\ (d{: te N) where d{sc}ca, for neny. Thus the equation

May =Y (Mdf: teN) =3 (4df: neny, teN)

expresses the term A, a, from the first series as a sum of portions 4, df of the terms
Jna, from the sccond series. Removing these portions from both. series, we next
deal similarly with the term A,a, (or rather, if it occurs in the second series, with.
what is now left of it) and then orie-by-one with the subsequent 4,a,’s. The precise
argument follows. :

For cach k in N, let (n}: 1€ N) be an enumeration of the finite subsets = of
{neN: n>k, e(n) # e(k)} such that }. (,: nex) = A if for a given k there are
only a finite number of such 7, let 7, = @& for 7> this number.
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Define sets b,y ¢, dg in S, where k, n, ¢ are in N and nxk, by induction on &
as follows:
bn,l = by,
=Ny nem)ifn,#0, ¢=0if n, = Q,
di = by 0 (G U o u T h),

b1 = by NU (d: te N nem) (bere nzk+1).
We show that the following conditions (k.1), (k.2) hold for all k:

k1) 2 (b neN,nzk,e() =1) and Y (4D, neN,nzk,e(m) =2t
denote the same function in M(S) and if the common value of the two series a)
some x in X is non-zero then infinitely many terms of each series are non-zero at x;

&2y by = U (d: te N), a disjoint union.

For k = 1, (k.I) is true by hypothesis and (E). Hence it is sufficient to show
that (k.1) implies (k.2) and that (k.1)+(k.2) implies (k+1.1). )

Suppose that (k.1) holds and that e(k) = 1 say. Let x be in by and evaluate
the two series in'(k.1) at x. Then if in the first series we retain only the term with
n = k and note that by (k.1) some subsequent term is non-zero at X, we obtain

A<y (At neN,nzk,e(m) =2, xeb, )

where we may replace 72>k by n>k since e(k) = 1. By the observation made in §1,
which is applicable on account of (F), there exists a finite subset n of
{neN:n>k,e(m) =2} such that 4 =Y (4 nen), xe() (Bup: nem. But
then = = = for some ¢ so that x e cf. Thus bexs U (ck: teN) and (k.2) follows
using the definition of the d’s.

Now for all n2k+1 we have

(&3) by =bypr1 0 U (d: teN,nen), a disjoint vnion.

(This follows from the definition of b, ;. and the fact that d'< 6 Sb,, for nemy).
} Suppose that (k.1) and (k.2) hold and let e(k) = 1 again. Then in the first
series of (k.1), b,3 = b, 4+, for n>k (in the definition of byx+i, M€ T, is impossible

if e(n) = 1) and hence, using (k.3) in the second series, we obtain (purely as equality
of functions) ’

IxbigtY (Mubygri: ne N, nzk+1, em)y =1) -
=2 (Mbrir1: nEN, n2k+1,e(n) = D+ (Adi: n,teN,nent).
The second sum on the right-hand side here equals
2 nendd: te N} =3 (udiz teN) = Lbe,

by virtue of (k.2) (notice that if 7, = @ for some ¢ then ¢! = & and hence di = &
so that we still have 3 (4,: nenf)d; = Adf). Cancelling Axby, gives the first part
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of (k+1.1). The second part of (k+1.1) is obvious for the first series since the terms
are unchanged from (k.1) and it may be seen to hold for the second series as follows.
Let x be in X — then x € b, , implies x € b, ;, , except when x is in d} and » is in =]
But x is in dj for at most one ¢ since the dy’s are disjoint (for k fixed), and =f is finite.
Thus x in b, for infinitely many » with e(n) = 2 gives the same with k-1 in place
of k, as required. ‘ .

We are now in a position to show that our two series (S) are equivalent (usin
the magnitude module identities and (R)). From a, = b, 4, (k.3), and (k.2) (with
k = n), we have

a,= U n,teN,neny,)ulJ(di: teN)
for all », and this is a disjoint union. Thus our first series is equivalent to
Y udi: n,n' teN,nenh, em) = D+Y (hdi: n,teN,e(m) = 1).

In the first sum here we may replace e(n) = 1 by g(n’) = 2 because of the con-
dition n e 7,; thus it is equivalent to

(Y (A, nen)dy: n',teN,e() =2),

that is, to Y (Lydy: n',te N, e(’) = 2) (as before, n} = @ cause no trouble).
Our first series itself is therefore equivalent to

S Qpdy: 'y 1e N, ey = 2)+ Y. (Ldi: n,te N, e(n) = 1).

The symmetry of this expression shows that our second series is also equivalent to it.
Thus our two series are equivalent to each other and the proof is finished.

§ 4. Remarks. It follows by standard arguments of universal algebra that the
above theorem may be expressed as a universal property of M (S), namely that for
any magnitude module M and any M-valued measure p on S (so that u: §— M
satisfies (@) = Y, p(a,) for a the disjoint union of a, a,, ... in S, p(@) = 0), there
is a unique magnitude module morphism f: M(S) — M such that .

8§ —F s M(S) '
N v

LA™
M

commutes. We emphasize that Ji being 2 morphism means that a(3 /) = ¥ &(f,)
and fi(af) = afi( f) for all f1, /s, ....f e M(S), « [0, col; the first of these con-
ditions is just the Monotone Convergence Theorem for the M-valued integral [

Using results of Linton [3], it is not difficult to extend the theorem to the case
of an abstract ¢-ring S, M (S) then being defined to consist of all ¢-ring morphisms
from the o-ring of Borel subsets of (0, 0] to S. We note that the particular case
of the theorem in which S is the power set of a one-element set is the main result
of [2]; the use of the observation made in § 1 here enables us to avoid taking the
commion refinements of [2] and leads to an argument neater than that given there.
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Although it concerns [0, co]-valued functions, the theorem proved above
has an implication for real-valued functions. Let ./ be the set of real-valued func-
tions on X which are measurable with respect to the o-ring S on X. Then each f
in 4 can be written as a difference of non-negative functions in .. It follows that f
is the sum of a pointwise absolutely convergent series > oty Xa, Where o, € R and
a, € S; conversely, each such series defines a function in . Suppose that two such
series define the same function in .. Then this fact may be proved using only the
axioms for magnitude modules together with the relations (R) and the rule (T):
fi+fe = fo+fs implies f; —fy = fs—fa. To see this, take the negative terms in each
of the two series to the other side (of the equation formed by equating the two

- geries) — the result is an equation of the type we have shown to be thus provable
and (T) then allows us to transpose back the terms moved. Similar remarks apply
to functions taking their values in the extended reals. Of course, with the reals or
the extended reals, infinite sums are not always defined (nor can they be, if they are
to satisfy axioms (i) and (i) and agree with ordinary addition for finite sums, witness
1—14-1—1+...). This means that one only has partial algebras and therefore cannot
expect so simple a formulation of the appropriate freeness/universal property as
one obtains for algebras proper. Using magnitude modules (as opposed to vector
spaces together with some topological andjor order structure) we lose something:
everywhere-defined subtraction (the extended reals do not even provide that) and
we win something: everywhere-defined infinite sums.
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