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On pointed I-movability and related notions
by

J. Krasinkiewicz (Warszawa)

Abstract. In this paper we discuss several problems which arose in a study of pointed 1-mov-
ability. We also prove some new theorems. ®

1. Introduction, The main aim of this paper is to summarize several problems

“in continua theory which arose in a study of pointed 1-movability and related notions.

Some new results are also obtained. All spaces under discussion are at least metriz-
able. Terminology used is standard. The definitions of undefined terms from shape
theory may be found in the book [3]. By a continuum is meant a nonvoid, compact,
connected space. A one-dimensional continuum is called a curve. If N is a manifold,

‘then N denotes its boundary and N its interior.

Let X be a continuum lying in an ANR(9)-space M and let x, be a point
of X. We shall be dealing with the following properties of X:

(MOV*) (pointed. movability). For each neighborhood U of X in M there is
‘a neighborhood VU of X which can be deformed rel. x, within U into any
neighborhood of X [3].

(MOV) (movability). The same definition as above with no restriction on x [3].

(1 MOV®) (pointed 1-movability). For each neighborhood U of X in M there
is a neighborhood V< U of X such that each loop in (¥, x,) can be deformed within
(U, x,) into any neighborhood of X [comp. 3, 18 and 26]. ,

(1 MOV) (1-movabilify). For each neighborhood U of X in M there is a neigh-
borhood ¥« U of X such that for each neighborhood W of X and for each mapping
f: ¥ — V,where Yis a curve, there is a mapping g: ¥ — W homotopic to fin U [3].

(n1 MOV) (nearly 1-movability). For each neighborhood U of X in M there is
a neighborhood V< U of X such that for each mapping f: D - V, where D is
a 2-disk, and for each neighborhood W of X there exist a sequence Dy, ..., Dy

k

of disjoint disks in D and an extension f: D\ U D, > U of f such that
i=1

N .
fy Di)c W [26].
i=1
To define the next property recall that an inverse sequence X of ANR-sets
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is said to be associated with X if X = invlim X [25]. An inverse sequence of groups
By b .
G,<—f ng... is said to be a Miitag-Leffler sequence, briefly: ML-sequence, if

for each n>1 there exists n,>n such that imh,,, = imh,, for each mzn,. By H,
(resp. H') we denote in this paper the first singular homology (resp. Cech cohomo-
logy) functor with integer coefficients.

(MLHy) there exists an ANR-sequence X associated with X such that H(X)
is a ML-sequence. -

(FH') H'(X) is a free Abelian group.

(FDH"Y) H'(X) is finitely divisible.

The finite divisibility of an Abelian group is defined in Section 4. I that section.
We repeat a result providing a geometric interpretation of (FDH!).

The independence of the above mentioned notions on the ANR (9)-spaces
containing X and on the particular choice of %, € X is proven in the quoted papers
and will also be seen from the results of the following paragraphs.

Now we shall briefly comment the following diagram of implication showing the
dependences between these notions. We have numbered the implications to make the
presentation more concise,

w,, (MOV)
(MOV*)

NS

<) (%4}

@ 1 movr @

Some of the implications are trivial. Such are (1), (2), (3), (4), (5) and (8). Implica~
tion (6) can be easily derived:from the observation-on nearly 1-movability made
in [26] by using the well-known theorem relating H,(¥) to x,( Y), the fundamental
group of ¥, for an arcwise connected continuum Y (com. Section 4). Implication (7)
is our Theorem 4.8. Not everything is known about the possibility of reversing the.
implications. The most significant problem, the solution of which would have
serious consequences in shape theory and continua theory, concerns the possibility
of reversing implication (1). Let us repeat it explicitly.
1.1. ProBLEM [3, 17, 26]. Must a movable continuum be pointed movable?
In the last section we shall see that this problem is equivalent to other, seemingly
- different preblems. K. Borsuk [4] constructed a locally connected non-movable
continuum. Being locally connected it is pointed 1-movable (see [18, 26]). Thus this
example serves as a counterexample to reversability of implications (2) and (3).
In [7]J. Dydak showed that an example constructed by M. Strok is 1-movable but
not pointed I-movable. Hence (4) is not reversible. Tt was noticed by
D. R. McMillan [26] that there exist curves serving as counterexamples to revers-
ability of (5). The Case-Chamberlin curve [5], as it was remarked in [26], shows

that (6) is not reversible. It is an open question whether or not (7) is reversible.
Precisely,

S amov) 2 amov) € (e 2 ¢HY 2 (FDHY).

icm
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1.2. ProBreM (%). Suppose X is a continuum such that H1(X) is free. Does
it follow that X e (MLH{)? : .

Examples 4.4 and 4.5 show that (8) is not reversible.

It is easy to prove that all the discussed properties are pointed shape invariants,
It is interesting that those notions are also unpointed shape invariant. This fact can
be simply verified for all the “one-dimensional properties” except pointed 1-mov-
ability. The invariance of pointed 1-movability under unpointed shape (which implies
the invariance of pointed movability (comp. the last section)) has been established
by J. Dydak [9]. There are also several results about the invariance of those notions
under shape domination and continuous mappings. The following are preserved
by shape domination: (MOV), (IMOV), (n1MOV) [26], (MLH,), (FH') and (FDHY).
The remaining case of pointed 1-movability is unsolved.

1.3. ProBLEM (J. Dydak). Must a continuum shape dominated by a pointed
1-movable continuum be pointed 1-movable?

Since the discussed Borsuk’s example is locally connected and not movable,
the movability and pointed movability are not invariant under continuous transfor-
mations because the unit interval J (which can be mapped onto the example) is both
movable and pointed movable. In [7]it is proved that continuous images of 1-mov-
able continua need mnot be 1-movable (a result of M. Strok). The properties
(IMOV*), (nIMOV) and (FDH') are preserved under continuous transformations
(see resp. [18, 26], [26] and [16, 29]-comp. 4.1).

1.4. ProBLEM (V). Are the properties (MLH,) and (FH') continuous mapping
invariants ?

In the next two paragraphs we discuss the problem of which continua contain

~subcontinua not satisfying one of the properties listed at the begining of this

paragraph. This is an important problem related to the outstanding problem of
topology concerning the characterization of continua embeddable in the plane or’
surfaces. The reason we say that is given by the result proved in [18, 26] that all
continua embeddable in a surface are pointed movable. Thus each subcontinuum
of a continuum sitting in a surface is pointed movable and therefore satisfies each
of the properties. So, each continuum embeddable in a surface must be at least
hereditarily pointed movable. We shall see that this restriction eliminates many
continua far from being planar from an intuitive point of view. For instance this
condition implies that the continua must be at most 2-dimensional. The classical
results of Kuratowski, Mazurkiewicz, Claytor and others characterize planar con-
tinua among a class of continua with nice local properties. The force of the above
notions lies in the fact that they are applicable for all continua regardless of their
local structure.

It is true that the condition we have just mentioned does not provide a similar

 Added in proof. J. Dydak has proved that the answer is affirmative.
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characterization for all continua, however it substantially restricts the continua which
should be taken into account with respect to the problem of embeddability,

2. Continua with non-movable circle-like subcontinua. A continuum is said to
be snake-like (circle-like) if it can be represented as the limit of an inverse sequence
of intervals (circles) with surjective bonding maps. Let P be a sequence 7, 1y, ...
of natural numbers, P = (ny, n,, ...). By a P-adic snake-like continuum we mean
the limit of the inverse sequence

ny _Ana

(%) . I<1I<..,

’where k> k=1, is given by the formula:
gdt) = (=D Vs 4 (=17 +5gn (),
for te[ % k:l and j = 1, ..., k. Here sgn(m) is O for m even and 1 for m odd.

j—1
Thus g, maps ifk, 0<i<k, into sgn(i) and is linear on each interval [ % :C:l

(comp. [30]). The P-adic snake-like continuum will be denoted by I(P). If P is a con-
stant sequence P = (n,n, ...), then the P-adic continuum is also called n-adic and
is denoted by I(n). Observe that I(1) is homeomorphic to 7, I(2) is homeomorphic
to the simplest Knaster indecomposable continuum with one endpoint [21, Exp. 1,
p. 204], and 7(3) is homeomorphic to the indecomposable continuum with two
endopoints 21, Ex. 3, p. 205].

By S we denote in the paper the unit circle in the complex plane.

By a P-adic solenoid we mean the limit of the inverse sequence

) s

where py(z) = z*. We denote it by S(P). If P is constant, P = (n, n, ...), then S(P)
will be also denoted by S(x) and called n-adic solenoid. Note that S(1) is homeo-
morphic to S. A P-adic solenoid not homeomorphic to S will be called a solenoid.
This is the case if P contains infinite number of elements s 1. Thus the circle S is
not regarded as a solenoid. i

In the sequel we identify two homeomorphic spaces.

Let us make a remark about the functions ¢,. Consider the square D = I'x L.
If x, y e D, then by [xy] we denote the segment in D with endpoints at these points.
A broken line S; = [ab] U [bc] v [ed] U [da] in D forming a simple closed curve
will be called a regular circle if a, b, ¢, d & D, the segments [ab] and [¢d] are parallel
to the diagonal [(0, 0)(1, 1)], the segments [bc] and [ad] are paralel to [(1, 0)(0, 1)]
and a = (t, 0) for some 0<t< 1.1t is clear that a regular circle in D is uniquely de-
termined by the point a. In fact, if @ = (2,0), then b = (1, 1—1), ¢ = (I—1,1) 'md

d = (0, t). Therefore S1 will be called a regular circle generated by a, and aits
generator.

On pointed 1-movability and related notions 33

An important observation about regular circles and the maps g, is included
®*in the following lemma whose proof is easy and is left to the reader (seegFig. 1.

g2 X Gz
2

’ g1 X
-

Fig. 1

2.1. LevMA. Let n=1. If S, is a regular circle in D, then (g,x q,)”"(Sy) is the
union of n regular circles. If S, is one of them, then the map p,: S, — S, determined
by g, % q, is a covering projection of degree n. If (t,0), 0 <t <1, is the generator of Sy,
then the n regular circles are generated by the points (s, 0), where se.q, *(¢). If n is
odd, then all vertices of D and the centre of D are fixed points of q,% q,; if n is even
then all vertices of D are mapped under g, % g, into (0, 0) and the centre of D is mapped
into (0,0) or (1,1).

Let us note that for m,n>=1 we have
(&) Pm®Pn=Pu 04 G0 Gs = G -

From this remark it follows that every P-adic solenoid (snake-ike continuum)-
X is homeomorphic to a P'-adic solenoid (snake-like continuum), where
= {ky, k,, ...) satisfies one of the following:

3 — Fundamenta Mathematicae CXIV/1
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@) k; = 1 for each i>1,

(i) k;>1 is odd for each ix1,

(iii) k; is even for each i>1. . .

Sequences satisfying (i) or (i) will be called odd; the ones satisfying (iif) — even.
The unique one with property (i) will be also called frivial.

It is an open problem which cartesian products of two continua contain non-
movable subcontinua. See the detailed discussion of this question in Section 3.
D. Bellamy has pointed out to me in a conversation that solenoids (which are not
movable [3]) can be embedded into products of snake-like indecomposable continua.
However his proof is purely algebraic and gives no geometric picture of the nature
of the embeddings. Here we present a stronger result with a geometric proof,

Notation. If P is an odd or even sequence, then by E(P) we denote a subsey

w
of [] Dy, D;= IxI, given by the conditions:
i=1

(o) if P is odd, then E(P) is the five-point set {(x, x,..): x is either a vertex
of D or its centre},

(B) if P is even, then E(P) is the one-point set {(x, x, ...)}, where x = (0, 0).

2.2. THEOREM. Let P be an odd or even sequence of natural mmbers. Then the
cartesian product I(P)x I(P) of the P-adic snake-like continua minus the set E (P)
is @ union of a collection of P-adic solenoids each two of which intersect and have
at most four points in conmnon.

Proof. This result is a simple consequence of Lemma 2.1. In fact, let
P = (ny,n,, ...). Then I(P)x I(P) may be identified with the limit of the sequence:
® D&t p, ke | ‘
where D, = Ix I for each n>1. Now we construct a collection C of P-adic solenoids
in I(Pyx I(P) such that I(P)x [ (PINE(P) = |JC. An element C of C is constructed
as follows. Choose an index i>1 and let'S; be a regular circle in D,. By repeated
application of 2.1 we may construct a sequence S, S;+i,... such that S, J=i,
is a regular circle in D; and the map Sj41 = S; determined by ¢, 5 X ¢y 18 a covering
projection’ of degree ;. By a standard procedure one can extend the resulting se-
quence of S;’s to a subsequence of (S). The element C is defined as the limit of the
subsequence. Clearly, C is a P-adic solenoid in I(P)x I(P).

To complete the proof it remains to show that for each z € I(P) x I(P)INE(P)
there is C'e C containing z. So, let = (zy, z,,..) be such a point.

Consider two cases: :

(o) P is odd. Then by 2.1 and the definition of E(P) there is an index i>1
such that z; is neither a vertex of D; nor the centre of D;. Also Zj41 € (G, % gy J)”l(z,)‘
for each j>i. Hence begining the above construction of C from a regular circle §;
in D;which contains z, one can extend it in such a way that z; e §; for j=i, since
by 2.1 (Gn,;%-5,)~(S;) is a union of regular circles. The continuum C will then con-
tain z, what was to be proved. k ’

‘s

v
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(B) P is even. Then there is an index /5> 1 such that z;, # (0,0). Let i = i +2.
It follows from 2.1 that z; is neither a vertex of D; nor the centre of D;. Then, for
the same reason as in (), there is an element of C containing z.

This completes the proof.

Remark. As a particular case of 2.2 we have: if e is the endpoint of tie simple'st
indecomposable Knaster continmum X, then X x X\{(¢, ¢)} is a union of dyadic
solenoids. .

This results lead to the following:

2.3. ProBLEM. Suppose J(P) # I Does there exist two disjoint solenoids in
I(PyxI(P)?

Observe that if I(P) # I, then I(P) is indecomposable and each proper non-
degenerate subcontinvum of 7(P) is an arc. Thus the above problem is related to
the following Ly

2.4, PRoBLEM. Suppose I(P) # I. Does there exist a solenoid in I(P)x‘l?
Does there exist any snake-like continuum X such that X x I contains a solenoid?

As the next theorem shows the product I(3)x I contains a circle-]ﬂ.ce subcm.y
tinuum having the shape of a solenoid. Consequences of this fact are discussed in
Section 3. R ‘ o - ’ ‘

2.5. THEOREM. The cartesian product 1(3)x I contains a circle-like subcontzn'uum
which can be mapped onto the dyadic solenoid S(2) under a mapping which is a shape
equivalence. _

Proof. We only give an idea of the argument leaving the details to the reader.

The continuum 7(3) x 7 is homeomorphic to the limit of the inverse sequence

q3xidl q3xidf [
Dy +— Dy+— ..,
where D, = I'x I for each n>1. We claim that for n>1 there exist a subset B, of D,
homeomorphic to Sx7I such that gsxidf maps B,.; into B, and the map
g.: B,uq — B, determined by g xid7 is of degree 2 with respect to fundamental
L . . .

groups. We are not going to describe precisely the sets B,. The author b.elievs that
the geometric picture of the sets By, B,, B; given above completely explains how to
construct all the other B’s (see Fig. 2). Now it is easy to construct a sequenge of

3¢
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mappings f,: B, = S, n>1 (using the homotopy lifting theorem [31, p. 76)) such
that: f, is a homotopy equivalence and p, o f, ., = f, 0 g, for cach n>1. Then s
determine a map from X = invlim{8,.g,} onto S(2) which is a shape equivalence.
Choosing the bands B, thin enough we may assure X to be a circle-like continuum.
Since X'<7(3)x I, the proof is completed.

2.6. PrOBLEM. Let X be a snake-like continuum. Is it true that each two non-
movable subcontinua of X'x I intersect?

2.7. ProsLeM. Let X be a snake-like continuum such that X'x I contains non-
movable subcontinua. Determine their shapes. Is it true that each such subcontinuum
shape dominates the dyadic solenoid? Can we map such a subcontinuum onto the
dyadic .solenoid ?

It is easy to see that the shape of every subcontinuum of X'xJ and X'x ¥ is
represented by a curve if X and Y are snake-like. Thus the first four conditions from
the Introduction are equivalent for this continua [33]. The reader should compare
the last question in the above problem with the fact that the Case—Chamberlin
curve [5] cannot be mapped onto any solenoid [16].

The next theorem is well-known. The priority of its discovery belongs to
R. H. Bing. Recall that by a simple triod we mean a continuum which is the union
of three arcs having exactly one point in common being an endpoint of each of them.
The definition of a simple #-od, n3, is analogues.

2.8. THEOREM (R. H. Bing). Let X, be a simple triod. Then the cartesian product
XoxI (“the three-page book™) contains all solenoids.

2.9. ProBLEM (V). Ts it true that each nonmovable subcontinuum of X o % I shape
dominates a solenoid? Classify the shapes of nonmovable subcontinua of YxI,
where Y is an n-odd.

Now we shall show that there exists relatively simple type of continua, com-
pletely different from those considered in Theorems 2.2,2.5and 2.8 which still contain
nonmovable circle-like continua. In fact, we shall construct a continuum which we
call “a glued chain” — the name proposed by D. Bellamy — which contains all
solenoids. This continuum is an “almost 2-manifold with boundary” in the sense
that there is a point in it whose complement is a non-compact 2-manifold with
boundary. Now we pass to a description of the glued chain.

Let Q be a pyramid in the 3-space R® with the vertex v = (0,0,0) and the
base {I}xIx7. For each n>1 let Q, = {0, x50 € 00 Y+ 1<x, < Un),
By L, we denote the nth link given by

O M (xy = 1n) U (xg = Yn+1) UT (x5 = 0) U [ (x, = x3)]
for n odd,
Yn4+1) U (x, = 0) U I{x;, = x,)]
for n even,

L =10, n

It

1ny O I (x,

I

) Added in proof. Recently J. Oledzki and S. Spiez proved the following unexpected
result: any curve embeds up to shape into Xox L

icm°®
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where I1(p) is the plane in R® given by the equation ¢. The glued chain is def-ined
to be the continuum L = {v} U | L, (see Fig. 3). The set L\{v} is a 2-manifold

nzl

with boundary.

Fig. 3

2.10. THEOREM. The glued chain L contains every solenoid.

Proof. We present the main idea of the proof, leaving the details t(? jthe rseader.

Let P = (ny, ny, ...). Let Ty, T, ... be a decreasing sequence of tori in E s:xc'h
that there exists & sequence of homeomorphisms {;: T; - Sx B*}, where B® is
the unit ball in the complex plane, satisfying the conditions (where r: SxB*—~ S
is the projection on the first factor):

(i) diam(r o k)" *(s)<1ji for 5€ 8,

(i) porohyy = rohyTiyy for izl

Then the P-adi¢ solenoid S(P) is homeomorphic to ¥ =\ 7.

iz1

Now we show how to embed S(P) into L. It is easy to see that there exist th.ree

sequences: a decreasing sequence X;, X,, ... of subcontinua of L; a decreasing

sequence T, T5, ... of tori in E® such that X,-CT{, and a sequence of homeomor-
phisms {g;: T; — Ti}, with the following properties:

N Nx = ‘_QIT,-' )

(2) 171; maps {g;|¥: ¥ » E*} form a Cauchy sequence in the function space
(E¥Y and the set g(¥)<T} is n;-dense in Ty, where 7; ;52 0,

(3) for each pair of points x, y € ¥ there exists an £>>0 such that 2(gx), g:(N)=¢
for almost all 7.

Since the function space (E®) is complete, the maps {g,| ¥’} converge to a map

g:. Y - E3, Since n; 720, g maps Y onto () T7. This jointly with (3) implies that g

iz1
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maps ¥ homeomorphically onto () 7;. The latter set is by (1) a subset of L. Hence
21

.the proof is completed because ¥ = S(P). (In Figure 4 we pictured the sets X, and
X, for the case P =2,2,..)

In [4] K. Borsuk constructed a non-movable locally connected continuum B
in E® which is locally R? at all but a one point. He raised the question whether every
proper subset of B is movable. It is easy to see that the glued chain embeds into B.

Fig. 4

Thus the above theorem provides a negative answer to Borsuk’s question. In con-
nection with these facts we have the following

_ 2.11. ProOBLEM. Must every non-movable continuum contain a finite dimen-
sional non-movable subcontinuum ?

212, PI}OBLEM Must every n-dimensional non-movable continuum contain
an (n—1)-dimensional non-movable subcontinuum ?

n . . .
2.13. PrOBLEM. Must every non-movable continuum contain a non-movable
curve? '

icm
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The list of this type problems may be extended replacing the word “movable”
by any one of the related notions listed in the Introduction.
The last problem seems to be very important.

3. Non-movable subsets of continua. In the preceding section we gave some
examples of continua with non-movable circle-like subcontinua. Using some of these
examples we prove in this section that many other continua contain non-movable
subcontinua. The notion of a weakly confluent mapping is very usefull in these
considerations. Recall that a mapping f: X — Y is said to be weakly confluent if
for each continuum C< Y there is a continuum Dc X such that f(D) = C. An
important result on weakly confluent mappings has been proved by S. Mazur-
kiewicz [27]. To state it we need the following definition. A mapping f: X — I,
where I" is the n-cube, is said to be AH-essential if each extension g of the map
FIfNI™: f7YI") - I" over X transforms X onto I".

3.1. THEOREM [1]. If X is compact and dim X >n, then there exists an AH -essential
map from X onto I".

The theorem of Mazurkiewicz reads as follows.

3.2.. THEOREM [27]. An' AH -essential mapping from a compact space X onto I"
is weakly confluent. PR et N

The reader is referred to [11] for a discussion and some interesting generaliz-
ation of this result.

3.3. COROLLARY. If X is compact and dim X >n, then for every subcontinuum ¥
of the euclidean space E™ there exists a subcontinuum of X which can be mapped onto Y.

In the sequel the following lemma plays an important role.

3.4. Levva. If X and Y are continua and f: X — I, g: Y — I are surjective
mappings, then the product of mappings fxg: Xx ¥ — I* is AH-essential.

Proof. Suppdse the lemma fails. Then there is a mapping A: X'X Y12
such that

(D R(fxg)™M 1% = fxgl(fx9)*d?) .

Consider X and Y as subsets of the Hilbert cube Q and let f: @ =L g: @~ 1
be extensions of f and g respectively. Since 1% & ANR, there exist a neighborhood &
of XxYin OxQ and an extension i: G — [? of the map . Let Xy, X3, ... and
Yy, ¥, ... be two nested sequences of locally connected continua in Q such that
NX,=Xand () ¥, = Y. Choose four points a, €/~ *(0), a ef~Y(1), by eg~M0)
n n
and b eg~i(1). Define M = {ay, &;}x YU Xx{bg, b}, and M, = {ao, a;} x
X Y, U X, x{by, b;} for n=1. Since M (fxg)~"([*) and M,’s form a decreasing
sequence of compacta converging to M, then by the fact that Fxg(Mycl?e ANR
and by condition (1) we infer that there exists an index m>1 such that
@ X, % Y,cG,

(3) FxgiM,, ~ kM, inlI%.
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Let A4 be an arc in X,, with endpoints &, and a,; let B be an arc in ¥,, with end-
points b, and by, and let D be the disk 4 x.B. Clearly, D <.M,,. It is easy to see that
FxgD: D — I* is an essential mapping (comp. [21, p. 234]), i.e. not homotopic to
a constant mapping. Form (3) it follows that h|D: D — I? is essential. But this
contradicts the fact that h|D has an extension over D, because by (2) we have D=G.
This completes the argument.

The above lemma combined with 3.2 gives the following

3.5. CoroLLARY. If f: X' > T and g: Y ~ I are surjective mappings of continua
then fxg: XX Y ~ I* is weakly confluent. .

This in turn implies the following : ) 5o e

3.6. THEOREM. Let X and Y be continua and let M and N be snake-like continua.
Iffi X— M and g: Y- N are surjective mappings, then fXg: XxY—> MxN
is weakly confluent.

Proof. Let M = {I,, a,,} and N = {I,, B,.} be two inverse sequences with
surjective bonding maps, where I, = I for each n>1, such that A = invlimM
and N = invlimN. Then M x N = invlim{Z, x I, a,, x B}

Now let C be a subcontinuum of M x N and for each n3>1 let Cy = 0, X B,(C),
where «,, §, are the projections. Since the maps o, o fand B, o g are surjective, by 3.5
-there exists a continuum D,cX x Y such that

(“n °f) X (ﬁn °9)(—Dn) = “nXBn °fXg(Dn = Cn .

Without loss a generality we may assume that the sequence {D,} converges to
a continuum D. It is easy to verify that fxg (D) = C, which completes the proof.

Since each nondegenerate indecomposable continuum can be mapped onto I(P),
where P is an arbitrary sequence (see {30]), from the above theorem we obtain

3.7. CorROLLARY. If X and Y are nondegenerate indecomposable continua and P,
P’ are two arbitrary sequences of natural rumbers, then there exists a weakly confluent
mapping from X x Y onto I(P)x I(P"). }

This jointly with the results of Section 2 gives the following

3.8. THEOREM. Let X and Y be nondegenerate continua. Then we have:

(&) if X and Y are indecomposable, then for every solenoid C there exists a sub-
continuum of X'x Y which can be mapped onto C.

(b) if X is indecomposable, then there exists a subcontinuum of XX Y which
can be mapped onto the dyadic solenoid.

A contimuum X is said to be a triod of the form (X,; X1, X5, X3) if X; are sub-

_continua of X and the following holds:

HX=Xxux,0X,,

() XinX; =X, for i,j=1,2,3, i J

(i) X, # X; for i=1,2,3.

3.9. LemMA. Let X be a triod of  the Jorm (Xo; X1, X,,X3) and et
T =aya; vaga, vagas be a simple triod. Let f: X — T be a mapping such that
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S Nag) = Xy and f (X)) = apay, i =1,2,3. Let Y be a contimuum and letg: Y1
be a monotone surjection. Then fxg: Xx'Y — TxI is weakly confluent.
Proof. Let Dy = aya,x1, D, = (tpa, U ayas) x I, Z, = (fxg)"1(Dy) and

" Z, = (f%g)"YD,). Then Dy and D, are two disks such that

) peD; n Dy = (fxg) *p) is a continmum.

Consider a continuum C in TxJ and let ¥ be a neighbourhood of C in T'x I.
Let W, i =1,2, be a polyhedron in D; n ¥ containing C n-D; such that each
component of W; meets C. Let X, ..., Ky i=1,2, be the components of W;
such that K;, n K;; = @ for r # 5. By Corollary 3.5 the map from Z;into D; induced
by fx g is weakly confluent. Hence there exist continua KcZ;,i=1,2,j=1,.., i,

such that fxg(Kj;) = K;;. Since C is connected, the union X = U
i=1,2
J=1n

tinyum, Hence we may arrange all the continua {K,;} into a sequence K, K, ..., K,

such that Ky n Ky # 0 for I = 1, ..., n—1. It follows that K; n K;4;<D; A D,

Let pye K; N Kp44. Then by (1) it follows that Kj U Ky, U (fxg9)~py is a con-
n—~1

K,;is a con-

tinoum. Hence Ky = |J K] U Kjy; U (fxg)"Y(p) is a continuum in X 'x ¥ such
=1 . . :

that fx g(Ky) = K. Thus for each neighbourhood Vof Cin TxI there exists a con-
tinuum Ky in X% ¥ such that C=(fxg)(Ky)< V. This easily yields the existence of
a continuum in X'x I which is mapped by fxg onto C. This completes the proof,

From the preceding lemma we have the following

3.10. CorOLLARY. If X and Y are continua such that X contains a triod and ¥
gontains a subcontinuum which admits a monotone surjection onto I, then there exists
a weakly confluent mapping from X x Y onto Tx I, where T is a simple triod. Hence
by 2.8 for each solenoid C there exists a subcontinuum of X x Y which can be mapped
onto C.

Every irreducible hereditarily decomposable continuum admits a monotone
surjection onto I [21, p. 216]. Then by 3.8 and 3.10 we have the following

3.11. THEOREM. If X and Y are nondegenerate continua such that X x Y contains
no subcontinuum which can be mapped onto the dyadic solenoid, then X and Y are
hereditarily decomposable and atriodic.

3.12, ProBLEM. Suppose X and Y are hereditarily decomposable and atriodic
continua. Must X'x ¥ be hereditarily movable?

3.13. PROBLEM. Are the conditions “to be hereditarily movable” and “to be
hereditarily pointed 1-movable” equivalent for continua?

3.14. ProBLEM ('). Does there exist a (1-dimensional) continuum which is
hereditarily non-movable? '

We close this section with some remarks and problems on hereditarily indecom-

" posable continua. From results in [19] it follows that the class of shapes which are

() Added in proof. L. Oversteegen and the author have constructed such a curve.
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represented by hereditarily indecomposable continua is limited. In that paper
it is also proved that we have plenty of 1-dimensional hereditarily indecomposable
continua. Thus the following sort of problems is of an interest:

3.15. ProiEM (1), Does there exist a hereditarily indecomposable continuum
of dimension >1 with one of the following properties: a) movable, b) acyclic,
c) of trivial shape, d) pointed 1-movable, etc.?

3.16. ProBLEM. Suppose X is a 1-dimensional hereditarily indecomposable
continuum with infinite dimensional hyperspace of subcontinua. Must X be non-
movable?

This problem is related to a recent result of W. Lewis [23] who proved that such
hereditarily indecomposable 1-dimensional continua exist. k

It is easy to prove that hereditarily indecomposable continua with infinite di-
mensional hyperspaces must contain many non-movable subcontinua (which can be
mapped onto solenoids). To prove this it suffices to combine 3.3 with the results
in {10]. Hence hereditarily movable hereditarily indecomposable continua containing
more than one point must have 2-dimensional hyperspaces of subcontinua, which
follows from some results in {10]. Since all subcontinua of 2-manifolds are heredi-
tarily movable [18, 26], the result in [15] may be generalizated as follows.

© 3.17. TueoreMm. If X is a nondegenerate hereditarily indecomposable continuum
embeddable into a 2-manifold, then its hyperspace of subcontinua C(X) is 2-dimen-
sional.

4. On the properties (MLH,), (FH') and (FDH!). Lot g be an element of an
Abelian group G. Then we say that g is finitely divisible if there exists a natural
number 7, such that for no nn, the equation g = n-x has a solution in G. If each
element g £ 0 of G is finitely divisible, then G is said to be finitely divisible. By H*
we denote in this paper the first Cech cohomology functor with integer coefficients.
If f: X Y is a mapping between compacta, then the induced homomorphism
from H*(Y) into H*(X) will be denoted by f*. Finite divisibility of the group H(X),
that is: the condition (FDH'), has a geometric interpretation given by the following

4.1. TeeoreM ([16, 29]). If X is a continuum, then H'(X) is finitely divisible if
and only. if there is no continuous surjection from X onto any solenoid.

It is obvious that each free Abelian group is finitely divisible. The converse is
not true even for the group H(X), where X is a curve. An appropriate example is
given below. Before we present it we recall some results and terminology.

Consider the unit circle S as an Abelian group with multiplication of complex
numbers as a group operation. If X is a compactum and /, g: X — § are mappings,
then we define the product f*g: X' — § by f-g(x) = f(x) g (x). It is obvious that
iff =~ gandf" = g’, thenf-f" & g-g'. Thus the product of mappings induces a group
structure in the set of homotopy classes of mappings from X into S. This set with
the group operation is denoted by ='(X) and called the Bruschlinsky group of X.

(*) Added in proof. M. Smith has proved that there is no such a continuum with trivial
shape. The author has proved that no such a continuum can be acyclic.
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An element of 7'(X) with a representative S will be denoted by [£]. The symbol ='
will be also regarded as a functor from the category of compacta to category of
Abelian groups. Ifh: X - ¥ then the induced homomorphism 7!(k): (Y) - 7'(X)
is also denoted by /* and is given by H5([f1) = [foAl. Let y denote a generator of
the infinite cyclic group H*(S). Let a = [fle #'(X). To the map f: X — S there
corresponds the element f*(y) e H(X), which does not depend on the choice of
a particular map frepresenting a. In this way we obtain a function 1 7(X) - HY(X)
defined by x([f1)) = f*().

4.2. BRUSCHLINSKY THEOREM [6, p. 226]. The function % is a natural equiv-
alence of functors ©* and H1.

If G is an Abelian topological group, then by char G we denote the character
group of G.

4.3. STEENROD THEOREM [32]. Let ¥ be a compact connected Abelian topological
group. Then char Y is isomorphic to HY(Y).

4.4. Exampre. There exists a compact connected (metrizable) Abelian topo-
logical group Y of dimension 2 such that H'(Y) is finitely divisible but not free..

Proof. In [28, p. 43] L. S. Pontrjagin gave an example of an Abelian torsion
free group G of rank 2 which is finitely:divisible but not free. Consider G as a topo-
logical group with discrete topology. Let ¥ = charG. Then Y is compact. Since G is
countable, Y is metrizable because it has a‘countable basis. Since G is torsion free,
Yis connected [28, p. 239]. Since rank G = 2, dim ¥ = 2 [28, p- 240]. By the Steenrod
theorem we have H'(Y)avcharY = char(charG). From the Pontrjagin duality
theorem [28, p. 233] we conclude that H'(¥)~G, which completes the proof.

Now we are prepared to present the promised example. .

4.5. ExawmpLE. There exists a curve X such that H'(X) is finitely divisible but
rot free.

Proof. Let Y be as in the above example. It follows from a result of Wilson [34]
that there exist a curve X and a surjective mapping f: X — ¥ such that ™ 1(y) is
a locally connected continunm for each y € ¥. We shall show that X possesses the
desired properties. Since f is a monotone surjection, by a result of A. Lelek [22] the
induced homomorphism f*: HY(Y) » HYX) is a monomorphism. Thus H(X)
contains a subgroup which is not free. Therefore H*(X) is not free. It remains to
prove that H*(X) is finitely divisible. Suppose not. Then by 4.1 there exists a surjec-
tive mapping g: X — Z, where X is a solenoid. Let M be a subset of ¥'x X defined by

M= {{ytxg(f'(): ye ¥}.
Observe that M is a continuum. Let p: M — ¥ and g: M — % be the mappings
determined by projections. Since g(f~!(»)) is a locally connected subcontinuum
of Z, it is an arc or a point. Hence p is an acyclic map and therefore H(M) ~ H(Y)
because p*: HY(Y) — H'(M) is an isomorphism [2]. Since ¢ is a surjection, then by
4.1 we infer that H'(A) is not finitely divisible. This contradicts the fact that H'(M)
is isomorphic to G. Hence H'(X) is finitely divisible, which completes the proof.
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The next considerations are preparatory for the proof of Theorem 4.8 in which
we show that certain class of continua has the first cohomology group free.

Recall that a subgroup H of an Abelian group G admits division in G if for each
g € G and each natural number 7 the condition »n- g € H implies g € H. The following
proposition follows from [28, p. 243].

4.6. PROPOSITION. Let G be an Abelian countable torsion free group. Suppose
there exists an increasing sequence Gy, G, , ... of finitely generated subgroups of G such
that G = \J G, and G, admits division in G for each nz1. Then G is free.

nzl

By H,(X) we denote the first singular homology group of X with integer coef-
ficients. It is known that for ANR -sets the singular homology is naturally equivalent
to the Cech homology (based on arbitrary open coverings) [24, Th. 1, p. 30].

Let xq be a point of X and let w: (I, I) — (X, x;) be a loop in X. Then o is
a representative of the element [w] e n, (X, xo). But w: J — X can be also treated
as a singular symplex in X which is a cycle in X. Hence w is a representative of an
element (@) € H;(X). It is easy to see that this procedure defines a homomorphism
h: (X, xo) = H(X). Observe that if f: X — Y is a mapping, then for the induced
homomorphism fi: H(X) — H,(Y) we have fi( o)) = {fow).

The following is a classical result about 4.

4.7. TueoreM. [12, p. 45]. If X is pathwise connected, then the homonorphism
h: my(X, x4) = Hy(X) is an epimorphism with the commutator. subgroup of 7,(X, x,)
as its kernel. Moreover, I establishes a natural transformation of the functor my into Hy.

Since 7,(S, 1) is an infinite cyclic group, it follows from the above theorem that
each ae H,(S) is of the form a = {w) for some loop ® in (S, 1). Moreover if
{o;> = {w,), then w; ~ w, rel. I, i.e. [w{] = [0,].

From now on to the end of this section the symbol p,, n1, stands for the
map p,: S — § given by p,(z) = 2". We shall use the fact that p, is a covering pro-
jection and the simple observation that if [f]en!(X), then n-[f] = [puafl

Now we are ready to prove

4.8. THEOREM, Let X be an inverse sequence of connected ANR-sets such that
H((X") is an ML-sequence. Then H'(invlimX) is a free group.

Proof. Let X = {X,, "} and let X = invlimX. Let (f)y: H(X,) — H,(X),
I<n<m, denote the induced homomorphisms. Without loss of generality we may
assume that

(1 im(f Y, = im (M.

By the continuity of Cech cohomology and the Bruschlinsky theorem we have
H'(X)~dirlim H(X)~dirlimn!(X), where the induced homomorphisms

(Y o'(X) - n'(X,,)

are given by (f;)*([e]) = [ f;"]. Thus the proof will be completed when we show
that G* = dirlimn'(X) is free.

for each I1<n<m.
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Let n,: n'(X;) - G® be the natural homomorphisms. For each nx>1 define

G, = {g e G*: there exist [¢] en'(X,,,,) and k>1

such that g = 7,4 ,([e]) and k-[«] E1m(f"+ ysy

Observe that im#n,<G,=imy,,,. Since the groups n'(X}) are free of finite rank it
follows that G,’s form an increasing sequence of finitely generated subgroups of G*

such that G® = {J G;. Since G* is an Abelian countable torsion free group, then
nZ1

by 4.6 our task is reduced to showing that
(2) G, admits division in G®.

Suppose, to the contrary, that there exist an element g € G*\G, and a natural
number / such that /-g € G,. From the construction of G, it follows that there exist
[len'(X,.,) and k>1 such that I'g = . ([a]) and k-[o] eim(fo+9*. Let
k-[o] = (f*")*(Iey]). There exist an index m and an element [f]e z'(X,) such
that g = #,,([8]). Since im#n; <G, for j<n and g ¢ G, it follows that m>n+1. Since
Met1{[2]) = 7,,(I-[B]), there exists an index r>m such that (£, )*([¢]) = (f2)*(-[B).

Thus we have the following diagram commuting up to homotopy:

fava
f:+‘ l f"m v
X, X, XX,
! IS |
e |2 ‘\‘ i8
N e ‘|( ¥
S < S <« S

¥

Now we shall show that there is a mapping &: X,+; — S (corresponding to
the dotted arrow in the diagram) such that o =~ p; o & Let x, be a point of X, ,.
Without loss of generality we may assume that a(x,) = 1. The existence of & will
follow from the lifting theorem [31, p. 76] when we prove that for each loop w, in
(X,41, %) there exists a loop ; in (S, 1) such that « e wy = p; o @, tel. L. So, let w,
be a loop in (X1, Xp). Let {wo) be an element of H(X,,) determined by w,.
Then by (1) there exists an element a € H,(X,) such that (/7 1), (Kwed) = (D« (@).
Let w; be a loop in (S, 1) such that <{w,;> = (8o f)«(a). Now we prove that
oo wy = pyow, rel. I It suffices to show that {a o wy) = {p; o ;. Since the func-
tor H,; makes the diagram commutative and the homomorphism (p)y is a mono-
morphism, the last equality will follow when we prove that (pg)u({ete wy))

= (p)+({p; o w)). But this is true because we have:

(Ps(wo@od) = {ppoac w°> = ()it D)) =
= ()l f* Delfrede(@ =
= (P)(P)x (B o f)+(a)

(CARGMNC)
(P05 S+ 1)@
= (Pu{p1o @) .
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Thus we have proved that there is an element [5 len!(X,.y) such that
(3) [o] = I-[&1.

Return now to the proof of condition (2). We have I-g = 1,1 ([2]). Using (3)
we infer that I'g = ['n,4([&]). Since G* is torsion free we conclude that
g = 1,4([@). Also k-1[@] = k-[d] € im{ £+ 1y*. These properties show that g € G,,
a contradiction completing the proof of (2). As we observed before this proves the
whole theorem.

It follows from 2.8 that every continuum X satisfying one of the following con-
ditions has the group H(X) free: (MOV¥), (MOV), (IMOV*), (IMOV), (n1 MOV),
(MLH,).

In [13] J. Keesling proved several interesting results on the group H 1X),
where X is an Abelian topological group. The following is a corollary to his results.

4.9. TuroreM (J. Keesling). Let X be a continuum and let Ay = char H'(X),
considering H'(X) os a discrete group. Then there is a mapping f: X — A, such
that f*: H'(dx) — HY(X) is an isomorphism.

Let T" be the n-torus, where n = 1,2, ..., . By definition T™ is the cartesian
product of n-copies of the circle S, hence it is the character group of a discrete free
Abelian group of rank n.

4.10. COROLLARY. Let X be a continuum such that H'(X) is free of rank n. Then
there is & mapping 2 X — T" such that f*: H*({T™ —» H*(X) is an isomorphism.

Now we shall see that all the properties listed in the Introduction except (FDH')
are equivalent for continua which admit a group siructure under which they are
Abelian topological groups.

The following is a corollary to Theorems 2.5 and 2.7 in [14].

4.11. TuroreM (J. Keesling). Let A be a compact connected (metrizable) Abelian
topological group. Then the following are equivalent:

(i) A4 is movable,
(i) A is locally conmected,

(iil) A is arewise comnmected,

(iv) HYA) is free.

From 4.3 and the Pontrjagin duality theorem. it follows that the list of equiv-
alent conditions can be extended to the following:

\

(v) A'is pointed movable,
(vi) A is pointed 1-movable,
(vii) A is 1-movable,
(viii) A is nearly 1-movable,
(ix) there exists an ANR-sequence A associated with A such that H,(4) € ML,
(x) 4 is isomorphic to T", where n = rank H' 1(4).
Remark. For non metrizable Abelian topological groups these conditions. are
not equivalent (see [14, Ex. 2.8]).
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Since each continuum emibeddable into a 2-dimensional mamfold is movable,
conditions (i) and (x) from the preceding theorem imply the following fact, probably
known to people working in topological groups.

4.12. COROLLARY. Let X be a nondegenerate contimuum embeddable into
2-dimensional manifold M. Then if X admits a group structure under which it is an
Abelian topological group, then X is homeomorphic either to the circle S or to the
ordinary torus T®. Hence if M is the sphere S?, then X is homeomorphic to S.

5. Some remarks on pointed 1 -movable continua. It was observed in [18] and [26]
that pointed movable continua are exactly those which are simultaneously movable
and pointed 1-movable. In symbols we can state this as follows:

(MOV*) = (MOV)+(IMOV*) .
It follows that Problem 1.1 from the Introduction is equivalent to the following

(1.1)'. PrROBLEM. Must movable continna be pointed 1-movable?

Thus we see the importance of the notion of pointed 1-movability in shape theory
and continua theory. We refer the reader to [17], [18], [20] and [26] for detaxled
discussion of this property.

5.1. THEOREM. A contirmum X is pamteﬂ 1- movable i dnd anly ifi itis ]omable [20].

For the convenience of the reader we rcpeat here the deﬁmtlon of Jomabzltty
introduced in [20]. In the definition we consider a continutim X to be a subset of
a space M € ANR(), but it is easy to check that the notion does not depend on
the choice of a particular M.

Consider two points x, y € X. Then we say that x and y are joinable in X if
there exists a mapping ¢: Ix[0, c0)—~ M satisfying the conditions:

(@) ¢©,1) = x, ¢(1,1t) =y for each &[0, ),

(b) for each mneighborhood U of X in M there is a real zozo such that
o(Ix[ty, 0))c=U.

5.2. ProBLEM (%). Does there exist a nondegenerate continuum X such that
no two different points of X are joinable?

If each pair of points of X is joinable then X is said to be joinable.

If Uy is a fixed neighborhood of X'in M then it is reasonable to consider a weaker
form of joinability, so called Uj-joinability. We obtain this notion by replacing
condition (b) with the following: '

© o(I%[0, w0))=U.

The next theorem, proved in [20] in an equivalent form, shows how compli-
cated global structure a continuum must have when it is not pointed 1-movable.

5.3. THEOREM [20). Let X be a continuum lying in a space M e ANR().
If X is not pointed 1-movable, then there exist a neighbourhood Uy of X in M and
a subset A of X such that Card A = ¢ and no'two different points of A are Uy-joinable.

*) Added in prbof The example of L, Oversteegen and the -author is such a- cont-
inuum (see 3.14). . ;
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5.4. ProBLEM.. Can we choose 4 to be a closed subset of X?

The relations of joinability and U,-joinability partition the continuum X into
classes of equivalent elements. We call them joinability components and Up-joina-
bility components of X in an analogy to arc-components of X. In [20] they were
called approximative path-components. For some simple continua, such as solen-
oids, these components coincide with the usual composants. It should be noted
however that their structure is different from the structure of composants — for
instance they need not be dense in the continuum.

The structure of joinability components will be studied in another paper by
the author. Here we present only a construction and simple observations on an
interesting fibration associated with a given joinability component which makes
the study possible.

Let B be a joinability component of a continuum X and let x; e B. Let
(X, xo) = {(X,, %), f,m} be an inverse sequence of connected ANR -sets associated
with X. For each n31 let p,: (X,,%,) - (X,, x,) be the universal covering pro-
jection. Then there exist mappings fou: (X, %) = (X,, %), n<m, such that
Profom = Fom © Pm» Let (E, %o) be the limit of the inverse sequence {(X,, %,): fum}
and let p’: (E, %) — (X, xo) be the mapping induced by p,’s. Then E is in a sense
simply connected and one can prove that

5.5. THEOREM. p'(E) = B and the map p: E — B determined by p' is a Hurewicz
fibration with O-dimensional fibres.

Thus with every joinability component of X we have associated a Hurewicz
fibration. An important observation is this. If X is joinable, then B = X and the
above procedure gives us a Hurewicz fibration p: E — X with E being “simply
connected”. This indicates that for pointed 1-movable continua we may construct
a reasonable fibration theory. This will be done in another papet.

Now we shall prove that the 1-dimensional “holes” in a pointed 1-movable
continuum can be filled in by a 0-dimensional boundle of open disks. The detailed
construction and appropriate results are given below.

Let X be a pointed 1-movable continuum and let x, e X. There exist an
ANR-sequence (X, x,) = {(X;, x,), fum} associated with (X, x,) and a sequence
Fy, F,, ... of finite sets such that each X, is connected, each F, generates n,(X,,, x,),
in symbols: (F> = ny(X,, x,), and (f,,+1)s(Fpey) = F, for each nx1 (see the
proof of 3.1 in [I8]). Now we shall construct a new ANR-sequence whose inverse
limit contains X and has some nice properties. Using polar coordinates, for each
nz1, define

D, = {(r, 0): 0<r<n, 0<0<2n}cR?.

Let F, = {e,1. ..., €y} Let the mapping
Pyjt (Dm dn) i (Xn X,,), dn = (": 0) >

represent the element ¢,;, 1<j<k,. Let X, be a space obtained from X;, attaching
to X, the disks D, by means of the maps ¢,;. Let 0,;, 1<j<k,, be the 2-cells and
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let §,;: D, — o, be the characteristic maps. Thus §,; extends @,;. (It is assumed
as usual that the interiors of the 2-cells are mutually disjoint). By the Borsuk—
Whitehead theorem the space X, is an ANR and it is easy to observe that it is simply
connected (comp. [31, p. 146]). Now we define the mappings

f;lln‘l-i: (Xr::#'l’ xn) g (X,’,, xrl) .

For x & X,y let fr,41(%) = fuur1(x). On the attached 2-cell 0,.4,;, 1</<korrs

Sunt1 ACtS as follows. Let (fyneDulenrs,) = €. Let P = {(r,0): n<r<n+1}

Since ¢,; represents e,; and ¢, ; Tepresents e, ; there is a mapping (homotopy)
€

o P X,

such that a(n, 6) = @1, 0), a(r+1, 0) = f, 1 ° Cosr,(0+1,0) and ar,0) = x,
for each n<r<n+1 and 0<6<2n. Then if X = Gy ;(¥) €0ns1,;, then we set

4 - @m‘(y)
f;v,n-&- l(x) - {a(y)

This completes the description of the maps fy.
Let us observe that the following implication holds:

(*) I1gk<iney = (fidsley) = fio Gyl Dk = Pui -
Let

for ye D,,
for yeP.

X' = invlim{X}, fi.} -
Tt follows that X is approximatively simply connected and obviously X is a subset
of X'.
Consider F,’s as spaces with discrete topologies. Then‘deﬁne

F = invim{F,, fon} »

where f,,, is determined by (f,.)s. The set F is a compact 0-dimensional space.
Using this set we can determine the structure of the complement X'\X. In fact, we
‘are able to prove that the set is homeomorphic to R?x F. To see this we define an
embedding

h: RExF— X'

such that h(R*xF) = X\X. Let e = (ey;,, €2j,, ) be a point of F. Denote
@, = Py, n=1. Let y e R% To define i(y, o) it suffices to determine its ith co-
ordinate n(y, €); and this is defined as follows. If y = (r; 0), where n—l<gr<n,

then
_ [ fine @y forisn,
b0, ), = {(7’"107) for i>n.
Using (x) it is an easy exercise to check that h has the desired propetties.
Denote

a=(1,0) and Rl—{(r M eR* rz1af =0},

4 — Fundamenta Mathematicae CXIV/1
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Note that A(R; xF) = h(R;xF) U {x,} is homeomorphic to the cone over F,
where {a} % F cotresponds to the base and x, to the vertex of the cone. We stmply
identify this set with the cone. Thus we have proved the following,

5.6. THEOREM. Let X be a pointed 1-movable contimum and let xo be a point
of X. Then there exist an approximatively simply connected continuum X~ containing X
and a compact O-dimensional set F such that X'\X is homeomorphic to R*xF.
Moreover, there exists an embedding h: R* X F ~ X' such that h(R®)x F = X'\X
and h(Ryx F) U {xo} is a cone with the base {a}xF and the vertex x,.

Roughly speaking this theorem expresses the fact that in pointed 1-movable
continua we can fill in the !-dimensional holes adding to the space a 0-dimensional
boundle of open disks which nicely attain a given point in X,

The property stated in the theorem does not characterize the pointed 1-moy-
ability. Namely, J. Dydak [8] constructed an example of a non-movable curve X
containing a simple closed curve § such that after attaching to X a 2-cell by means
of 2 map which is a homeomorphism or the boundary of a disk one gets a continuum
with trivial shape. .

5.7. THEOREM. Let X be a subcontimuum of a nearly 1-movable continuum X'
such that X'\X is homeomorphic to R*x F, where F is a closed 0-dimensional set.
Then X is nearly 1-movable.

Proof. Let D be a closed disk in R2. Consider the continuum X" = X'\D x F,
Let Y be the quotient space obtained from X" by identifying each circle D x {a},
aeF, to a point. Let f: X" — ¥ be the quotient map. Then Y is homeomorphic
to X" afid for each y € ¥ the set £ ~1() is either a point or a circle, Thus S ) is
a pearly 1-movable continuum. Since Y is nearly ‘1-movable, it follows from

[8, Th. 2] that X is nearly 1-movable. Since ShY" = ShX, then X is neazly
~ 1-movable.

5.8. PROBLEM. Let X be a nearly 1-movable continuum. Do there exist an
approximatively 1-connected continuum X=X and a closed 0-dimensional set F
such that X"\X is homeomorphic to R?x F? )

We finish this section with a result showing the importance of joinability in the
study of pointed shape. The class of solencids shows that there exist continua which
have the same shape with respect to points which are not joinable. However we
shall prove that joinability of two points in a continuum is sufficient for the space
to have the same shape with respect to- the points. First we prove a lemma.

If w is a path in a space ¥ and f, g: X — Y are two mappings, and Xo is a base
point in X, then f and ¢ are said to be w~homotopic if there is a homotopy / from !
10 g such that & (x,,¢) = w(t) for each te .

5.9. LemMa. Let @ be a path in an ANR-set X. Then there exist mappings
g,9": X ~ X such that idX is w-homotopic 1o g and 1dX is o™ -homotopic to g'.
Any such mappings satisfy relations: g' o g = id X rel, w0)andgog’ =~ idX rel.ow(1)
(it is understood that id X is w-homotopic to g rel.w(0) and (1) is the base point for
the other homotopy). :

icm
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Proof. The existence of g and g’ follows from [31, p. 380]. Then it follows that
idX is w#*w™'-homotopic to g’ g and idX is @™ **w-homotopic to g = g'. Since
the loops are contractible, the conclusion of the lemma follows from [31, p. 380].

5.10. THEOREM. Let x and y be two points of a continuum X. If x and y are joinable
in X, then Sh(X, x) = Sh(X, »). -

Proof. Let X = {X,,/,,} be an inverse sequence of ANR-sets such that
X = invlimX. Let x,, 3, denote the nth coordinates of the points x and y respec-
tively. Since x and y are joinable, there exists a sequence of paths ‘

{(')n: (1,0, 1) = (X, %y, yn)}
such that
(l) Wy, gf;v,nwkl © Wy rel. 1.
The theorem will be proved when we show that there exist sequenceF of mappings
{gn.5 gl’l: 'X.H - Xn} SUCI'I that: gn(xn) = JIH’ g;l(.yn) = x" gl’l ° g" =~ ldX;l rel' ‘xn)
Gpogy = idX, rel. yy and gy o fonr1 & font1 ©Ints 1'5!- Xn 1 , :
Let g,: X, = X, be such that idX,, is a),‘-homotoplc to g, and‘ l(’a‘t‘g.,,:bX = Xn

be such that id X, is @, *-homotopic to'g, . The existerice of sqch‘x?)applrfgs f9110w§
from the above lemma. Using this leninia thé:prqqf‘wﬁﬂﬁé d‘qﬁ?yhm*we chf.f;ck ’th‘e

elati ° o~ ogyry Tol iy - G . :
rdatg:t ]L‘],,",, :In: 1id Xf:?:n,, 157 '1',s zu,,- homotopic to g, © fin+1, Where fry 1§ regarde.d
as a map from (X,;q1, X41) to (X, X,). Moreover, f,,,,,4,1‘=f,,,,.+1 0id X,y is
Foni1 © @y g-homotopic to fy w1 ©Guss (psy I8 .thc base pomt. of X,+1)

, By (1) and [31, p. 380] we infer that £, .+ 1s‘a),,?homotoplc to fun+1 cg,,;,l(i
Thus foue1t Kpars Yus1) = (X X,) is @,-homotopic to both gpofune1 an
Som+1 ©Gnr1- By [31, p. 380] it follows that g, © fontt = Juws1 0 Gner Tl Xppys
which completes the proof.
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Approximate polyhedra, resolutions of maps and shape fibrations

. by

Sibe Marde$ié (Zagreb)

Abstract. Shape fibrations between compact metric spaces were introduced by T. B. Rushing
and the author in [15]. In this paper one extends the definition so as to apply to maps p: E—+B
between arbitrary topological spaces, This is done by considering certain morphisms in pro-Top
p: E - B, called resolutions of p. In the compact case resolutions reduce to inverse limit expansions.
One requires also that the systems £ and B consist of ANR’s, polybedra or more generally of
spaces called approximete polyhedra (AP). A map p is a shape fibration provided it admits an
AP-resolution p, which has a certain approximate homotopy lifting-property. Resolutions of
spaces are characterized and compared with the. inverse limit expansions. Moreover, existence
of ANR-resolutions and polyhedral resolutions is demonstrated.

1. Introduction, Shape fibrations p: E— B between compact metric spaces
(more generally, proper shape fibrations between locally compact metric spaces)
were introduced and studied by T. B. Rushing and the author in [15], [16], [17}.
Further contributions to this theory were made by Z. Cerin, L. S. Husch, M. Jani,
J. Keesling, S. Mardesié, A. Matsumoto and T. C. McMillan. For a survey of results
on approximate fibrations and shape fibrations see [14] and [22]..

This paper originated from an attempt to extend the notion of shape fibration
from the rather special case of maps between metric compacta to the general case of
maps between arbitrary topological spaces. Results concerning this question are
contained in Sections 4 and 8 of this paper. v

The main idea consists in considering certain expansions p: E — B of the map
p: E - B, called resolutions of p. They are related to inverse limit expansions of p
and appear to be of interest on their own. For resolutions of p one defines the approxi-
mate homotopy lifting property (AHLP) as in ([15], § 9). If one allows as memibers
of E and B only “nice” spaces, then the property AHLP does not depend on the
choice of the resolution, but depends only on the map p. Maps which have thlils
property are, by definition, shape fibrations. In § 8 we give a “categorical” definition
of shape fibrations.

In § 2 we define and study “nice” spaces under the name of approximate poly-
hedra. We show that they include ANR’s (for metric-spaces), CW-complexes and
n-dimensional LC'™* paracompacta. In the compact metric case approximate
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